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Abstract

In this paper we examine a tandem network of queueing nodes where a nonstation-

ary external Markovian arrival process feeds the initial upstream node. We develop

methods for modeling the departure flow from any upstream node in its role as the

arrival process to the immediate downstream node, and employ various techniques to

match the interarrival moments to the downstream node to the moments of the de-

parture count from the upstream node, thereby decoupling the network. We apply

these matching techniques at variable time-steps, updating the parameters of the fit

at each step and holding them constant until the next update. We test the accuracy

of this approach by comparing the moments of the queue size of the downstream node

against the corresponding true moments of queue size: first moments of queue size are

consistently accurate, while the variance of queue size is sometimes less accurate but

still useful.

Keywords: Nonstationary queues; Markovian arrival process; phase-type distribution;

tandem network.
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1 Introduction

To alleviate the difficulty of identifying steady-state behavior in a network of queueing nodes

where both the external arrival and the nodal service processes are time stationary, Whitt [49]

developed the Queueing Network Analyzer, or QNA. QNA decomposes the network into ap-

proximately equivalent independent nodes, modeling the internode traffic flow as superposed

renewal processes. The decomposition technique uses local and asymptotic information from

upstream nodes (i.e., any node whose departures feed a given node) to characterize the at-

tributes of the fitted renewal arrival process to each downstream node [48].

In this paper, we propose techniques for modeling traffic flow within tandem queueing

networks that have Markovian arrival and service processes that may be nonstationary. By

“stationary” or “nonstationary” we mean that the parameters of the process do not or do

change, respectively, over time. Like QNA, we utilize the idea of network decomposition,

treating each node independently, and approximating the arrival process to each downstream

node to provide performance analysis (specifically the mean and variance of the congestion

at that node). However, unlike QNA, we do not examine steady-state performance measures;

instead, we provide time-dependent performance analysis, using both local and longer-term

information (identified at a particular set of times) to specify a piecewise-stationary arrival

process that accurately approximates the true arrival process to each downstream node.

We provide consistently accurate estimates of the time-varying mean number of entities at

each queueing node, and from very accurate to rough approximations of the time varying

variance of the number at each node; we also characterize the features that lead to inaccurate

approximations.

The tandem network we consider is composed of general Markovian component processes

(Markov arrival process, or MAP, and phase-type service distributions, or Ph), meaning

that we can closely approximate non-Markovian tandem networks within this framework.
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We view this work as a first step toward approximating the time-dependent behavior of

queueing networks with non-stationary arrival and service processes that have more general

structure than tandem, a notoriously difficult problem.

The remainder of this paper is organized as follows: We introduce the notation and

modeling tools that we use in analyzing our nonstationary tandem network in Section 2.

In Section 3, we present the components of the matching technique, describing methods

for capturing departure count moments from the upstream node as well as explaining our

algorithm for translating from these departure count moments to the fitted arrival process at

the downstream node. Section 4 includes a summary of results from employing the matching

technique in various network structures. We conclude with suggestions for future research

in Section 5. A number of appendices support the results in these sections.

2 Background

2.1 Beyond QNA

Although decomposition-approximation in modeling queueing networks had been utilized

prior to Whitt [49] (see, for example, [34, 43]), QNA is often considered the industry standard

in its application of this technique. In QNA, the network consists of a finite number of finite-

server, general stationary service nodes (with infinite buffer space). Performance measures

at each node are calculated by assuming the nodes are independent, approximating the

true arrival process to each node by a single renewal process whose mean and coefficient

of variation (of its generating interrenewal distribution) are chosen to yield good nodal

performance approximations.

Several variations of QNA have been proposed. Alternative network structures that have

been studied include those with phase-type service and finite buffers [9], multiple customer

classes [50], networks under heavy traffic [18], point-to-multipoint routing [42], and several
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others. Discrete interrenewal distributions [8] and Markov-modulated Poisson Processes [10,

11] have replaced general stationary renewal processes as the tool of approximation. Other

approximation techniques account for correlations between traffic streams [19], target higher

interrenewal moments [7], or specify the coefficient of variation as a function of the traffic

intensity at the node rather than as a single variation parameter [51].

Techniques for extending QNA to queueing networks with nonstationary component pro-

cesses are less well known. Whitt [52] utilizes decomposition in providing time-dependent

analysis for networks with Poisson arrivals and exponential service where the arrival rate

varies due to balking, reneging, and retrying. For nonstationary networks with non-Poisson

arrivals and non-exponential service, Whitt cites the techniques of Taaffe and co-authors

introduced in Section 2.3.

2.2 The Nonstationary Tandem Network

In this paper, we investigate a tandem queueing network where the external arrival process

is a nonstationary Markovian Arrival Process (MAPt) [20], and service times at each of

z ≥ 2 queueing nodes have stationary phase-type (Ph) distributions [30]. We utilize MAPs

and Ph distributions for two reasons. First, the Markovian properties of MAPt and Ph

distributions make the resulting queueing models more analytically tractable [21]. Second,

Ph distributions are dense on the set of all distributions with support on [0,∞), implying

that we can closely approximate non-Markovian service processes [1].

The interarrival times in the MAPt describe the time it takes an underlying CTMC to

reach mc ≥ 1 absorbing phases from a finite number ma <∞ of transient phases; the chain

reaching an absorbing phase triggers an arrival. Let J(t) denote the current phase of the

CTMC at time t ≥ 0. We utilize a representation here for the MAPt that characterizes

the interarrival distribution by transitions within the embedded discrete-time Markov chain

(DTMC) along with a vector of transition rates (one for each transient phase) and a matrix
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of the initial transient phase probabilities at any time t ≥ 0. This representation is used by

Nelson and Taaffe [28] and recounted here.

We let A(t) denote the time-dependent, one-step transition probability matrix of the

embedded DTMC:

A(t) =

(
A1(t) A2(t)

α(t) 0

)
,

at time t ≥ 0. The ma ×ma matrix A1(t) represents the time-dependent one-step transition

probabilities between the ma transient phases, while the ma × mc matrix A2(t) represents

the time-dependent one-step transition probabilities from the ma transient phases to the mc

absorbing phases. “Absorbing phase” is really a misnomer in this representation, because

rather than being absorbed the process is reinitialized for the next interarrival time by an

mc ×ma initial probability matrix α(t).

We define the ma × 1 vector υ(t), whose jth argument is υj(t), the time-dependent, inte-

grable non-negative transition rate function corresponding to phase j, for j = 1, 2, . . . , ma.

We use the convention that υma+k(t) = ∞, for k = 1, 2, . . . , mc and all t ≥ 0, correspond-

ing to an instantaneous sojourn time in any absorbing phase. Thus, the Nelson and Taaffe

representation for a MAPt is the pair (A(t),υ(t)).

The Nelson and Taaffe representation of the MAPt utilizes the convention that mc = ma

and that the matrix A2(t) is diagonal (i.e., each absorbing phase may only be reached in one

step from a single, unique transient phase, for any t ≥ 0). We let aij(t) and αij(t) denote

the (i, j)th components of A1(t) and α(t), respectively, for i, j = 1, 2, . . . , ma. We let dj(t)

denote the (j, j)th component of diagonal matrix A2(t), for j = 1, 2, . . . , ma; by definition,

dj(t) = 1−
∑ma

h=1 ajh(t), for j = 1, 2, . . . , ma and for all t ≥ 0. In practice it is often the case

that A(t) = A (i.e., A is not a function of t), so that the nonstationarity is captured in the

transition rate vector υ(t).

For a stationary MAP in steady state with representation (A,υ), the ith noncentral
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moment mi of its interarrival distribution (and therefore it squared coefficient of variation

scv ≡ m2/m
2
1 − 1) and lag-k autocorrelation ρk are known functions of A and υ [5].

The service process at each node is a stationary Ph renewal process, indicating that its

MAPt representation is not a function of t and that every row in its initial probability matrix

is equal. Since we are now describing the service process at each node, technically we should

refer to each one as a stationary Markovian Service Process (MSP).

Let m
(n)
b denote the number of transient phases in the stationary Ph service process at

node n, characterized by one-step transition probability matrix

B(n) =

(
B

(n)
1 B

(n)
2

β(n) 0

)
,

and constant m
(n)
b × 1 service rate vector µ(n), for n = 1, 2, . . . , z. We let b

(n)
ij , β

(n)
ij , f

(n)
j , and

µ
(n)
j denote the elements of the Ph service process components B

(n)
1 , β(n), B

(n)
2 , and µ(n),

respectively, for i, j = 1, 2, . . . , m
(n)
b .

We let s(n) denote the total number of identical servers at node n, and define random

variable N
(n)
i (t) as the number of servers performing the ith phase of service at node n at

time t ≥ 0, for i = 1, 2, . . . , m
(n)
b and n = 1, 2, . . . , z. Let N (n)(t) and Q(n)(t) be the total

number of entities at node n and the number of entities waiting for service at node n at time

t ≥ 0, respectively; therefore, N (n)(t) =
∑m

(n)
b

i=1 N
(n)
i (t) + Q(n)(t), for n = 1, 2, . . . , z and all

t ≥ 0. Finally, we define random variable D
(n)
t (t+ τ ) to be the number of departures from

node n on the interval [t, t+ τ ), for t ≥ 0, τ > 0, and n = 1, 2, . . . , z− 1. Approximating the

moments of D
(n)
t (t+ τ ) is key to our representation of traffic flow.

2.3 The MDE/DDE-Approach

We utilize two tools in characterizing tandem queues: nodal models and flow models. Nodal

models refer to a technique, first introduced by Clarke [3], to approximate the moments of

the number of entities at each node by a finite system of linear moment-differential equations
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(MDEs) that replace the (potentially infinite) system of state-probability differential equa-

tions (known as Kolmogorov Forward Equations, or KFEs) that describe the evolution of the

state probabilities. Nodal approximations have previously been derived for several queueing

models that include nonstationary MAP or Ph renewal process components; these include the

Mt/Mt/s [2], Pht/Mt/s/c [31], Pht/Pht/1/c [32], Pht/Pht/s/k [36, 38], MAPt/MSPt/s/k

[37], and Pht/Pht/∞ [27] single-node models as well as the [Pht/Pht/∞]
K

[26] and the

[MAPt/Pht/∞]K [28] networks. Models of nonstationary queues with interrupted Poisson

arrivals and unreliable/repairable servers have also been examined [33]. We use these results

as the building blocks of our network decomposition-approximation technique.

For flow models, we employ techniques from Nasr and Taaffe [23, 24, 25] for calculating

departure-count moments; these techniques are analogous to those for the nodal models,

and typically yield a finite system of departure-moment differential equations (DDEs) that

describe the behavior of the moments of the number of departures from a queueing node

over a finite time interval.

Our work is motivated by networks of infinite-server nodes (i.e., s(n) = ∞, for all n =

1, 2, . . . , z), where the system of MDEs and DDEs is closed; thus, solutions to infinite-server

MDEs and DDEs are exact, and we can use the exact results to evaluate our approximations.

We provide the MDEs and DDEs necessary to perform the matching algorithm in tandem

infinite-server networks in Appendix A. We are also able to utilize a result from Nelson

and Taaffe [26, 28] on the analytical equivalence of a [Pht/Pht/∞]K network to a single

Pht/Pht/∞ node, calculating the true time-dependent mean and variance of the size of

each node in the tandem infinite-server network using (A.2) and (A.4).

The MDE/DDE approach for finite-server nodes (i.e., s(n) < ∞, for all n = 1, 2, . . . , z)

has two differences from the infinite-server approach that are worth mentioning. First, the

system of MDEs and DDEs for a finite-server node is not closed, and closure techniques

must be employed to provide approximate values for unknown terms; for background on
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closure techniques, see [31, 36] and references therein. Typically, this requires approximat-

ing state probabilities in the MDEs and DDEs using a surrogate probability distribution;

techniques are employed to specify the parameters of the surrogate mass function to match

current moments of the node size and departure count. Surrogate distributions that have

been employed in modeling nonstationary queueing nodes include negative binomial [35] and

Pólya-Eggenberger (PE) [2], as well as limiting forms of the PE distribution [6, 17]; for back-

ground on these distributions, see [16]. In Appendix B we derive the MDEs and DDEs for

a finite-server Markovian queueing node with infinite-buffer space and propose a technique

for utilizing the finite-support PE distribution as a surrogate in infinite-buffer models.

The second difference in the MDE/DDE approach in finite-server networks from its ap-

plication in infinite-server networks is that no analogous system of network MDEs exists;

therefore, to validate our approximation we must compare the mean and variance of the

fitted downstream node size (from the MDE/DDE approach) to simulation results for the

finite-server network model.

3 The Matching Technique

3.1 A High-Level Summary of our Approach

Our goal in this paper is to approximate the MAPt/Ph
(1)/s(1) → ·/Ph(2)/s(2) → . . . →

·/Ph(z)/s(z) network, for z ≥ 2. We focus on the case of z = 2, since once we have ap-

proximated node 2 we can repeat the technique iteratively. Node 2 is approximated as

a MECOt(`)/Ph
(2)/s(2) node where the fitted arrival process has piecewise-constant pa-

rameters over a varying step-size τ ; at each update, the parameters are obtained from the

respective interval-departure count moments from node 1 which are numerically calculated

using the MDE/DDE approach.

The MECO renewal process is introduced in [15]; briefly, it consists of a mixture of two
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Erlang distributions of the same order ` ∈ Z+. Parameters of the stationary MECO(`) can

be specified to match any triple of first three interrenewal moments (for a sufficiently large

`), and therefore, the MECOt(`) can be both more and less variable than exponential for

a given `—an important requirement since the upstream departure process may be more

variable than Poisson on some intervals and less variable on others. Utilizing the MECOt(`)

as the fitted downstream arrival process allows us to have a single Ph process where only

the parameters are updated on each interval (while maintaining the number of phases and

structure of the fitted arrival process); this also allows for a constant number of MDEs and

DDEs at the downstream node along the duration of the time horizon approximated.

We enumerate the steps performed in our matching algorithm here, and elaborate on

them in the following sections. Since we apply the algorithm at each node sequentially, for

simplicity we drop the ‘(n)’ and let Dt(t+ τ ) denote the number of departures from current

node 1 on [t, t+ τ ), for t ≥ 0, τ > 0.

Algorithm 3.1. The Matching Technique for the Two-Node Nonstationary Tandem Network

1. Initialize MDEs and DDEs at time t = 0 for the upstream MAPt/Ph
(1)/s(1) node and

downstream MECOt(`)/Ph
(2)/s(2) node.

2. At time t, determine the appropriate step size τ (see Section 3.3).

3. Evaluate MDEs and DDEs at upstream node to time t + 2τ , calculating values for
E{Dt(t+ τ )} and Corr{Dt(t+ τ ), Dt+τ (t+ 2τ )}.

4. Determine parameters for the fitted downstream arrival process MECOt(`) on [t, t+τ ).

(a) Back out fitted mean interarrival time m1 from E{Dt(t+ τ )} and fitted squared
coefficient of variation scv from Corr{Dt(t+ τ ), Dt+τ (t+ 2τ )} (see Section 3.2).

(b) Specify MECOt(`) parameters to match m1 and scv.

5. Evaluate MDEs for M̂ECO/Ph(2)/s(2) to time t+ τ .

6. Set t = t+ τ . Go to Step 2.
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3.2 Translating from Upstream Departure Count Moments to the

Fitted Downstream Arrival Process

In this section, we propose a technique to translate from the upstream departure count mo-

ments E{Dt(t+ τ )} and Corr{Dt(t+ τ ), Dt+τ(t+2τ )}—obtained from numerical integration

of the DDEs—to the stationary parameters of the fitted MECOt(`) that approximates the

true arrival process to the downstream node on [t, t+ τ ). Let At(t+ τ ) denote the number

of arrivals for the fitted downstream MECOt(`) on [t, t+ τ ). Ideally we would back out the

MECO parameters directly from the departure count moments by setting

E{At(t+ τ )} = E{Dt(t+ τ )} (1)

and

Corr{At(t+ τ ), At+τ(t+ 2τ )} = Corr{Dt(t+ τ ), Dt+τ(t+ 2τ )}; (2)

however, we typically cannot derive closed-form expressions for the count moments of the

MECOt(`) renewal process as functions of the MECO parameters, for ` ≥ 2.

Instead, we derive the first two interrenewal moments,m1 and scv, for the fitted MECOt(`)

implied by the two departure count moments using a surrogate process. We first obtain m1

using a general result for stationary renewal processes; see Equation (3). To determine scv,

we utilize two stationary Ph renewal processes (the h2b and the MECon, described below)

to act as surrogates; unlike the MECO, we can identify parameter values for the h2b and

MECon parameters (as appropriate) to satisfy (1) and (2). We take as the third interrenewal

moment, m3, the third interrenewal moment of the fitted surrogate process, and choose the

MECOt(`) parameters to match (m1, scv, m3). The technique described here has some sim-

ilarities to one first proposed by Whitt [47], where m1 is obtained from information on a

short interval, while scv is determined from information on a longer interval.

Notice that we can calculate m1 directly from (1), using a result from Cox and Smith [4]

connecting the mean renewal count of a stationary renewal process and its mean interrenewal
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time m1. Specifically, they show E{At(t+ τ )} = τ/m1, for t ≥ 0, τ > 0; therefore,

m1 =
τ

E{Dt(t+ τ )}
. (3)

While the value of the mean renewal count only depends onm1, values for higher moments

of At(t+τ ) depend on the specific interrenewal distribution [44]. A useful consequence of the

MDE approach is that we can easily calculate exact values for the renewal count moments

for a given stationary Ph process by plugging its MAPt representation into (A.2), setting

all service rates µi = 0 (for i = 1, 2, . . . , mb), and initializing the MDEs appropriately. A

further benefit is that when the Ph order ma ≤ 2, we can use the MDEs to derive closed-form

expressions for the renewal count moments.

Thus, our goal is to specify the parameters of the surrogate Ph renewal process to sat-

isfy (2), given m1 in (3); this requires selecting surrogate Ph processes that are specified

by only two parameters. The particular Ph renewal processes we recommend are a mixture

of two exponentials with balanced means, or h2b, when Corr{Dt(t + τ ), Dt+τ (t + 2τ )} ≥ 0,

and a mixture of two Erlangs of consecutive order and common rate, or MECon, when

Corr{Dt(t + τ ), Dt+τ (t + 2τ )} < 0. Descriptions of the h2b and MECon are provided in

Appendix C. The two surrogate processes are invoked according to the sign of the depar-

ture count correlation since the renewal count correlation is always positive for the h2b and

negative for the MECon. Benefits to using these particular Ph choices as surrogates are

three-fold. First, we can uniquely identify the value for their respective interrenewal scv

such that Corr{At(t + τ ), At+τ(t + 2τ )} satisfies (2), given m1 in (3) and τ > 0. Second,

formulas for translating from m1 and scv to the two respective parameters of these Ph pro-

cesses are well known; we cite them in Appendix C. Third, the h2b and MECon provide

coverage over all scv > 0 as well as over a wide range of count correlation values.

Since ma = 2 for the stationary h2b renewal process, we can derive expressions for the
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count moments as a function of τ , m1, and the h2b mixing probability α, namely

Var{At(t+ τ )} =
1

8m1α2(1 − α)2

[
4α(1 − α)

(
2α2 − α+ 1

)
τ

− m1(2α− 1)2
(
1 − e−4α(1−α)τ/m1

)]
,

Cov{At(t+ τ ), At+τ(t+ 2τ )} =
(2α − 1)2

16α2(1 − α)2

(
1 − e−4α(1−α)τ/m1

)2
,

which yields

Corr{At(t+ τ ), At+τ(t+ 2τ )} =

m1(2α − 1)2
(
1 − e−4α(1−α)τ/m1

)2

2 [4α(1 − α) (2α2 − α+ 1) τ −m1(2α − 1)2 (1 − e−4α(1−α)τ/m1)]
, (4)

for t ≥ 0, τ > 0. Thus, we find α ∈ [0, 1] that satisfies (4), given τ > 0, m1 in (3), and

Corr{At(t+ τ ), At+τ(t+ 2τ )} = Corr{Dt(t+ τ ), Dt+τ (t+ 2τ )} ≥ 0; the implied scv is

scv =
1 + (2α− 1)2

1 − (2α − 1)2
.

In a similar fashion, we can identify the scv implied by Corr{Dt(t+τ ), Dt+τ(t+2τ )} < 0;

however, unlike the h2b, we cannot derive closed-form expressions for the count moments of a

MECon, and therefore, have no result analogous to Equation (4) that yields the appropriate

MECon parameters. Instead, notice that we can use the MDEs to numerically calculate

Corr{At(t+ τ ), At+τ(t+2τ )} for a stationary MECon given scv ∈ (0, 1), τ > 0, and m1 > 0.

Therefore, just as we numerically calculate a solution to (4) for the implied scv ≥ 1 of

the h2b, we can numerically calculate the scv < 1 for the MECon that yields Corr{At(t +

τ ), At+τ(t+ 2τ )} = Corr{Dt(t+ τ ), Dt+τ (t+ 2τ )} < 0, given τ > 0 and m1 in (3). With this

technique defined, we have now obtained the two fitted interrenewal moments m1 and scv

implied by the two departure count moments.

Recall from Section 3.1 that specifying the fitted MECOt(`) parameters requires knowing

the first three interrenewal moments, while the translation technique described here yields

only the first two interrenewal moments m1 and scv. To bridge this gap, we take the implied
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third interrenewal moment m3 from the fitted surrogate. The three MECOt(`) parameters

(i.e., the means for each of the component exponentials—λ−1
1 and λ−1

2 , respectively—and

the mixing probability p) are matched to the triple (m1, scv,m3); for the algorithm that

accomplishes this, see [15]. At present we set the MECO order ` equal to the minimum

feasible order across all time intervals, using an algorithm in [15] that identifies the minimum

feasible order for a MECO given its first three interrenewal moments.

3.3 Determining the Interval Length τ

Our initial efforts modeling traffic flow in nonstationary tandem queueing networks indicated

that identifying an appropriate value for the interval length τ is key to providing an accurate

approximation of the downstream arrival process. If τ is too small, the matching technique

degenerates, yielding the mean and variance for the interval-departure count being nearly

equal (with departure count correlation near zero). Accordingly, the fitted arrival process

to these departure count moments is approximately Poisson, regardless of the network com-

ponents, which typically yields a poor fit for the approximated moments at the downstream

node. On the other hand, setting τ too large leads to count moments that do not accurately

reflect the local behavior of the upstream departure process—behavior that is particularly

important in nonstationary networks where model properties may be changing rapidly.

In this section we propose a technique for dynamically identifying an appropriate value

for τ > 0 at time t ≥ 0. First, we define a metamodel that provides an initial guess for

τ given the MAPt representations for the external arrival and nodal service processes at

current time t; we then propose an algorithm that refines the initial prediction to account

for nonstationarity near t.

The initial–prediction metamodel is the product of an experiment in which we investi-

gated 2000 stationary Ph/Ph(1)/∞ → ·/Ph(2)/∞ networks; for each network, we identified

the smallest constant interval length τ > 0 such that the maximum relative error of the
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Table 1: Parameter ranges for the 2000 design points in the initial–prediction metamodel.

Symbol Description Range

m
(1)
a external mean interarrival time [1/80, 1/5]

scva external squared coeff. of variation of arrival [0.25, 3]

m
(1)
s /m

(1)
a offered load at node 1 [1/2, 100]

scv
(1)
s squared coeff. of variation of service at node 1 [0.5, 2]

m
(2)
s /m

(1)
a offered load at node 2 [1/2, 100]

scv
(2)
s squared coeff. of variation of service at node 2 [0.5, 2]

fitted variance at the downstream node versus its exact counterpart, over the duration of the

time horizon approximated, was less than 1%. Each network was uniquely identified by six

network parameters: the mean interarrival time m
(1)
a and squared coefficient of arrival varia-

tion scva, as well as the offered loads m
(n)
s /m

(1)
a and squared coefficients of service variation

scv
(n)
s at nodes n = 1 and n = 2.

Thus, the metamodel is designed to predict τ given values for these six parameters,

utilizing the assumption that the arrival process and service processes at both nodes are

stationary and in steady state at the current time t. Table 1 includes descriptions and

ranges for the six network parameters included in the experiment; we specified these ranges

to encompass the wide range of process variability and offered loads that we would expect to

encounter in modeling real-world systems. We utilized a stationary h2b for the external Ph

arrival process as well as for the Ph(n) service processes (for n = 1, 2) when the respective

process’ squared coefficient of variation was greater than 1, and utilized a MECon when the

respective scv was less than 1 (see Appendix C). The 2000 design points were selected using

Latin hypercube sampling [13], and the range of τ across these points was [0.035, 0.626]. The

metamodel was fit using kriging; for background, see [39, 40].

We let τ̂(t) denote the prediction from the metamodel given the MAPt representations
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of the external arrival process and both service processes evaluated at time t ≥ 0; that is,

τ̂ (t) ≡ f
(
A(t), υ(t), B(1)(t), µ(1)(t), B(2)(t), µ(2)(t)

)

= f̂
(
m(1)

a (t), scva(t), m
(1)
s (t)/m(1)

a (t), scv(1)
s (t), m(2)

s (t)/m(1)
a (t), scv(2)

s (t)
)
, (5)

for t ≥ 0, where f̂(·) is the functional form of the metamodel determined from kriging.

Each of the six marginal moments in (5) is calculated from the MAPt representation of its

respective arrival or service process at time t; in calculating these moments, we claim that

all three component processes are stationary (and in steady state) at time t. Notice that

the arguments of f̂(·) in (5) are presented as functions of t; for our work in this paper, we

could drop the ‘(t)’ from all service-related terms, since the tandem networks we examine

here include stationary service processes at all nodes.

With the model specified for predicting τ in a stationary network, we are ready to present

Algorithm 3.2 for refining this prediction based on nonstationarity near t. In its kth itera-

tion, the algorithm identifies τ̄k, the average value of τ̂ (·) over the interval [t, t+ τ̄k−1], for

k = 2, 3, . . .; it terminates when the average from consecutive iterations differ by less than a

prespecified tolerance. By iteratively identifying the average prediction value—rather than

selecting for τ a single predicted value—we aim to account for nonstationarity near t re-

gardless of whether the model parameters are nearly stationary or are changing very rapidly.

Notice that τ̄1 ≡ τ̂ (t), the metamodel prediction for the stationary network at current time

t.

Algorithm 3.2. Determining the interval length τ > 0, at time t ≥ 0.

1. τ̄0 = 10−8, τ̄1 = τ̂(t), tol = 10−3, and k = 1.

2. While |τ̄k/τ̄k−1 − 1| > tol

(a) τ̄k+1 = τ̄−1
k

∫ t+τ̄k

t
τ̂ (u) du.

(b) k = k + 1.

3. τ = τ̄k.
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4 Evaluating the Matching Technique

4.1 Two-node Networks with Pht Arrivals

We first evaluated our matching technique in approximating a collection of Pht/Ph
(1)/s(1) →

·/Ph(2)/s(2) networks that are initially empty-and-idle. The nonstationary Ph arrival process

was characterized by constant squared coefficient of variation scva > 0 and nonstationary

arrival rate λ(t) = λa [1 + ba sin (caπt)], with λa, ca > 0, and ba ∈ [0, 1), for t ≥ 0. Node n

had s(n) < ∞ servers performing phase-distributed service with mean time m
(n)
s > 0 and

squared coefficient of variation scv
(n)
s > 0, for n = 1, 2.

Table 2 includes descriptions and ranges for the nine parameters in our analysis; specific

parameter values for 200 networks were selected using a Latin hypercube design. The range

of time t across which each network was approximated was [0, 10]. We utilized a MECOt for

the external Pht arrival process as well as stationary MECOs for the two Ph(n) service time

distributions, for n = 1, 2. Similar to the translation technique in Section 3.2, we specified

the MECO parameters to match the first two moments of the respective interarrival or

service time distribution (using the h2b or MECon renewal processes to provide the third

interrenewal moment). The two target values for the arrival MECOt process were the current

arrival rate λ(t) (at time t ≥ 0) and scva, while the two target service-time moments were

m
(n)
s and scv

(n)
s , for n = 1, 2. The server quantities were backed out from the respective

average offered loads and utilizations, such that s(n) = dAOL(n)/AU(n)e, for n = 1, 2,

where dxe is the smallest integer greater than or equal to x, for x ∈ <+. Notice that both

measures of nonstationarity (i.e., the amplitude and period fractions), as well as the average

offered loads and server utilizations at both nodes, were relative to the base arrival rate λa;

therefore, without loss of generality, we set λa = 20. We simulated 1000 replications of each

network to estimate the moments of the true node size at nodes 1 and 2; standard errors of

the estimated nodal moments were less than 2% of the estimated values.
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Table 2: Ranges of parameters in evaluating the matching technique in a two-node finite-
server network.

Parameter Value Description Range
ba fraction of base arrival rate in amplitude of λ(t) [0%, 70%]

2λa/ca ratio of period-to-mean interarrival time (PTM) [1, 100]
scva interarrival scv [1/4, 3]

λam
(1)
s avg. offered load at node 1 (AOL(1)) [5, 60]

scv
(1)
s service time scv, node 1 [1/2, 2]

λam
(1)
s /s(1) avg. server utilization, node 1 (AU(1)) [35%, 75%]

λam
(2)
s avg. offered load at node 2 (AOL(2)) [5, 60]

scv
(2)
s service time scv, node 2 [1/2, 2]

λam
(2)
s /s(2) avg. server utilization, node 2 (AU(2)) [35%, 75%]

It is worth mentioning that the MDE/DDE approach failed to return feasible results

for the fitted moments (e.g., yielding negative variance for the fitted node size) in 14 of

the 200 networks. Typically, these network models had values for at least one maximum

nodal server utilization (defined as MU(n) ≡ (1 + ba) · AU(n), for n = 1, 2) near (or above)

100% and AU(n) > 65%. Unlike in stationary queueing models, individual nodal server

utilization within nonstationary networks may be larger than 100% at times without the

model becoming unstable; however, our results indicated that the MDE/DDE approach may

break down when this utilization is near or above 100% for a large portion of the time

horizon.

To validate our matching technique, we calculated the relative error of the approximate

moments versus the corresponding true moments estimated via simulation of N (n)(t), for

n = 1, 2. We let EARE(n) and VARE(n) denote the average relative error of the mean and

variance of the node size, respectively, over the entire range of t ∈ [0, 10], for n = 1, 2. We also

calculated EMRE(n) and VMRE(n), the maximum relative error of the mean and variance

size at node n = 1, 2, respectively; notice that we identified the maximum relative error

measures only after the true mean node size had become non-negligible (i.e., we obtained
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EMRE(n) and VMRE(n) from the interval [t′, 10], where t′ = inf{t ≥ 0 : E{N (n)(t)} ≥

0.05 · AOL(n)}, for n = 1, 2).

The main barometer for evaluating success of the matching technique was the relative

error of the fitted moments at node 2. Values for average measures EARE(2) and VARE(2)

across the 186 networks in this analysis fell within [0.3%, 15.3%] and [3.1%, 18.2%], respec-

tively. We claim the matching technique typically provides a good fit for the mean of node 2,

as values of EARE(2) larger than 6% occurred in only eight of the 186 networks, while 97

networks had EARE(2) ≤ 1%. The quality of the fit in the node 2 variance ranged from very

good to poor. Typically, networks with ba > 50% and PTM < 10 saw the largest relative

errors in the fitted downstream mean node size, while networks with MU(2) > 85% and

| log(scva)| > log(2) saw the largest relative errors in the downstream node-size variance; we

recommend caution when utilizing our technique in approximating tandem networks with

parameters in these ranges. We provide some insight into these results now.

We performed a full quadratic ANOVA on VARE(2), attempting to qualify the nine main

parameter effects and 36 pairwise interaction effects in terms of their significance at the 5%

confidence level; for background on ANOVA, see [29]. To model the extent of the arrival

process’ deviation from Poisson (as well as the respective service time distributions’ devia-

tions from exponential), we included log(scva), log(scv
(1)
s ), and log(scv

(2)
s ) as factors in the

ANOVA rather than scva, scv
(1)
s , and scv

(2)
s . The effects that most significantly explained

VARE(2) included the node 2 average server utilization AU(2), the arrival amplitude pa-

rameter ba, and the logarithm of the squared coefficient of arrival variation log(scva). The

significance of these effects are intuitively understandable; a large value for AU(2) combined

with a large value for ba yields a large value for node 2 maximum server utilization MU(2);

as described above, the quality of the MDE/DDE approach at a node is typically poor when

its maximum server utilization is very large. In other words, the nodal approximation itself

may break down even if the traffic flow is adequately represented. We also have observed

18



that the sign of log(scva) appears to be a direct indicator of whether the true distribution

of each node size is more or less variable than Poisson; thus, extreme values for log(scva)

should lead to nodal size distributions that deviate significantly from Poisson, and we expect

it to be more difficult to fit such distributions than those closer to Poisson. Specifically,

we found that the largest values of VARE(2) occurred when AU(2) > 60%, ba > 40% and

| log(scva)| > log(2). A similar analysis revealed that the largest values of EARE(2) occurred

in networks where PTM < 12 and at least one of MU(1) or MU(2) was larger than 90%;

however, as mentioned earlier, EARE(2) was typically very small regardless of the network

parameters.

Similarly, we find values for maximum relative error measures EMRE(2) and VMRE(2)

ranged across [1.0%, 16.9%] and [9.8%, 35.9%], respectively; values of VMRE(2) > 18%

typically corresponded to networks with VARE(2) > 10%. Results from the ANOVA on

VMRE(2) confirmed that similar factors affect both node-2-variance relative-error measures,

as AU(2) and log(scva) were found to be significant (as both main and interaction effects)

in also explaining VMRE(2). Main effect factors that explain EMRE(2) at the 5% level

included ba, PTM, and AU(2), while the interaction between ba and PTM was significant as

well. Specifically, the largest values of EMRE(2) occurred in networks where both ba > 50%

and PTM < 10, as well as in networks where MU(2) > 80%.

Figures 1–3 include plots of the fitted moments (solid lines) and true moments (dashed

lines) for three sample networks; these three figures correspond to Networks 1–3 in Table 3

(included in Appendix D), respectively. The plots on the top row in each figure (from left to

right) represent the node 1 mean and variance, while those in the bottom row represent the

node 2 mean and variance, respectively. Values for the network parameters are provided with

each figure. Figure 1 represents a network where the matching technique was successful, as

the fit in both downstream nodal moments is very good, while Figure 2 represents a network

where the matching technique appears to have failed, since the fit in the downstream variance
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is poor even though the MDE/DDE approach has provided an adequate approximation to

the upstream moments.

The two variance plots in the right column of Figure 3 merit further discussion. They

illustrate a simple result that, nevertheless, plays an important role in the validation of our

matching technique: A poor fit from the MDE/DDE approach at node 1 typically yields a

poor quality fit from the matching technique at node 2. Several networks in our analysis

saw values of EARE(1) and VARE(1) above 9% and 15%, respectively; it is important to

identify why the MDE/DDE approach may fail at node 1 since these errors will be carried

to the downstream node by the matching technique. Results from a full quadratic ANOVA

on EARE(1) indicated that the arrival amplitude and period parameters, ba and PTM—

both as main and interaction effects—were significant at the 5% confidence level; networks

with the largest values for EARE(1) typically had ba > 50% and/or PTM < 10. A similar

analysis indicated that ba, log(scva), and average utilization AU(1) were significant at the

5% confidence level in explaining VARE(1); the poorest fits for the node 1 variance typically

occurred when ba > 50%, AU(1) > 65%, and | log(scva)| > log(2). Notice that this is

approximately the same range of parameters, with respect to node 1, that yielded the largest

values for VARE(2); this indicates that the largest relative errors in the fitted moments at

either node typically occurred when the respective nodal maximum server utilization was

high and the external arrival process deviated significantly from Poisson.

Acknowledging that accurately approximating time-dependent behavior in nonstation-

ary networks is difficult, we also investigated whether the matching technique described in

Section 3, when employed in stationary finite-server networks, provides comparably accu-

rate approximations of the corresponding steady-state moments of node size to those from

established stationary network approximation tools such as QNA [49]. To do so, we applied

the MDE/DDE approach to time-stationary versions of each of the 200 networks previously

analyzed in this section, setting ba = 0 (i.e., λ(t) = λa, for all t ≥ 0); we calculated the cor-

20



0 2 4 6 8 10
0

10

20

30

40

time

N
o
d
e
 1

, 
M

e
a
n

0 2 4 6 8 10
0

10

20

30

40

50

60

time

N
o
d
e
 1

, 
V

a
ri
a
n
c
e

0 2 4 6 8 10
0

5

10

15

20

25

30

time

N
o
d
e
 2

, 
M

e
a
n

0 2 4 6 8 10
0

10

20

30

40

time

N
o
d
e
 2

, 
V

a
ri
a
n
c
e

Figure 1: Network 1, with ba = 36%, scva = 2.04, scv
(1)
s = 1.29, AU(1) = 48%, scv

(2)
s = 1.45,

AU(2) = 69%; plots indicate a good fit in both moments at both nodes.

responding node-size moment approximations from QNA using formulas in [49]. We found

that the matching technique described here yields very similar relative error values (versus

simulation) for each network to those from QNA for the mean size of both nodes, and that

these errors are very low; the maximum mean-size relative errors from the matching tech-

nique and QNA across the 200 networks were 5.7% and 3.9% at node 1, and 4.5% and 5.3%

at node 2, respectively.

However, the accuracy of the nodal variance approximations differ signficantly between

our matching technique and QNA. Variance-size relative errors larger than 10% occurred (at

either node) in only 15 of the 200 stationary networks using the MDE/DDE approach, with

maximum errors of 32.9% at node 1 and 23.1% at node 2. As in the nonstationary analysis
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Figure 2: Network 2, with ba = 55%, scva = 2.42, scv
(1)
s = 0.60, AU(1) = 42%, scv

(2)
s = 0.55,

AU(2) = 55%; plots indicate the matching technique significantly overestimates the node 2
variance (bottom right).

above, the largest errors in the steady-state node 2 variance were seen in networks where

| log(scva)| > log(2) and AU(2) > 65%. Maximum relative errors in the nodal variance from

QNA were 97.5% and 47.7% at nodes 1 and 2, respectively. As expected, QNA yielded

its poorest results when the interarrival and service-time distributions deviated significantly

from exponential. That QNA yielded highly accurate approximations of mean node size yet

less accurate approximations of nodal variance was not unexpected; the validity of QNA was

originally assessed by evaluating the accuracy of approximations solely for the first moment

of both steady-state node size and wait time in a wide variety of network structures [48].

We also evaluated the quality of the matching technique in two-node infinite-server net-

works (i.e., s(n) = ∞, for n = 1, 2), using the same values for the seven non-utilization
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Figure 3: Network 3, with ba = 45%, scva = 0.9, scv
(1)
s = 1.52, AU(1) = 74%, scv

(2)
s = 0.72,

AU(2) = 41%; plots indicate a poor fit from the MDE/DDE approach for node 1 variance
(top right) yielding a poor fit at node 2 (bottom right).

parameters provided in Table 2 in the 200 networks we analyzed. Recall that the MDEs

and DDEs for the infinite-server model are closed, and that the fitted downstream moments

from the matching technique are evaluated versus the exact downstream moments calculated

using the network MDEs. Values for EARE(2) and VARE(2) in our infinite-server analysis

ranged across [0.1%, 5.7%] and [0.1%, 13.6%], respectively; average relative errors in individ-

ual networks were typically smaller than those in their finite-server counterparts, reinforcing

the observation that high server utilization (at either node) decreases the quality of the

matching technique in the finite-server arena. The largest values of EARE(2) occurred in

those infinite-server networks where ba > 55%, while VARE(2) > 10% was typically observed

in networks where both log(scva) > log(2.4) and log(scv
(1)
s ) < log(0.65).
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4.2 Alternative Models: Non-Empty Initial Conditions, Corre-

lated Arrivals, and Chains with z = 3 Nodes

In this section we evaluate our matching technique with respect to tandem finite-server

networks that have three features that are different from those analyzed in the previous

section. First, we consider the effect of utilizing non-empty initial conditions at node 1. We

also investigate the quality of the matching technique when the external arrival process is

a correlated MAPt. Finally, we examine how the matching technique performs as we fit

the furthest downstream arrival process in a tandem chain of z = 3 nodes. Unlike in the

previous section, we only investigated a few instances of these alternative network models;

we leave a comprehensive study of these variations for future research. To better isolate

the effect of these variations, we implemented them separately in five sample networks from

the previous section where the matching technique was successful (i.e., EARE(2) < 3% and

VARE(2) < 5%); these five sample networks are Networks 1 and 4–7 in Table 3 (provided

in Appendix D).

We first investigated non-empty-and-idle initial conditions, setting the initial size of

node 1 equal to φλam
(1)
s , for φ ∈ [1/2, 2]. Doing this does not significantly affect either

EARE(2) or VARE(2) (i.e., neither evaluation measure in any network is altered more than

1% in absolute value), nor is this result surprising. Non-empty initial conditions yield a higher

departure rate and mean departure count (i.e., versus empty-and-idle initial conditions) early

in the time horizon; however, this should be accurately captured by the translation tech-

nique in Section 3.2. Thus, no adjustments to our matching technique should be necessary

to account for non-empty initial conditions.

Next, we employed the matching technique in networks where the external arrival pro-

cess was a correlated MAPt; correlation in these five networks was provided by varying the

lag-1 autocorrelation ρ1 ∈ [−0.2, 0.4]. To capture non-zero autocorrelation in the inter-

arrival times, we utilize a nonstationary Markov-MECO [14] for the external MAPt. The
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Markov-MECO is a nonrenewal generalization of the MECO renewal process; formulas for

specifying Markov-MECO parameters to target ρ1 (in addition to the first three moments

of the marginal distribution) are provided in [14]. Our matching technique was successful in

these five instances; in fact, EARE(2) < 1% in four of the five networks, which was lower

than the EARE(2) in the corresponding networks with ρ1 = 0, as in Section 4.1. There was

also no significant change in the values of VARE(2) from introducing correlated arrivals.

However, we do not expect that the current matching technique will be as successful for

a specific network model in the presence of correlated arrivals as it is when interarrival times

are uncorrelated (i.e., we would expect values for VARE(2) to be higher when ρ1 6= 0). One

reason behind its success here may be the limited range of ρ1 investigated, and we acknowl-

edge that adjustments to the matching technique may be necessary in the presence of more

significant correlation. One potential adjustment is to redefine the metamodel in Section 3.3

to predict the stationary τ based on the value of a long-term arrival variation parameter

such as the index of dispersion of intervals (IDI)—equivalent to scva (1 + 2
∑∞

k=1 ρk) [45]

(where ρk is the lag-k autocorrelation for interarrival times, for k = 1, 2, . . .)—rather than

scva itself; notice that IDI = scva when interarrival times are uncorrelated. That said, it

is typically difficult to specify a MAP to match an extreme value of ρ1, particularly when

scva < 1; for evidence of this claim, see [5, 12, 14] and related papers.

In the final variation investigated here, we evaluated the quality of our matching technique

when we extend each of the five sample networks to a third node (i.e., z = 3). The nodal

service parameters we model at node n = 3 are the same as those in Table 2 for n = 1, 2.

We observe an initial lag in the fitted moments at node 3; Figure 4 provides an example of

this observation. This lag is due to the low arrival rate to node 2 early in the time horizon (a

result of empty initial conditions at node 1) yielding an inappropriately large value for τ in

Step 2 of Algorithm 3.1, when employed at node n = 2, at time t = 0. In response, the fitted

departure rate from node 2 is small during the interval [0, τ ], leading to the underestimation
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Figure 4: Network 4 extended to third node, with AOL(3) = 22.45, scv
(3)
s = 1.03, AU(3) =

48.6%: Plots of the fitted (solid) versus true (dashed) moments for mean (top) and variance
(bottom) size at node 3; plots indicate the matching technique yields a satisfactory fit after
an initial lag.

of the fitted moments at node 3 during this interval. Since τ was large, it took more time

for this initialization effect to wear off. One potential solution is to delay the start time for

initiating the matching algorithm at node 2 until the departure count moments from node 1

are non-negligible. This will yield shorter predicted values for τ in response to larger arrival

rates to node 2 early in the time horizon; thus, we can expedite the approximated arrival

stream to node 3, reducing the length of the time lag for the fitted moments.

Notice that we must also be cautious (when analyzing tandem chains of length z > 2)

that the fitted mean interarrival times at node n = 2, 3, . . . , z − 1 fall within the range of

m
(1)
a provided in Table 1, as the kriging metamodel does not perform extrapolation; however,

this may be easily resolved by expanding the range of parameters used to fit the metamodel

in Section 3.3. No such action was necessary in the analysis of the five sample networks

provided in this section.
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5 Conclusions

In this paper we have provided an algorithm for approximating a tandem queueing network

where the external arrival process is a nonstationary MAPt. Our analysis of the match-

ing technique, as employed in a two-node, finite-server network, indicates the technique is

successful in accurately yielding the time-dependent downstream mean node size (and, to

a slightly lesser extent, the time-dependent variance of the downstream node size) across a

wide range of network parameters; however, the matching technique (and the MDE/DDE

approach at its core) may provide a poor fit if nodal server utilizations are near (or above)

100% for a significant portion of the time horizon.

Opportunities for future research abound; these include investigating methods to improve

the quality of the matching technique in the parameter ranges identified in the previous

section, as well as in the presence of correlated arrivals and tandem chains of more than

two nodes. Other opportunities involve investigating the necessary adjustments to employ

the matching technique in general feed-forward networks, such as proposing methods for

approximating the superposition of multiple streams of nonstationary internode traffic flow.
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