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n stochastic systems, quantiles indicate the level of system performance that can be delivered

with a specified probability, while probabilities indicate the likelihood that a specified level
of system performance can be achieved. We present new estimators for use in simulation ex-
periments designed to estimate such quantiles or probabilities of system performance. All of the
estimators exploit control variates to increase their precision, which is especially important when
extreme quantiles (in the tails of the distribution of system performance) or extreme probabilities
(near zero or one) are of interest. Control variates are auxiliary random variables with known
properties—in this case, known quantiles—and a strong stochastic association with the perfor-
mance measure of interest. Since transforming a control variate can increase its effectiveness,
we propose both continuous and discrete approximations to the optimal (variance-minimizing)
transformation for estimating probabilities, and then invert the probability estimators to obtain
corresponding quantile estimators. We also propose a direct control-variate quantile estimator
that is not based on inverting a probability estimator. An empirical study using queueing, in-
ventory and project-planning examples shows that substantial reductions in mean squared error

can be obtained when estimating the 0.9, 0.95, and 0.99 quantiles.
(Simulation; Variance Reduction; Control Variates; Statistics)

1. Introduction

Variance-reduction research in the discrete-event sim-
ulation literature has focussed on estimating expected
values—especially means or first moments, which in-
cludes probabilities. There are, however, many practical
problems in which a quantile is a more relevant perfor-
mance measure.

As a prototype example, consider a stochastic activity
network that represents the time to complete a large
project. In order to bid the project correctly, the planners
might wish to know an upper bound on the completion
time that will hold with high probability, perhaps 0.85.
Therefore, the value they desire is the 0.85 quantile, also
called the 85th percentile, of project completion time.

As a second example, consider the design of a com-
mercial on-line database system in which response time
to customer queries is important. When evaluating pos-
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sible configurations of hardware and software, analysts
may be interested in determining a response time that
will only rarely be exceeded. Again, the desired perfor-
mance measure is a quantile.

The need for quantile estimation is more familiar to
statisticians. The critical values for test statistics, con-
fidence intervals and sequential-sampling procedures
are quantiles, traditionally the 0.9, 0.95, and 0.99
guantiles. For statistics with complicated sampling
distributions, simulation could be required to esti-
mate these quantiles. When the critical values are
computed in real time by a software package, then
fast, precise quantile estimation is crucial. For exam-
ple, the ADJUST=SI MULATE setting under the
LSMEANS option of PROC GLMand PROC M XED of
SAS Version 6.11 estimates critical quantiles as
needed for multiple comparison procedures, and the
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bootstrap confidence intervals in S-PLUS Version 4.0
use estimated critical quantiles.

In this paper, we form improved probability and quantile
estimators for ““terminating”” (finite-horizon) simulations us-
ing the method of control variates. That is, we exploit
known information about certain other random vari-
ables in the simulation to more precisely estimate prob-
abilities and quantiles of the random variable of interest.
Previous attempts to use control variates in this way are
reviewed and unified in 82. The review is important
because there are several competitors, and our ideas
pull together and extend many of them. For a different
approach to improving quantile estimation using
correlation-induction techniques, see Avramidis (1992)
and Avramidis and Wilson (1998).

The remainder of the paper is organized as follows.
In 83 we show how control-variate estimators can be
viewed as weighted averages, and how we exploit this
perspective to directly form probability estimators and
indirectly form quantile estimators. This observation is
critical because it is much easier to derive effective
control-variate probability estimators than it is to derive
effective control-variate quantile estimators. Since the
effectiveness of a given control variate can be enhanced
via transformation, §4 provides continuous and discrete
approximations to the optimal (variance-minimizing)
transformation for estimating probabilities; the optimal
transformation is typically unattainable. In 85 we solve
a longstanding technical problem that allows us to form
control-variate quantile estimators directly, without in-
verting a probability estimator. Section 6 presents an
empirical evaluation of the competitors, which reveals
that a simple discrete approximation to the optimal con-
trol variate is the best choice for both probability and
guantile estimation. Some summary conclusions are of-
fered in §7.

2. Background

Let Y be a random variable with absolutely continuous
cumulative distribution function (cdf) Fy. For 0 < g
< 1, let y, denote the unique value such that Fy(y,)
= Pr{Y = y,} = g. In other words, y, is the q quantile of
Y. Notice that since Fy is continuous, y, = Fy*(q) also
defines y,, and this observation suggests that estimators
of y, may be obtained by inverting some form of the
empirical cdf of V.
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For example, suppose that we obtain independent
and identically distributed (i.i.d.) observations Y,, Y5,
..., Y,of Y, and form the empirical cdf

A 1?2
Fry) = = 3 9(Yi =), 1)

where 4 is the indicator function. This leads to the stan-
dard estimator

Yq = inf{y: 'fY(Y) = g} = Y@, (2)
where Y, is the kth order statistic. This estimator can
(and often is) refined by smoothing, interpolating, etc.
(see Dielman et al. 1994 for a number of possibilities).
In the empirical study Y will represent the time to com-
plete a stochastic activity network, the delay in queue
of a customer and the average cost of an inventory
policy.

Clearly quantile estimation and probability estima-
tion are intimately connected, since a better estimator of
the cdf implies a better quantile estimator. One way to
classify control-variate variance-reduction techniques is
whether they attempt to directly improve upon the
quantile estimator Y i itself, or indirectly improve the
guantile estimator by directly improving upon the em-
pirical cdf (1). We review both approaches below, with
an eye toward enhancing their effectiveness.

2.1. Direct Methods

Let X be another random variable that is observed along
with Y and whose distribution Fx, or at least some as-
pect of it such as its mean or certain quantiles, is known.
Depending on the estimator, we might have no specific
requirements for Fx (as in this section) or rather strict
requirements; we therefore introduce the requirements
as they are needed throughout the paper.

If Y and X are dependent, then X may be used as a
control variate to aid in estimating probabilities or quan-
tiles of Fy. In the empirical study, X will represent the
time to complete the path with the longest expected
length in the stochastic activity network, the sum of the
service times of the preceding customers in the
gueueing system and the sum of the demands in the
inventory example. Although we focus on exploiting a
single control variate, if there are s control variates then
we denote them by X®, X®  X©®,

Suppose we simulate i.i.d. pairs (X, Y;), fori =1, 2,
..., h. A direct application of control variates to quan-
tile estimation is to form the estimator
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c|dir = yq - ﬁ()eq - Xq): (3)

where X, is the g quantile of X and X, is the standard
estimator of it. The performance of this estimator is very
sensitive to the strength of the correlation between ¥,
and X,, and the value chosen for the multiplier 5. The
optimal (variance-minimizing) value of g is p*
= CoV[&,, 41/ Var[X,], which is typically unknown.

When estimating the mean E[Y] using a control var-
iate X (as described in Section 3), there is a natural es-
timator for 4*, since Cov[X, Y]/Var[X] = Cov[X, Y]/
Var[X], which depends on individual values of Y and X.
But for quantiles estimated as in (2), the entire sample
is required to obtain a single estimator y, and X,, leaving
no degrees of freedom to estimate their variances or co-
variance. To solve this problem, Ressler and Lewis
(1990) suggest partitioning the size n sample into sub-
samples, calculating estimates of x, and y, from each
subsample, and then estimating 5* from the subsample
guantile estimates. Unfortunately, this substantially in-
creases the bias of §, when g is extreme. In 85 we intro-
duce a method that estimates 5* implicitly, without resorting
to subsamples.

A second problem is that the correlation between y,
and X, might not be large, especially when g is extreme.
Ressler and Lewis (1990) attempt to alleviate this prob-
lem by transforming X, to increase its correlation with
¥q. Their estimator can be represented as

a = Ya — B{9(X, @) — E[9(%;, )]}, 4)

where g is a parametric function of a vector of unknown
parameters «. They use ACE (Breiman and Friedman
1985) to suggest a functional form for g, and a nonlinear
regression using subsamples to estimate « and 5. A dif-
ficulty that they encounter is determining the E[g(X,,
«)], so they ultimately restrict attention to certain
classes of strictly monotone g. In 84 we propose much sim-
pler approximations to the optimal transformation.

2.2. Indirect Methods
Since a quantile estimator can be obtained by inverting
an estimator of the cdf, control variates can also be used
to indirectly improve quantile estimators by improving
the cdf estimators on which they are based.

The usual control variate estimator of Fy(y) is

FY(Y) = Fv(y) = B(Fx(X) — Fx(x)), (®)

where Fx(x) is the empirical cdf of X and 4 is the slope

MANAGEMENT ScieNce/Vol. 44, No. 9, September 1998

from regressing 4(Y; = y) on J(X; = x); notice that there
is no need to form subsamples. In 84 we refine this idea
by incorporating more effective control variate(s).

Another common estimate is obtained by using a
fixed constant in place of 4. Using a fixed constant may
lead to a variance inflation, however, while 4 is asymp-
totically optimal and turns out to be particularly con-
venient for quantile estimation, as we discuss in §3.

Both probability and quantile estimators have been
based on the following analysis using maximum likeli-
hood methods: Let

Poo(y) = Pr{X =X, Y =y},
Por(y) = Pr{X =X, Y >y},
Puo(y) = Pr{X >x, Y =y},
pu(y) = Pr{X > Xxq, Y >y},

and let
Noo(y) = #{i: X; = X, Yi = y},
No(y) = #{i: Xi = %, Yi >y},
Nio(y) = #{i: Xi > xq, Yi =y},

Nll(y) = #{i' Xi > qu Yi > y}1
No = #{i: Xi = X},
Ny = #{i: Xi > X}

We assume here that Pr{X = x,} = q, which is true if Fx
is continuous; the more general approach in §4.3 allows
X to have an arbitrary distribution.

Notice that

Pr{Noo(y) = Noo, Noz(y) = Noy,
Nio(Y) = Nio, Nus(y) = nui}

[Poo ()™ [Pox (y)]™*

Noo'No1!N1p!Ngy!

“[Pro(Y)]™[Paa(y)]™
n!
Nog!Noz!N3o!Nyy !
“[P1o(Y)]™[L — g — pao(y)]™, (6)

a multinomial distribution. Fieller and Hartley (1954),
Davidson and MacKinnon (1981), and Rothery (1982)
showed that the maximum likelihood estimators of the

[a — Por(Y)]™[Pos(y)]™
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probabilities implied by (6), conditional on N, > 0 and
N; > 0, are

~ qNoc(y)
Poc(y) = N,
puty) = e (7)

for £ = 0, 1. But since Fy(y) = poo(Y) + P1o(y), this leads
to the maximum likelihood estimator

FPU(Y) = Pooy) + Pro(Y)- (8)

This estimator is easy to compute, is unbiased when
Ny > 0 and N; > 0, and is effective. We show in the
next section that (8) is equivalent to (5). Also, the cdf
estimator (8) can be inverted to obtain a quantile es-
timator. That is, we can search for a value y§" such
that lf?'(VE"') = g, or equivalently o (¥7") = Po(¥q").
This is essentially Hsu and Nelson’s (1990) “ILRT”
quantile estimator; it is a special case of the discrete ap-
proximation to the optimal control variate estimator that
we introduce in 84.3.

Another indirect estimator is Hsu and Nelson’s
“MED UNB" estimator. Let K, = #{i: Y; = yq}. While
No = #{i: X; = X,} is observable, K, is not; however,
N, and K, are clearly dependent since No = Ngo(Yq)
+ No1(Yq) and Ko = Ngo(Yq) + Nio(Yq). MED UNB ex-
ploits this dependence in the following way: Since
Fx(Xq) = No/n, Fy(y,) = Ko/n and E[No/n] = E[Ko/
n] = q, MED UNB inverts Fy(y) = No/n to estimate
Yq. The resulting estimator is Y. In 85 we refine this
idea by accounting for the strength of the dependence be-
tween Y and X.

Based on an extensive empirical study, Hsu and
Nelson concluded that ILRT is the best of the three
guantile estimators (ILRT, MED UNB, and “NPMLE,”
which is not discussed here), so it is the one against
which we compete. Notice, however, that ILRT and
MED UNB are both difficult to generalize to multiple
control variates, while our new estimators are not.

In the following sections we introduce estimators
that refine and extend ideas presented in this section.
We primarily derive probability estimators that can
be inverted to obtain quantile estimators, because
these estimators are more versatile and because their
performance characteristics can be more easily estab-
lished. However, in 85 we also derive a direct

1298

control-variate quantile estimator that implicitly es-
timates 5*.

3. Control Variates as Weighted

Averages
This section reformulates the standard linear control-
variate estimator for a mean in a way that is particularly
advantageous for quantile estimation, and demon-
strates the potential benefit of transforming a control
variate to increase its effectiveness in reducing variance.

Suppose that we observe i.i.d. pairs (C;, Z;), fori =1,
2,...,n,and our goal is to estimate u; = E[Z] when uc
= E[C] is known. In the sequel we let Z = J(Y = y) and
C = g(X) for some transformation g, but for the moment
we leave the presentation general. Let 02 = Var[Z] and
Rzc = Cov[Z, C]/(Var[C] Var[Z])*/?, the correlation co-
efficient.

The usual linear control-variate estimator of 3 is

pe =Z = B(C — pe), 9)
where Z and C are sample means, and 4 is the slope
estimator obtained from a least-squares regression of Z;
on GC;. Tvon important properties of this estimator are
that /1%‘;—> pz and (a2 — pz) = N(O, 0%) as n = =,
where — denotes convergence in probability, = denotes
convergence in distribution, and o2 = (1 — R%c)o2 (Nel-
son 1990). Thus, the linear control-variate estimator is
consistent and has asymptotically smaller variance than
Z as long as R%c > 0.

Hesterberg (1993) and others noticed that (9) can be
rewritten as

AoV _ . <1 (6_ Mc)(é_ Ci))
2 \nt Tshe-or
Since the ZL; W; = 1 (Nelson 1990, Appendix A), the
linear control-variate estimator can be viewed as a
weighted average of the Z; values.

There are several advantages to this representation
when the goal is probability or quantile estimation. Let
Z =4(Y =y)and C = g(X) for some function g. Then
the control-variate estimator of Fy(y) is

Zi = % WiZi. (10)

i=1

n

FPy) =T Vi=yWi= 3 W. (1)

i=1 {iYi=y}

This estimator is consistent and can be used to estimate
Fy(y) for any value of y without recomputing W;. In
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addition, quantile estimators are obtained by inverting
the weighted cdf (11). Specifically, the control-variate
estimator of y, is Y§' = Y, where

J
L= min{j: > Wy = q} ,
i=1
and Wy, is the weight associated with Y. In practice
we interpolate between the Wp; to smooth this esti-
mator.

The weighted-average representation also generalizes
directly to multiple control variates via a linear regres-
sion on multiple controls: Let C; = (C, ¢, ...,
C)’ be the s x 1 vector of control variates from repli-
cation i with expected value uc. Further, let C = n*

n . ¢ denote the sample mean of the jth control var-
iate across all n replications, and let C = (C®V, C®, .. .,
C®)’. Finally, let M be the s X s matrix with (j, k)th
element My, = =, (CY — CD)(c — C®). Then the
control-variate weights when using all s control variates
are

W=>+C-rMAC-C) (1)
fori =1, 2, ..., n. The asymptotic variance of the
control-variate estimator of E[Z] is (1 — R%c)o%, where
Rzc is the multiple correlation between Z and C; this
reduces to (1 — RZc)q(1l — q) when Z = J(Y =y,). The
asymptotically guaranteed variance reduction for the
probability estimator leads us to expect a variance re-
duction by the same factor for the corresponding quan-
tile estimator. This can be seen as follows.

If Y has a nonzero, continuous density fy at y,, then it
is well known that

WO ()
M =y N<0’ f%(yq)>

(David 1981). An analogous derivation shows that

5 =y = (0,0 - Reo S D)
4 (o)

revealing an asymptotic variance reduction of 1 — R%¢
relative to §,. This large-sample relationship is con-
firmed in the small-sample empirical results presented
in §6.

We note that the control variate weights W; can be
negative. In practice this occurs only with multiple con-
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trol variates having long-tailed distributions in very
small sample sizes when the observed sample means of
the control variates differ substantially from the ex-
pected values. Negative weights cannot occur in any of
the discrete control variates discussed below, and they
are highly unlikely to occur in the estimated optimal
control variate described in §4.1. In general, the proba-
bility of any weight being negative is o(n"?/?) when
E[CP] < o0, and it decreases faster than exponentially if
all of the control variates are bounded.

An open question is, what transformation of X should
be used to obtain the most benefit as a control variate?
When Z = J(Y = y,), a natural choice is C = (X = X,),
the indicator function for the corresponding quantile of
the control variate. In this case the weights have a par-
ticularly simple form

i , Xi = Xq,
No
Wi = (13)
1-qg
v X > X

(Hesterberg 1993), and the point estimator becomes

FY(y) 3 IYi =YW,

(1-0q)
N,

Noo(Y) Ni + Nio(y)
0

Poo(Y) + Bo(y).

That is, when C = J(X = xg), the control-variate esti-
mator (11) is equivalent to the maximum likelihood es-
timator (8) for probabilities, or the ILRT for quantiles;
it is therefore unbiased for probabilities, conditional on
No > 0 and N; > 0. Davidson and MacKinnon (1992)
also noted the equivalence of (11) and (8) when C
= J(X = X,). Furthermore, for this choice of C, (11) is
the same as poststratified sampling on two strata (Hes-
terberg 1993), an insight we exploit later.

Although C = J(X = X,) has nice properties as a con-
trol variate, the variance reduction that is achieved de-
pends on the squared correlation between 4(Y = y) and
the control. The optimal transformation—the one that
maximizes the squared correlation—is

C* = g*(X) = E[H(Y = y)|X] = Pr{Y = y|X} (14)
(Rao 1973, p. 264-265). Of course, if g* were known
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then we might avoid simulation altogether by integrat-
ing | g*(x)dFx(x) to obtain Pr{Y = y}, and numerically
solving Pr{Y = y} = q to obtain y, with no sampling
error. In practice, the transformation g* is typically not
known, but an approximation of it can be used as a con-
trol variate to obtain the benefits of increased correla-
tion. We illustrate this by the following example.

Suppose that the joint distribution of (X, Y) is N(0, 0,
1, 1, p); that is, they are bivariate standard normal with
correlation p. For this case we can numerically evaluate
the asymptotic variance of the following estimators of
Fv(y):

1. The linear control-variate estimator with g(X)
= X; this is the usual mean-based control.

2. The linear control-variate estimator with g(X)
= J(X = vy); this is the natural control for estimating a
probability.

3. The linear control-variate estimator with g(X)
= Pr{Y = y| X}; this is the optimal control based on X.

4. Two approximations to the optimal linear control-
variate estimator that we introduce in §4.3.

For the case p = 0.9, Figure 1 shows the ratio of the
asymptotic variance of each estimator to that of the
crude estimator for 0 = y = 3oy. The crude estimator is
Fy(y), which has asymptotic variance Fv(y)(1 — Fy(y)).
The figure illustrates the potential benefit to be obtained
from an approximation to C*, relative to using either X
or (X =y) as controls. The mean-based control X has
almost no effect for extreme probabilities. The natural
control J(X = y) is much better, but the optimal control
is better still. And our approximations to the optimal
control are very nearly optimal. The figure also illus-
trates the diminishing correlation (and therefore vari-
ance reduction) between the response and control at
more extreme values of y.

In the following sections we propose techniques to
approximate the optimal control (14). We begin with
continuous approximations in §84.1-4.2. These tech-
niques are conceptually similar, but simpler and easier
to implement, than those of Ressler and Lewis. Never-
theless, they do require nonlinear least squares to fix the
transformation, and may require numerical integration
to calculate the expected value of the control. We use one
of these estimated optimal control variates as a standard
against which to compare approximations that are no more
difficult to implement than the linear control-variate esti-
mator; these estimators are introduced in §84.3 and 5.
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Figure 1 Ratio of the Asymptotic Variance of Each Improved Esti-
mator to the Variance of the Crude Estimator of Fy(y)
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4. Approximations of the Optimal

Control Variate

This section presents the central results of the paper. We
provide approximations to the optimal control variate
based on X, namely C* = g*(X) = Pr{Y = y| X}, for
estimating Pr{Y = y}. We first introduce a continuous
approximation that is highly effective, but difficult to
implement. Taking the continuous approximation as
the standard, we derive discrete approximations that
are nearly as effective and much easier to use. In all
cases quantile estimators are formed by inverting the
probability estimator.

4.1. Continuous Approximation from a Binary-
Response Regression

We first approximate the optimal control variate C*

given in (14) by using the result of a nonlinear regres-

sion of Z = J(Y = y) on X. We then use the estimated

optimal control variate, denoted C*, in the control variate

estimator F$'(y).

There are a number of existing procedures for regres-
sion when the response variable is dichotomous, as Z
= J(Y =y) is. These include logistic regression and cer-
tain generalized linear models (Dobson 1990) or gen-
eralized additive models (Hastie and Tibshirani 1990).
Depending on the joint distribution of X and Z, and on
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the procedure used, the approximation C* may be con-
sistent for C*, in the sense that the function §* is point-
wise consistent for g*. In particular, some of the non-
parametric procedures described in Hastie and Tibshi-
rani (1990) and implemented in S-PLUS (Chambers and
Hastie 1992) give consistent estimators under mild con-
ditions on the joint distribution.

In practice, there is no requirement that C* be con-
sistent for C* only that the correlation between C*
and C* be reasonably high. A nonconsistent estimator
may trade some loss of statistical efficiency for easier
implementation. The greatest implementation hurdle
in our context is the need to evaluate of E[C*]
= [ §*(x)fx(x)dx, after the transformation §*(x) is fixed,
so that we can use C* as a control variate. This may be
done by numerical integration (assuming that the dis-
tribution of X is known). We hope to avoid a difficult
numerical integration by restricting the class of curves
that may be fit, in particular to curves of the form

C =g(X) = $(a + aX), (15)

where ® is the standard normal cdf. Then

E[C] = J‘i D(ay + ax)fx(x)dx

=Pr{W < a, + X} = Pr{w — a;X < a,}, (16)

where W is a standard normal random variable that is
independent of X. In the special case when X is nor-
mally distributed this reduces to

(17)

E[C] = ¢<m> _

V1 + a?o%

In addition to numerical integration, Edgeworth ap-
proximation or the saddlepoint formula of Lugannani
and Rice (see Daniels 1987) may be used to approximate
Pr{W — a; X < ag}.

Our continuous approximation is implemented as
follows.

1. Given an i.i.d. sample, (X;, Z;),i=1,2,...,n,use
nonlinear least squares to fit the model

Zi = (b(ao + alxi) + €i,

yielding estimators &, and &;. We used the Gauss-
Newton method implemented in S-PLUS as function
nls.
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2. Form the control variates C¥ = P& + 4, X), i =1,
2,...,0N.

3. Approximate E[C*] = Pr{W — & X < 4}, treating
a, and &; as known constants.

4. Form the control-variate estimator FSY using the
weighted-average interpretation (11), and invert this es-
timator to estimate quantiles.

Notice that while this procedure yields a cdf estimate
which may be inverted to obtain quantile estimates for
any quantile, it is most effective for quantiles very near
the value of y used in the definition of the binary re-
sponse variable Z = J(Y = y). Typically y would be a
preliminary estimate of a particular desired quantile,
such as the standard estimator (2).

If the conditional distribution of Y given X is normal
with constant variance and a mean that is linear in X,
then C* defined by (15) is consistent for the optimal
control variate C*. But, again, the key is not that the
model is generally consistent, but that it can serve as an
approximation that captures much of the potential in-
crease in correlation attainable with the optimal trans-
formation. Because we are using C* as a control, our
only interest is in enhancing the correlation, not in pre-
cisely determining the transformation.

This is a benchmark estimator; it is usable in practice,
but is complex and computationally expensive. We will
attain nearly the same performance with simpler ap-
proaches.

4.2. Other Continuous Approximations

Another continuous approximation to C* is obtained by
starting with a “scatterplot smooth” of Y; against X;;
many procedures are suitable for this purpose, includ-
ing smoothing splines, regression splines, kernel
smoothing and lowess. A number of these are discussed
in Hastie and Tibshirani (1990).

Let do d; be the intercept and slope of the line tangent
to the scatterplot smooth at x,, and let 5. be the esti-
mated residual standard deviation at x, (estimated us-
ing residuals in a neighborhood of x,). Approximating
the local relationship between Y and X as linear with
normal residuals leads to the control variate:

G = Pr{Y =y | X = X;}
= ®[(y, — (do + diXi))75.].
This procedure has the advantage that scatterplot
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smooths are somewhat easier to perform than regres-
sion with a binary response, and that the same smooth
may be used to define multiple control variates, each
tailored for estimating a different quantile y,. The
asymptotic efficiency of this procedure is (slightly) less
than the procedure in 84.1, unless the residuals are in
fact normally distributed and the relationship between
Y and X is linear. If the residuals are noticeably non-
normal then a robust smooth, rather than one that uses
least-squares, can be used to reduce the effect of out-
liers.

Such a continuous approximation is used in the same
way as the continuous approximation from a binary-
response regression in the previous section; in particu-
lar, once the functional form has been determined, steps
2-4 are the same in both cases. We further note that the
functional form may be estimated using only a subset
of the observations. This is particularly advantageous in
simulation experiments with very large n. We do not
pursue or compare other continuous approximations,
since our goal is to develop simple discrete approxi-
mations.

4.3. Discrete Approximations

In this section we consider the use of piecewise-constant
approximations to C*. This method has two advantages:
the approximation can be estimated by linear (rather
than nonlinear) least squares, and the expected value of
C depends on the cdf of X only at the points of discon-
tinuity. Furthermore, the method is equivalent to post-
stratified sampling, so the piecewise constant approxi-
mation need not even be explicitly computed.

Let —oo =by < by < --- < by < bgyy = o partition the
range of X into s + 1 intervals, for some s = 1. We call
b = (by, by, ..., bs) cutpoints, and we can express Fy(y)
as

Fe(y) = 3 Pr{Y =y[b, < X = b1}

€=0
X Pribe < X = by}, (18)

We shall approximate g*(x) = Pr{Y = y| X = x} by the
piecewise constant function that takes the value Pr{Y
= y|b, < X = bg,4} on the interval (b, be,1]. The finer
the grid of cutpoints by, by, ..., b, the closer the two
representations. However, bivariate normal examples
(below) and empirical studies (86) show that most of
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the potential variance reduction can be obtained with s
as small as 2.

For example, suppose that (X, Y) are N(0, 0, 1, 1, p),
and consider estimating Fv(Yo975). Figure 2 shows the
asymptotic variance of the linear control-variate esti-
mator employing the following control variates: the
mean-based control C = X; our discrete approximation
to the optimal control with s = 1, 2, 3 cutpoints; and the
optimal control variate C*. For the fixed quantile yg 975,
the plot shows the asymptotic variance as a function of
the conditional standard deviation of Y given X, namely
V1 — p?. Clearly the discrete approximation achieves
nearly the same variance reduction as the optimal con-
trol with two or three cuts.

To define the discrete approximation, which we refer
to as the poststratified sampling estimator, we extend the
notation in §2.2. Let

Peo(y, b) = Pr{b, < X = beyq, Y =y},
Per(y, b) = Pr{by < X = b1, Y >y},
pe(b) = Pr{b, < X = by},
and
Neo(y, b) = #{i : b, < X; = by, Yi =y},
Ne(y, b) = #{i 1 by < Xi = beys, Yi >y},
N¢(b) = #{i : by < Xi = by},

Figure 2 Asymptotic Variance of the Linear Control-Variate Estimator
of Fy()o.o7s) for Bivariate Normal Data and Various Choices

of Control Variate

Effectiveness of Control Variates

e ———

0.020

0.010

——— 1 cutpoint
------ 2 cutpoints
— — - 3cultpoints
— — optimal curve
—— - linear

Asymptotic variance

0.0

T T T T T T

00 02 04 06 08 10
o(YIX)
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for€=0,1,...,s. The poststratified sampling estimator
of Fy(y) is therefore

»

{Y5Y|b€<X5be+1}

(y=2

Pr{b, <X =by}

= 3 e peo) (19)
Tedious algebra shows that this estimator is algebrai-
cally equivalent® to the linear control-variate estimator
with control variates C = $(X < b,),for€ =1, 2, ...,
s. Therefore, the estimator is a weighted average of the
form (11), with weights that are independent of y; spe-
cifically,

_pd)
T Ne(b)’

when X; falls in stratum €. These weights reduce to (13)
when s = 1.

This result is especially important for quantile esti-
mation, because it means that the poststratified proba-
bility estimator, no matter how many strata are em-
ployed, is as easy to invert as the linear control-variate
estimator, because it is a linear control-variate estimator.
Thus, we can capture some of the nonlinear relationship
between Y and X without any additional computational
or conceptual complexity. Appropriate selection of the
cutpoints is addressed in the next section.

(20)

4.4. Strata Selection
In this section we consider the choice of the cutpoints
b, by, ..., b that define the strata for our poststratified
estimator. The results are a combination of extensive
simulation experience in sample problems and asymp-
totic analysis. The asymptotic analysis follows two
threads, as n — %« and as the correlation between X and
Y increases to 1. Here is a summary of our results:

« For a single cutpoint we can barely improve upon
the simple choice of b; = x,, at least for reasonably large
sample sizes. In other words, when we use a single cut-

! In fact, any set of control variates that form a basis for the piecewise
approximation will lead to the same estimator. This is because any
two sets of control variates that generate the same column space, when
viewed as the independent variables in a least-squares regression,
yield the same control-variate point estimator.
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point we use the g-quantile of X to improve the esti-
mator of the g-quantile of Y.

e For multiple cutpoints we recommend using two
or three cutpoints of the form

bg = Xq + C(&E/al, (21)
where ¢; = —0.674 and ¢, = 0.674 when s = 2 cutpoints,
¢, = —1,¢,=0andc; =1 whens = 3 cutpoints, and

d, and &, are the slope and local residual standard de-
viation from a scatterplot smooth (i.e., nonlinear re-
gression) of Y on X, as described in §4.2, or from a linear
regression of Y on X using the n®7 observations with X;
closest to x4 (which is what we do in our experiments).
However, the cutpoints should be adjusted if necessary
so that the expected number of observations in any stra-
tum is at least 30.

Readers interested only in applications can skip the
remainder of this section, in which we derive the par-
ticular recommendations above.

We first justify the recommendation of using a small
number of strata, from 2 to 4 (from 1 to 3 cutpoints).
Using the standard variance decomposition we can
write

Var[Z] = Var[E(Z]| X)]
+ E[Var(Z| X)] = 0% + o3, (22)

where Z = J(Y = y). Using the optimal control corre-
sponds to eliminating the o? term. Cochran (1977,
85A.8) notes that stratification on X reduces the first
term but leaves the second unchanged, and that the ad-
dition of strata quickly reaches a point of diminishing
returns, beyond which the residual term o3 dominates
the Var[Z].

Further, there is good reason to believe that the first
term, %, could be disappointingly small when estimat-
ing extreme probabilities or quantiles using control var-
iates. For example, in Figure 1 the vertical axis corre-
sponds to the variance-reduction ratio (1 — R%¢), which
is at best (smallest) about 0.4 for the optimal control
variate. Recall that the correlation between Y and X is p
= 0.9 in this figure, implying that the variance-reduction
ratio for estimating the mean E[Y] using the control var-
iate C = Xis (1 — p?) = 0.19. Stated differently, variance
is reduced by a factor of roughly 5 when estimating the
mean, compared to only a factor of roughly 2 when es-
timating probabilities or quantiles with the same data.
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This suggests that the benefit of additional strata (closer
approximation to the optimal control variate) will drop
off quickly.

We also find that the precise placement of the cut-
points is not critical. If the optimal transformation g*
and distribution of the control variate C* = g*(X) were
known, then we would choose cutpoints on the C scale
to minimize the within-strata variance of C*, then trans-
late to cutpoints on the X scale using the inverse func-
tion of g*. Although g* is unknown, it is worth noting
that under general conditions the shape of g* is that of
a cumulative distribution function flipped vertically,
which results in a distribution for C* which is strongly
bimodal, with infinite density at 0 and 1, if X and Y are
highly correlated. The left panel of Figure 3 shows the
relationship between C* and X when X and Y are bi-
variate normal with p = 0.95; notice how many of the
values of C* are close to either 0 or 1. The right panel
shows the bimodal distribution of C*. Placing three cut-
points in the distribution of C* gives a within-strata
variation of C* that is much smaller than ¢ = Var[C*].
The variance reduction is relatively insensitive to ex-
actly where the cutpoints are placed, as long as they
separate the modes.

We now proceed to derive the recommended place-
ment of the cutpoints, beginning with the single cut-
point recommendation.

The variance of (19), conditionalon N,, ¢ =0, 1, ...,
s, is

Figure 3
C*vs X
. N\
S i
—_ i
25 X &Y bivariate normal i
‘I-'I” rho=.95
5 h g*(X)=P(Y < 1.96 | X) y
(o)
[} v . T
3 2 1 0 1 2 3
X
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NG = i pf’ilpm ’

€=0 €

Var{F¥(y)INo, . . (23)
where pg = pa(y, b) depends implicitly (in the remain-
der of this section) on y and b. A delta method approx-
imation, as in Cochran (1977, equation 5A.41), ignoring
the exponentially decreasing probability that N, = 0 for
some ¢, yields

Var{lf$s(y)} — ! Z PeoPer

¢=o Pe

S

+nt y Popall = po

=0 ¢
Figure 4 shows the leading O(n~?) term (multiplied by
n) in the variance of F{°(yo47s) as a function of a single
cutpoint b;, when X and Y are bivariate standard nor-
mal with correlations p chosen so that the conditional
standard deviation of Y given X takes on values 0, 0.1,
0.2, ..., 1. Notice that 1.96 is the 0.975 quantile of X.
The top curve, where X and Y are independent, gives
the same asymptotic variance as if no control variate
were used. Successively lower curves correspond to
successively larger correlations. When the correlation is
1, the optimal choice b; = x,¢75 gives a variance of 0. The
optimal cutpoints are shown on each curve with a O.
There appears to be little gain from using the optimal

cutpoint relative to the simple choice of b; = Xgg75.
The second panel of Figure 4 includes a subset of the
curves shown in the first panel, together with the vari-

+0(n%). (24)

Optimal Transformation C* = g(X), and Implied Density of C* when X and Y are Bivariate Normal with High Correlation

Density of Optimal Control Var.

5.00

Note bimodal density.

Dotted lines indicate
stratification using 3 cutpoints
chosen by rule in text

density of C*
0.50

0.05

0.0 0.2 0.4 0.6 0.8 1.0

C"=g'(X)
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Figure 4
between bivariate normal X and Y.)

Asymptotic Variance

0.020

n Var(p)

0.010

0.0

1.75 1.85 1.95 2.05

cutpoint

ance curves obtained by including the O(n~?) term of
(24) in the variance, for n = 200. Although the optimal
cutpoints (denoted by A) are affected by the second-
order term, the curves are flat enough for samples sizes
of 200 or larger that there is little to be gained by choos-
ing the optimal cutpoint, relative to the easy choice b,
= Xq.

In the appendix we derive the recommendation for
multiple cutpoints. The analysis—which is based on
several simplifying approximations—was employed to
suggest a method for specifying cutpoints, a method
which was shown to work well in empirical studies, a
portion of which is presented in §6.

When n is not large, the multiple-cutpoint recommen-
dation should be modified so that all expected stratum
sizes are at least 30. This is to avoid the increased vari-
ability that results when few observations fall in a small
stratum. With E[N,] = 30 the probability that N, is less
than 15 is small. The (second-order) asymptotics indi-
cate that smaller expected sizes would be adequate, but
we have encountered inflated variances with smaller
sample sizes in simulation trials.

Finally, the recommendation to estimate the slope
and residual standard deviation from a regression
with n®%7 neighbors of x, is based on a tradeoff be-
tween the asymptotic variance of the regression slope,
the squared bias of the regression slope, and the ac-
curacy of 52

MANAGEMENT ScieNce/Vol. 44, No. 9, September 1998

no(n~*) and n(O(n~%) + O(n~?)) Terms in Variance of £¥’ (yo.e75) @s a Function of Cutpoint (Each curve corresponds to a different correlation
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------ asymptotic
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n Var(p)
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cutpoint

5. A Direct Quantile Estimator

Recall that the primary difficulty we encounter when
deriving a direct control-variate quantile estimator of
the form

qdir = yq - /B(iq - Xq):

is in estimating the optimal multiplier 8* = Cov[X;, ¥,1/
Var[X,]. In this section we propose a new estimator that
may be viewed as a way to closely approximate 5* with-
out subsamples. Specifically, we estimate the optimal mul-
tiplier for the asymptotic joint distribution of ¥, and X,
where p need not equal g. We call this asymptotically
optimal multiplier 8%, and our estimator of it 5%.

This direct estimator may also be viewed as a refine-
ment of Hsu and Nelson’s (1990) MED UNB estimator
Y Ny, Where Np = #{i : X; = Xx}. Notice that MED UNB
may be written as

Yng = Y (na+5(No—nay)- (25)

Thus, MED UNB is the standard estimator Y, ad-
justed for the difference between N, and its mean. We
propose to shrink the adjustment by a factor ¥ that de-
pends on the correlation between N, = #{i : X; = x,}and
Ko = #{i : Y; = y,}, and to allow the possibility of using
a cutpoint x, with p # q. Specifically, the new estimator
takes the form

dge _
g = Y (ng+5(No—np))» (26)
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where ¥ will be defined below, just after (29). Surpris-
ingly, y§% is approximately equal to

Yo = Yo — B;()ep — Xp) (27)

implying that in practice 4% (defined below) need not
be computed explicitly if we use (26).

Let (X, Y;),fori=1,2,...,n,beani.i.d. sample from
an absolutely continuous joint distribution Fyxy with
marginal distributions that satisfy fx(x,) > 0 and fv(y,)
> 0, and let §; = Y and X, = X,y be the crude esti-
mators of y, and X, respectively; the single cutpoint b,
= X, is known. We do not require that p = g, and we
assume that both ng and np are integer, for simplicity.
Then as n — oo,

(‘/ﬁ()ep - Xp))
‘/ﬁ(yq - Yq)
converges in distribution to a bivariate normal random

variable with zero mean vector and variance-covariance
matrix

p(l - p) FXY(va yq) — pq
_ f%(Xp) fx (%p) fv (Vo)
Fxv(Xp: ¥q) — PQ q(l —q)
fx (Xp) fy (Ya) f3(yq)

(Weiss 1964). For random variables (Wyx, Wy) with this
joint distribution, the optimal control-variate multiplier
for estimating the mean of W, with Wy as the control is

* COV[\NYv WX]
B2 = "Varwig

q(1 — q) fx(Xp) fx(Xp)

A TS N TARRA TR R
where R = (Fxy(Xp, Ya) — pa)/Vp(1 — p)a(1 — q) is the
correlation between J(X = x;) and (Y = y,), and vy
= R\/q(l — )/ (p(1 — p)) is the linear regression slope
of (Y = y,) against (X = x,). We will now show that
[B% can be estimated without the need for subsamples.

First, we propose an estimator for R. Of course, J(Y
= Y,) is unobservable, but an asymptotically valid es-
timator of R can be obtained by replacing y, with any

consistent estimator of it. A convenient choice is §,, the
crude estimator, because #{i : Y; = ¥,} = ng. Then using
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unbiased estimators for the covariance and variance, the
sample correlation simplifies to

Noo(yq)(l B Q) B qu(Vq)
VNoN1q(1 — q)

RA:

. (29)

Multiplying this by vq(1 — q)/(p(1 — p)), which is
known, provides the estimator of % of v.

To complete the estimator of 5%, we need to estimate
the ratio fx(X,)7fv(Yq). A crude estimator of fx(x,) is

fu(xp) = a n)|(lv4€| 4 :

where 4 is a small neighborhood around x,, and ||
is the measure of 4. If we choose .4 to be the interval
[min{x,, X}, max{x,, X,}1, then

np — No

BTSSR

This estimator may be inaccurate when the interval is

narrow. But since 4% is multiplied by the interval width

in (27), the inaccuracy occurs when it matters little.
Similarly, a crude estimator of fy(y,) is

fAY(Yq) = n|6B|

We let B = [min{yy, ¥.}, max{yq, ¥.}1, where ¥, is the
crude estimator and Yy is the (yet to be determined)
direct estimator.

Substituting all of the individual terms into (27), and
cancelling terms where possible, gives

(np — No)

Yo=Y~ Vi N e 5

IV?? - yq|
Then isolating #{i : Y; € B} yields
sgn(Yq — Yo)#{i 1 Y; € B}

= —%(np — No) = ¥(No — np).

Since #{i:Y; € B} is simply the number of order statistics
separating ¥, = Y and yg, we can approximate yq as
an order statistic:

o . _ _ \dge
Ya = Y(ng+san(e-yo#tivien) = Y (ng+9(No-np)) = Ya s

which is (26). Notice that we do not explicitly find fx,
fy or 8%, If k = nq + (N, — np) is not an integer, then
we interpolate between Y n and Y ko).
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It may be possible to improve on this direct estimator
by using wider intervals to obtain more accurate esti-
mates of fy and fy, at the cost of losing the cancellation
that allows the estimator to be expressed in terms of
order statistics. The estimator might also be improved
by replacing ¥, with a more accurate estimator of y, in
the computation of R; one such estimator is y&% ob-
tained from a first iteration of this procedure.

6. Empirical Evaluation

In this section we present a portion of an extensive em-
pirical evaluation of the following four probability es-
timators and five quantile estimators.

CRUDE: This is the usual empirical cdf for Y; it is
inverted and interpolated to obtain quantile estimators.

MLE: This is the probability estimator (8), which is
based on the single control variate C = J(X = xg); it is
inverted to obtain quantile estimators. This quantile es-
timator was called ILRT by Hsu and Nelson (1990), and
was presented in §2.2.

MCV: This is the poststratified probability estimator
based on s control variates C9 = (X = b) for € = 1,
2,...,s;itis inverted to obtain quantile estimators. We
consider s = 2, 3 and we use the approximate cutpoints
described in §4.4.

EOPT: This is the probability estimator based on the
estimated optimal control variate C* = ®(&, + &,X) de-
scribed in 84.1; it is inverted to obtain quantile estima-
tors. The parameters a, and a; are estimated via a non-
linear least-squares regression of J(Y; = y§") on ®(a,
+ a; Xj).

DIRECT: This is the quantile estimator (26) based
on estimating the asymptotically optimal multiplier 8%
for the control variate C = X; it was presented in §5.
There is no corresponding probability estimator.

To obtain the MLE, MCV and EOPT quantile esti-
mators, we used the weighted-average interpretation of
control variates (83) to invert the corresponding prob-
ability estimator. The MLE is actually a special case of
MCYV with the single cutpoint b; = x,.

Results for the following data models are presented.

BVN: (X, Y) are standard bivariate normal with cor-
relation p. For this case, the functional relationship as-
sumed by EOPT is correct. This model also allows us to
vary the dependence between X and Y systematically,
although we present results only for p = 0.95 here. It is
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worth noting that a correlation of 0.95 between X and
Y seems quite large, but it only implies correlations of
0.75, 0.73, and 0.67 between J(Y = y,) and J(X = X,)
when g = 0.90, 0.95, and 0.99, respectively. This illus-
trates why naive use of control variates to estimate
probabilities and quantiles is typically less successful
than using them to estimate means.

SAN1: Y isthe time to complete a stochastic activity
network, and X is the length of the path with the longest
expected length. For this example,

Y = maX{Al + Az, Al + A3 + A5, A4 + A5},

and X = A; + A; + Ag, where A, A,, ..., As are i.i.d.
exponentially distributed random variables with com-
mon mean 1. This example was used by Hsu and Nelson
(1990).

SAN2: Similar to the previous example,

Y = maX{A]_ + A2, A]_ + A3 + A5, A4 + A5},

but in this case the A; are i.i.d. gamma distributed with
common shape parameter 2 and scale parameter 1. The
control variate is

X = maX{Bl + Bz, B]_ + B3 + B5, B4 + B5},

where the B; are i.i.d. exponentially distributed with
common mean 1, and each pair (A;, B;) is generated
using the inverse cdf method and common random
numbers. In other words, SAN1 is used as an external
control variate for SAN2.

MMZ1: Y is the delay in queue of the tenth arrival to
an M/M/1 queue that is initially empty, and X is the
sum of the first nine service times. Specifically, let G,
G,, - - - bei.i.d. exponentially distributed random vari-
ables with mean (0.9)?, representing the interarrival-
time gaps; and let Sy, S,, - - - be i.i.d. exponentially dis-
tributed random variables with mean 1, representing
the service times. Define D, = 0 and S, = 0. Then D;,
the delay in queue of the ith arriving customer, is de-
fined by the recursive relationship

Di = maX{O, Di—l + Si—l - Gi},

fori=1,2,....Therefore, Y = Djgand X = =}_, S;. This
example was also used by Hsu and Nelson (1990).
INVT: Y is the average cost for 30 periods in an (s,
S) inventory system, and X is the standardized average
demand for the same 30 periods. See Koenig and Law
(1985) for a detailed description of the model, and
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Wilson and Pritsker (1984) for the use of standardized
averages as control variates. An important feature of
this example is that the exact distribution of X is not
known. However, because X is defined as

_ 31 (D — E[D])
vm Var[D] '

where D; is the demand in period i, its distribution as
m — <0 is N(0, 1). Therefore, Pr{X = x} = ®(x) when m
is large. Standardized averages are one way to avoid
the requirement that we know the precise distribution
of the control variate. In this example each D; is Poisson
with mean 25 and m = 30.

For BVN, SAN1, MM1, and INVT, the true values of
the quantiles can be computed analytically, allowing us
to evaluate the mean squared error (MSE) of the esti-
mators, and also to use SAN1 as an external control var-
iate. For SANZ2, the true values of the quantiles were
estimated via a simulation with n = 100000 replications.
All simulations and analysis were performed in S-
PLUS.

Tables 1 and 2 report the experiment results for prob-
ability and quantile estimation, respectively. In the
probability experiments we estimated Pr{Y = y,}, and
in the quantile experiments we estimated y,, for q =
0.90, 0.95, and 0.99. Table 3 gives the sample sizes used
for each basic experiment,? and all estimators were ap-
plied to the same data set. The basic experiment was
then repeated 1000 times to estimate the MSE of each
point estimator. Tables 1 and 2 report the ratio of the
MSE of CRUDE to that of each of the improved esti-
mators; therefore, a ratio greater than 1 shows an MSE
reduction. Only significant digits (based on the simu-
lation standard error) are reported. The same informa-
tion is displayed graphically in Figure 5.

The overall conclusions from both tables are the same:
All estimators achieve MSE reductions, with OPT
achieving the greatest reductions. However, MCV with
s = 3is nearly as good as OPT while being much easier
to apply. In fact, the nonlinear regression required for
OPT implies so much additional computation that it
may be inferior to MCV if computation time is consid-

X

2 The lone exception was the INVT experiments where the sample sizes
were n = 1000, 1000 and 5000 for g = 0.90, 0.95, and 0.99, respectively.
These sizes were chosen only because of the slow execution speed of
the INVT experiments.
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Table 1 Ratio of the MSE of the Crude Probability Estimator to the
MSE of Each Control-Variate Probability Estimator
MCV MCV
Model q MLE s=2 s=3 EOPT
BVN 0.90 24 2.7 2.9 3.0
p =0.95 0.95 2.2 2.6 2.7 2.8
0.99 2.0 2.2 2.3 24
SAN1 0.90 1.6 1.8 1.9 1.9
0.95 15 1.7 1.8 1.8
0.99 13 15 1.6 16
SAN2 0.90 31 37 3.9 4.0
0.95 3.4 4.0 4.2 4.4
0.99 35 45 4.7 5.1
MM1 0.90 1.3 1.3 1.3 14
0.95 1.2 1.2 1.2 1.2
0.99 12 12 12 13
INVT 0.90 1.7 2.0 2.0 23
0.95 14 15 1.6 15
0.99 1.7 18 1.8 19
Table 2 Ratio of the MSE of the Crude Quantile Estimator to the MSE
of Each Control-Variate Quantile Estimator
MCV MCV
Model q MLE §s=2 s=3 EOPT DIRECT
BVN 0.90 24 2.8 31 31 24
p =095 0.95 2.2 2.6 2.6 2.8 22
0.99 2.0 2.2 2.3 24 2.0
SAN1 0.90 1.6 1.8 1.9 2.0 1.6
0.95 15 1.6 1.7 1.8 15
0.99 14 15 16 16 14
SAN2 0.90 3.0 37 3.6 37 35
0.95 35 3.9 41 43 3.6
0.99 3.6 4.6 4.6 5.0 3.7
MM1 0.90 14 14 14 15 1.3
0.95 1.2 1.2 1.2 1.2 11
0.99 12 13 13 13 11
INVT 0.90 1.6 1.8 1.9 2.1 1.7
0.95 14 15 1.6 1.6 14
0.99 1.6 18 18 19 1.6

Table 3 Sample Size n for Each Value of g
q n
0.9 1000
0.95 5000
0.99 10000
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Figure 5 Ratio of MSE of Crude Probability Estimator or Quantile Estimator to MSE of Each Control-Variate Estimator (Estimator 1 = MLE = MCV (s
=1),2=MCV (s=2),3=MCV(s=3),4=0PT, and 5 = DIRECT)
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ered. However, by including OPT without discounting
for computation we can compare the other estimators
to the best that we can hope to achieve, at least for BVN
data. DIRECT—which is available only for quantile es-
timation—performs about the same as the MLE, and
therefore is not worth the additional work required to
compute it.

Substantial reductions are possible when the corre-
lation is strong, as in the SAN2 example, where the MSE
of the crude estimator is three or more times greater
than the MSE of the control-variate estimator. Recall
that SAN2 employs an external control variate. The con-
trol mimics the response so closely that Y and X nearly
always correspond to the same path through the net-
work. On the other hand, very modest gains were
achieved for the MM1 example. The results for SAN1
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and SAN2 are similar to the results obtained by Avram-
idis and Wilson (1998) when they applied Latin Hyper-
cube Sampling to estimate quantiles of the completion
time of stochastic activity networks. They achieved MSE
ratios ranging from 2.3-3.9 for their best estimator ap-
plied to estimate the 0.95 quantile.

7. Conclusions

We have presented new estimators that unify and ex-
tend previous control-variate estimators for probabil-
ities and quantiles. These estimators either approxi-
mate the optimal transformation of a given control
variate to maximize its correlation with the response,
or they provide a method for (implicitly) estimating
the optimal multiplier for a given control variate.
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Gratifyingly, the simple discrete approximations to
the optimal transformation—for which both proba-
bility and quantile estimators are easily obtained us-
ing the weighted-average interpretation described in
§3—perform very well.

One important prerequisite for our estimators is the
availability of a control variate whose distribution, or
at least some quantile of it, is known. This is typically
a more substantial requirement than finding a con-
trol variate with known mean. The use of a standard-
ized average, as in the INVT example, is one way
to circumvent the problem. However, the normal
approximation may not be sufficiently accurate for es-
timating tail quantiles or probabilities of X if the num-
ber of terms in the sum is not large or if the random
variables have highly skewed distributions. When the
cumulant generating function of X is known, then we
suggest using the saddlepoint approximation of Lu-
gannani and Rice (see Daniels 1987 for estimating
probabilities, or Hesterberg 1994 for estimating quan-
tiles). When the cumulant generating function of X is
not known but the skewness is, then we suggest using
a translated gamma approximation a + bG, where G
is gamma distributed with the desired |skewness|,
and a and b are constants with b negative if the skew-
ness is negative. An alternative is to use Edgeworth
approximations, but they are known to perform
poorly in the tails of distributions. Unfortunately, we
do not have a satisfactory approximation that uses
kurtosis or higher moments; the general saddlepoint
approximations of Easton and Ronchetti (1986) or
Wang (1992) should perform somewhat better than
Edgeworth approximations, but they also have some
difficulty with tail behavior.

Finally, we note that the weighted-average methods
described in this paper can be combined with smooth-
ing and interpolation (see, for instance, Dielman et al.
1994) and with importance sampling (Hesterberg 1993,
1996) for further variance reductions.®

3 The authors thank the associate editor, referee, and James R. Wilson
for their help in revising the paper. Nelson’s work was partially sup-
ported by National Science Grant No. DMI-9622065.

Appendix
In this section we present the analysis that supports the recommen-
dation in §4.4 for specifying multiple cutpoints for the poststratified
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probability and quantile estimator. This is based on approximately
optimizing (24).

Suppose that the following hold in a neighborhood of x,: X has a
continuous, nonzero density; Y = do + diX + € where E[¢| X = x]
= 0(X — Xq) and d; > 0; the distribution of ¢ is approximately inde-
pendent of X; and e is small (small first absolute moment). Our anal-
ysis is as o2 approaches 0 (where o, is any scale parameter for ¢ such
as the standard deviation or E[|¢|]), implying that Corr[Y, X] ap-
proaches 1 in this neighborhood.

Two key consequences of these assumptions are that y, = do + d;Xq
and that the cutpoints b, = x, for € = 1, 2, -- - s. The optimal values
of by, by, ..., by approach x, as o. approaches 0 because

Pr{Y =yl X < x5} = 1,
Pr{Y = yq| X > x;} =0,

under these conditions. Therefore, strata well away from x, would
have little value in reducing estimator variance.
Based on these approximations

b1
Peo(Yq: D) = J; fx(x) Pr{do + d;X + € = yq| X = x}dx
¢
b1
= J; fx(X)Fex(yq — (do + dix))dx
bet1
= fx(xq)J; Fepx(—di(x — xg))dx (30)

o, Co+1
= fx(Xq) I f Feix(—ocu)du, (31)
1 Yy

for€ =1,2,...,s, whereu = di(x — Xq)70, ¢ = di(be — X¢)7 0., and
F.ix is the conditional distribution of e given X = x. For £ =1, 2, ...,
s — 1 the approximation in (30) follows by approximating fx and F.«
by their values at x = X, since x = x, for b = x = b,. For € = s, we
note that the integrand F,|.(—di(x — X)) is near zero except where x
= Xq, since d; > 0 and o, is very small.

The approximation can be made rigorous by taking the limit of
Peo(Yq, B)/o.aso.~0and b= x,for€ =1,2,...,s— 1, with ¢, fixed.
The result for £ = s follows by splitting the integral over ¢, to ¢s,; =
into two pieces, say at ¢, + o 1/2. The rigorous result requires certain
technical conditions on how F, |, depends on x.

Similarly,

Pt ) = o) 2 [ (1 - Foteoaan, @)

Ce
for¢ =0,1,...,s— 1. Finally, peo(yq, b) = gand ps(y,, b) =1 —qas
o. approaches 0 and b, and b, approach X,.

Now let V = ¢/o. be a standardized version of ¢, and let Fy,, be
the distribution of V given X = x,. Then F|,,(—ol) = Fy|x,(—U). Sub-
stituting this result into (31) and (32), we see that (24) is approximately
proportional to an expression which depends solely on integrals of
Fvx, between standardized cutpoints ¢, for € =0, 1,...,s + 1. The
first order term of this expression (corresponding to the O(n*) term
of (24)) is
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Figure 6
Deviation o, = V1 — p? of Y given X

2 cutpoints
N
[aV)
3]
£ :
(o]
£ « |
(&) ~—
T optimal
------ approx.
< |

00 01 02 03 04 05
o(YIX)

J‘i (1= Fyjx,(—u))du

4 Ce

-1 [ Py (—u)du [T (1 = Fy e (—u))du
+3

(=1 Cev1 — C¢
+ f F\,m(fu)du. (33)

Key to (33) are the approximations
Pr{X < by} = q = poo(Yy, b),
Prib; < X = X¢1} = (besr — b)fx(%g), € =1,2,...,5 = 1,
Pr{X > b} =1 — q = pau(yq b),

as by, by, ..., bs approach x,.
When e is normally distributed and o, is its standard deviation, so
that Fy,,(u) = ®(u), the values of ¢, that minimize (33) are

—0.674, 0.674 fors = 2,
Ce = (34)
-1,0,1 fors = 3.

For two cutpoints, this is the same as choosing cutpoints so that
the conditional probability Pr{Y = y,| X = b,} equals 0.25 for b, and
0.75 for b, (asymptotically, as o — 0). For three cutpoints the con-
ditional probabilities are 0.16, 0.5, and 0.84, respectively. Figure 6
shows the optimal cutpoints as a function of o, in the bivariate
normal problem, together with curves that correspond to (34). The
agreement between the optimal cutpoints and the recommended
approximation is very close. All optimizations were performed us-
ing standard Newton optimization in S-PLUS. Integrals were eval-
uated using f: d(u)du = bP(b) — ad(a) + ¢(b) — ¢(a) where ¢ is
the standard normal density, and using the S-PLUS built-in func-
tions for ® and ¢.
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This analysis leads to the method for choosing cutpoints of the
form b, = x, + ¢.5./d, described in §4.4. The parameters d; and 4.
can be chosen to be the slope and residual standard deviation from
a global nonlinear or local linear regression of Y on X. The values
of ¢, can be those that are optimal for a normal distribution, or they
can be chosen by fitting a nonnormal distribution to the residuals
and optimizing for that distribution. However, the simpler crite-
rion of choosing equally spaced cs with mean 0 and sample vari-
ance 1 should be adequate in practice to capture most of the avail-
able variance reduction.
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