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1. Introduction
Decision makers often face the problem of selecting the best
from a finite set of alternatives, where the best refers to the
alternative with the largest (or smallest) mean performance.
For instance, an inventory manager may need to select an
inventory policy to minimize the total mean cost, while a
financial investor may want to choose an investment strategy
to maximize the mean payoff. In many practical situations,
the mean performances of these alternatives are not explic-
itly available and can only be evaluated by running simula-
tion experiments. This is known as the selection-of-the-best
problem. To solve this problem, a decision procedure is often
needed to determine the proper sample sizes of all alterna-
tives and to decide which alternative to select. There is a
large body of literature on designing such procedures—see
Bechhofer et al. (1995), Kim and Nelson (2006a) and Branke
et al. (2007) for introductions and overviews.

Among these procedures in the literature, there are fre-
quentist and Bayesian approaches. Frequentist procedures
(e.g., Rinott 1978, Kim and Nelson 2001) allocate simulation
observations to different alternatives to achieve a prespeci-
fied probability of correct selection (PCS) even for the least

favorable configuration of the means. They are typically con-
servative (i.e., requiring more samples than necessary) for
an average case. Bayesian procedures (e.g., Chick and Inoue
2001, Chick and Frazier 2012) often allocate a finite com-
puting budget to different alternatives to either maximize
the posterior (Bayesian) PCS or minimize the opportunity
cost. They often require fewer observations than frequentist
procedures, but typically do not provide a guaranteed (fre-
quentist) PCS. An exception is Frazier (2014) who recently
proposed a Bayes-inspired procedure to achieve a prespec-
ified frequentist PCS. In this paper, we take the frequentist
viewpoint, and our goal is to design procedures that deliver
a user-specified PCS.

The first frequentist selection-of-the-best formulations
were designed in the 1950s, when observations were often
collected through physical experiments (e.g., agricultural
experiments or clinical trials). Each of these experiments
may take quite a long time (e.g., weeks to months) to con-
duct, and it only makes sense to conduct these experiments
in batches. Therefore, the stage-wise procedures that select
the best at the end of the last stage were prevalent. For these
procedures, the critical issue is to determine the appropri-
ate sample size for each alternative so that the best may be
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selected. Notice that the means of the best and the second-
best alternatives may be arbitrarily close. Therefore, guar-
anteeing to find the unique best for all configurations of the
means could require an arbitrarily large number of observa-
tions, which is not practical. To avoid this difficulty, vari-
ous formulations were proposed to soften the original goal
of selecting the unique best alternative. One is the subset-
selection (SS) formulation of Gupta (1956, 1965), which
guarantees to select a random-sized subset of the alterna-
tives that contains the best (instead of selecting the unique
best). The procedures of Panchapakesan et al. (1971) and
Sullivan and Wilson (1989) are also designed under this for-
mulation. The other formulation is the indifference-zone (IZ)
formulation of Bechhofer (1954), which guarantees to select
the unique best alternative when the difference between the
means of the best and second-best is at least �, where �> 0 is
called an IZ parameter. The procedures proposed by Rinott
(1978), Clark and Yang (1986), and many others are also
designed under this formulation.

Starting in the 1990s, there was a paradigm change in
selection-of-the-best problems. Under this new paradigm,
observations of alternatives are often obtained through com-
puter simulation experiments. Each of these experiments
takes a fraction of a second to a few minutes, and they are
often generated sequentially from either a single processor
or a small number of parallel processors. This sequential
nature of computer simulation experiments motivates the use
of sequential procedures that date back to Paulson (1964)
under the IZ formulation. The major milestone of this stream
of research was the paper of Kim and Nelson (2001) that
completely adapts fully sequential procedures to computer
simulation experiments. These fully sequential procedures
typically specify a continuation region. They then approxi-
mate the sum of differences between two competing alter-
natives as a Brownian motion (BM) process with drift, and
make an elimination decision when the process exits the
continuation region. Different from stage-wise procedures,
fully sequential procedures gradually gather information
(i.e., simulation observations) on the unknown differences
between the means of competing alternatives and eliminate
the inferior alternatives once enough statistical evidence is
available. Therefore, they tend to be more efficient (i.e., need
fewer observations) than their stage-wise counterparts.

Even though many fully sequential frequentist procedures
have been proposed since the work of Kim and Nelson
(2001) (e.g., the procedures of Batur and Kim 2006; Hong
and Nelson 2005, 2007; Pichitlamken et al. 2006; Hong
2006; Kim and Nelson 2006b; and many others), none of
these questioned the necessity of the IZ formulation. Unlike
stage-wise procedures, where information on the means of
the competing alternatives are unknown, fully sequential
procedures gather this information as they progress. This
information may free us from having to provide an IZ param-
eter and help us to select the unique best alternative for any
configuration of the means.

In this paper, we propose a new formulation that selects
the best alternative with a user-specified PCS, as long as all
of the alternatives have unique means. Under this formula-
tion, the means of any pair of alternatives are not equal and
can be arbitrarily close. Therefore, the key to designing such
a procedure is to construct a continuation region where, with
the specified PCS, no elimination decision will be made if
the mean difference between these two alternatives is zero,
while a correct elimination decision will be made if it is not.
To achieve this, we need to construct a continuation region
so that a BM with no drift will stay inside while a BM with
drift will exit from the correct side. Notice that BM with and
without drift differ in the rates at which they grow. In partic-
ular, a BM with positive drift approaches infinity at the rate
O4t5, while a BM without drift approaches infinity at a rate
bounded by O4

√
t log log t5 due to the Law of the Iterated

Logarithm (Durrett 2010). In light of this, any continuation
region, formed by boundaries which grow at a rate between
O4

√
t log log t5 and O4t5, can achieve our objective.

To further determine the design parameters of such con-
tinuation regions, we need to be able to evaluate the
first-exit probability of a BM from the given continuation
region. However, it is generally difficult or even impossi-
ble to explicitly analyze the first-exit-time distribution of
a BM (see Durbin 1985). To solve the problem, we con-
sider two approaches. In the first approach, we obtain the
design parameter by numerically solving a one-dimensional
stochastic root-finding problem, which can be solved effi-
ciently with the use of an importance sampling scheme. In
the second approach, we obtain the design parameter by eval-
uating the first-exit probability using an asymptotic result,
and we prove the validity of the procedure as PCS goes to 1.
It is worthwhile noting that the asymptotic regime of letting
PCS go to 1 is a classical one and it dates back to Perng
(1969) and Dudewicz (1969).

Beyond selecting the unique best alternative, our proce-
dures can also be used as sequential subset-selection pro-
cedures. In particular, at any time before the procedures
terminate, the surviving subset of alternatives has retained
the best alternative with the same probability guarantee.

One shortcoming of our procedures is that they may not
stop when two or more alternatives have the same means.
To avoid this situation, we propose a stopping criterion for
our procedures. The stopping criterion requires the user to
specify an error tolerance �. We show that, with the same
PCS, the selected alternative is either the best or within �
of the best. This indicates that our procedures provide both
the correct selection guarantee and good selection guarantee,
which is the goal of Ni et al. (2014). If one treats � as an
IZ parameter, then our procedures become IZ procedures.
However, unlike IZ procedures, the average sample size of
our procedures is typically insensitive to the setting of the
error tolerance; thus, one may set it very small for practical
implementations.

Our research is closely related to the literature on best-
arm identification in stochastic multi-armed bandit (MAB)
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problems. (Readers interested in the MAB problems may
refer to Bubeck and Cesa-Bianchi 2012 for a comprehensive
overview). The best-arm identification procedures seek the
same goal as our procedures do—i.e., selecting the unique
best arm with a predetermined probability. In contrast, our
procedures and these best-arm identification procedures dif-
fer in at least three aspects. Firstly, they employ different
elimination mechanisms. In particular, the best-arm identi-
fication procedures (e.g., Karnin et al. 2013, Jamieson and
Nowak 2014) sequentially construct a confidence bound for
the mean reward of each arm based on the estimated sam-
ple mean and make eliminations if there are nonoverlapping
confidence bounds. Secondly, the best-arm identification
procedures assume that the cumulant generating function of
each reward is bounded by a known convex function, while
our procedures only require a finite joint moment generat-
ing function of rewards in a neighborhood of the zero vector
(see Theorem 2), and it need not be known. Lastly, our pro-
cedures are able to allow dependence among the rewards of
different arms; thus, common random numbers can be used
to speed up the selection of the best.

The rest of our paper is organized as follows. In Sec-
tion 2, we introduce a new selection-of-the-best formulation.
In Section 3, we design a class of fully sequential IZ-free
procedures under the new formulation when observations
from all alternatives are jointly normally distributed. In Sec-
tion 4, we relax the normality assumption to design the
corresponding sequential procedures that are asymptotically
valid. In Section 5, we analyze the asymptotic efficiency of
our procedures. We discuss a stopping criterion in Section 6.
We conduct a comprehensive numerical study to understand
our procedures and compare them to existing procedures in
Section 7, and conclude in Section 8.

2. A New Selection-of-the-Best
Formulation

Suppose there are k 4¾25 competing alternatives at the
beginning of the selection process, and the goal is to select
the alternative that has the largest mean performance. For
i= 1121 0 0 0 1 k, denote �i as the unknown mean performance
of alternative i and we evaluate it through computer simula-
tion. Without loss of generality, assume �1 >�2 > · · ·>�k,
implying that the best alternative is unique and alternative 1
is the best. It is worthwhile noting that we make no assump-
tion on the difference between �1 and �2 because there is
often no such knowledge in practice. Further, let 1 −� (0 <
�¶ 1 − 1/k) denote the user-specified PCS. In other words,
users target at selecting alternative 1 with probability at least
1 −�.

To achieve this target, there are two different frequentist
formulations in the literature. They are the SS and IZ formu-
lations. As stated in Section 1, both of them may encounter
difficulties. In light of this, we propose a new selection-of-
the-best formulation in this section. Under the new formula-
tion, procedures guarantee to select the best alternative with

a user-specified PCS value 1 −�, as long as their means are
unique; i.e., �1 > �2 > · · · > �k. Equivalently, procedures
under the new formulation guarantee to satisfy

�8select alternative 19¾ 1 −�0 (1)

Therefore, to use the procedures under the new formulation,
one only needs to specify the PCS value 1 − �. Compared
to the IZ formulation, the new formulation frees users from
having to specify an IZ parameter, and compared to the SS
formulation, it selects the unique best alternative instead of
a random subset but can select a subset if procedures are
terminated early.

In the following two sections, we design sequential pro-
cedures under the new formulation for cases where observa-
tions are jointly normally distributed as well as cases where
observations are generally distributed, and prove that these
procedures can deliver the required statistical guarantee (i.e.,
Equation (1)). We emphasize that we use sequential pro-
cedures not only because they are more efficient but also
because stage-wise procedures cannot achieve the necessary
statistical guarantee.

3. Procedures with Normally Distributed
Observations

Let Xir , r = 1121 0 0 0 1 denote the r th independent observa-
tion from alternative i, for i= 1121 0 0 0 1 k. In this section, we
consider the case where 4X1r 1X2r 1 0 0 0 1Xkr5 4r = 1121 0 0 05
are jointly normally distributed with unknown mean vec-
tor 4�11�21 0 0 0 1�k5 and unknown positive definite covari-
ance matrix. The assumption of possible dependence among
observations from different alternatives enables the use of
common random numbers (CRNs). The task of this section
is to design a sequential procedure that deliver the statistical
guarantee stated in (1).

Existing sequential procedures, such as the KN procedure,
often decompose the selection-of-the-best problem into pair-
wise comparisons. In each pairwise comparison, they then
approximate the partial-sum difference process between two
competing alternatives by a BM with drift and design a con-
tinuation region to eliminate the inferior alternative based
on the first-exit time of the BM from it. In this paper, we
adopt the same mechanism to design a sequential procedure
under the new formulation and, consequently, we need to
address the following two issues: (1) constructing a Brown-
ian approximation to the partial-sum difference process and
(2) designing a proper continuation region.

Under the normality assumption, it is straightforward to
construct a Brownian approximation. Consider a pairwise
comparison between alternatives i and j , where i 6= j . Let
X̄i4n5 denote the sample mean calculated from the first n
observations from alternative i and define

tij4n5= n/�2
ij and

Zij4tij4n55= tij4n56X̄i4n5− X̄j4n571
(2)
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where �2
ij = Var6Xi1 − Xj17. Throughout this paper, we

define B4 · 5 as a BM with unit variance and no drift, and
define Bã4 · 5 as a BM with unit variance and drift ã. The-
orem 1 of Hong (2006) shows that the random sequences
8Zij4tij4n552 n ¾ 19 and 8B�i−�j

4tij4n552 n ¾ 19 have the
same joint distribution. Therefore, 8Zij4tij4n552 n ¾ 19 can
be viewed as a BM with drift �i −�j observed at the discrete
time points 8tij4151 tij4251 0 0 09.

Let 4−gc4t51 gc4t55 denote the continuation region used
in the procedure, where c is a constant determined based
on the number of alternatives k, the PCS value 1 − �, and
the common first-stage sample size n0. As discussed in Sec-
tion 1, the continuation region is expected to satisfy that,
with a prespecified PCS, a BM with no drift stays inside,
while a BM with drift exits from the correct side. Notice
that the former grows to infinity at a rate slower than that
of the latter. In particular, the Law of the Iterated Logarithm
(Durrett 2010) states that, the rate of the former is bounded
by O4

√
t log log t5, while the rate of the latter is O4t5. The

rate difference motivates the use of a boundary function that
increases at rates in-between to construct the targeted con-
tinuation region. In light of this, boundaries of interest are
categorized into the following set:

G =

{

gc4t5 ∈C1601�52 lim
t→�

gc4t5

t
= 0 and

lim inf
t→�

gc4t5
√
t log log t

∈ 401�7

}

1

where C1601�5 denotes the set of functions whose first
derivatives are continuous on 601�5. Furthermore, for the
ease of theoretical analysis and practical implementation,
we choose gc4t5 from G such that gc4t5 is increasing
in t and gc4t5/t is decreasing in t for any fixed c. For
instance, we can choose

√

2t log4c+ log4t + 155 4c ¾ 15,
√

6c+ log4t + 1574t + 15 4c > 05, or ct�41/2 < � < 11
c > 05. The determination of the design parameter c is
deferred to Section 3.1.

3.1. The Procedure

In this subsection, we propose a sequential procedure
designed based on the key idea stated above. Particularly,
the procedure uses a first stage to estimate the unknown
variances and determine a proper continuation region, and
then collects observations sequentially to eliminate inferior
alternatives until only one is left.

Procedure 1 (Sequential Procedure for Normally
Distributed Observations). Setup. Select the PCS 1 − �
40 <� ¶ 1 − 1/k5 and a common first-stage sample size
n0 ¾ 2. Choose a boundary gc4t5 from G and calculate the
constant c that is the unique root to the following equation:

Ɛ

[

�

{

B4T 5¶−gc

(

n0 − 1
Y

T

)

Y

n0 − 1
1 T <� � Y

}]

=
�

k− 1
1 (3)

where T = inf8t2 �B4t5� ¾ gc444n0 − 15/Y 5t54Y /4n0 − 1559
and Y is a chi-squared distributed random variable with
n0 − 1 degrees of freedom that is independent of B4 · 5.

Initialization. Let I = 81121 0 0 0 1 k9 be the set of alterna-
tives in contention. For each i ∈ I , simulate n0 observations
Xi11Xi21 0 0 0 1Xin0

from alternative i and calculate its sample
mean as

X̄i4n05=
1
n0

n0
∑

l=1

Xil0

For any i1 j ∈ I with i 6= j , calculate the sample variance of
their difference as

S2
ij =

1
n0 − 1

n0
∑

r=1

6Xir −Xjr − 4X̄i4n05− X̄j4n0557
20

Set n= n0.
Screening. Let I old = I and for any i1 j ∈ I with i 6= j , let

�ij4n5= n/S2
ij and Zij4�ij4n55= �ij4n56X̄i4n5− X̄j4n570

Let

I = I old
∖{

i ∈ I old2 Zij4�ij4n55¶−gc4�ij4n551

for some other j ∈ I old
}

0

Stopping Rule. If �I � = 1, stop and select the alternative
whose index is in I as the best. Otherwise, take one additional
observation from each alternative i ∈ I , set n= n+1 and go
to Screening.

Remark 1. Procedure 1 can work with many choices of
boundaries (i.e., G). In the numerical studies reported in Sec-
tion 7, as an instance we use a specific boundary gc4t5 =
√

6c+ log4t + 1574t + 15.

Remark 2. Please refer to EC.2 in the e-companion (avail-
able as supplemental material at https://doi.org/.1287/
opre.2016.1530) on how to choose c that satisfies Equa-
tion Equation 3.

Procedure 1, like those of Kim and Nelson (2001) and
Hong (2006), is essentially a sequential screening procedure
and works as follows. It includes all of the alternatives into I
at the Initiation step and eliminates the inferior alternatives
from I over the Screening steps until only one alternative
is left. At each Screening step, it considers all of the possi-
ble pairwise comparisons between the surviving alternatives
and eliminates the inferior alternatives based on the first-exit
time of the partial-sum difference process from the given
continuation region. Take the comparison between alterna-
tives i and j , for instance. When the partial-sum difference
process Zij4�ij4 · 55 exits the continuation region from below
(above), Procedure 1 eliminates alternative i4j5; otherwise,
it eliminates neither of them and continues collecting obser-
vations (see Figure 1). Once an alternative is eliminated, it
will not be considered again.

Even though Procedure 1 is designed to select the unique
best alternative, users can stop Procedure 1 at any time
before termination and it still guarantees to have retained the
best alternative. This result is summarized as the following
Lemma 1.
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Figure 1. (Color online) Continuation region of our
sequential procedures.

Zij (�ij (n))

Eliminate alternative j

Eliminate alternative i

gc(�ij (n))

–gc(�ij (n))

�ij (n)

Note. The x-axis is well defined because �ij4n5 increases linearly with n.

Lemma 1. DefineN as the number of replications when Pro-
cedure 1 terminates and only one alternative is left. Let I4n5
for n ¶ N denote the set of surviving alternatives in Pro-
cedure 1 after n replications. If Procedure 1 delivers the
statistical guarantee as stated in Equation (1), then we have,
for any n ∈Z+,

�81 ∈ I4n∧N59¾ 1 −�1

where x∧ y denotes the smaller of x and y.

Proof. See EC.1.1 in the e-companion. �

Lemma 1 shows that, if there is a maximal stopping
time n, Procedure 1 guarantees with at least probability 1−�

to either select the best alternative before n or retain the best
alternative in a subset when it is stopped at n. Therefore,
Procedure 1 can be utilized as a sequential subset-selection
procedure when users have a sampling budget on screen-
ing. Besides, Procedure 1 tends to be more efficient than
the existing subset-selection procedures (e.g., Gupta 1956)
that use equal allocation of observations among alternatives,
especially when the number of alternatives is large. This
arises because Procedure 1 tends to allocate fewer observa-
tions to the significantly inferior alternatives.

3.2. Statistical Validity

In this subsection, we establish the statistical validity of Pro-
cedure 1—i.e., it delivers the statistical guarantee stated in
Equation (1). To achieve this goal, we need several lemmas.

In each pairwise comparison, an incorrect-selection event
occurs if the better alternative is eliminated, or equivalently,
the partial-sum difference process exits the continuation
region from the wrong direction. Notice that we only col-

lect observations at discrete time points in the procedure.
Hence, the partial-sum process corresponds to observing a
BM at discrete time points. The following lemma states that,
under very general conditions, the procedure designed for
the continuous-time BM provides an upper bound on the
probability of incorrect selection (PICS) for the discrete-
time BM.

Lemma 2. Let Bã4t5 denote a continuous-time Brownian
motion with drift ã> 0. A discrete-time process is obtained
by observing Bã4t5 at a (possibly) random, increasing
sequence of times 8ti2 i = 1121 0 0 09 taking values in a
given countable set. The value of ti depends on Bã4t5
only through its values in the period 601 ti−17. Define Td =

min8ti2 �Bã4ti5� ¾ g4ti59 and Tc = inf8t2 �Bã4t5� ¾ g4t59,
where g4t5 ∈G. Then we have

(1) Tc ¶ Td <�, w.p.1,
(2) �8Bã4Td5¶−g4Td59¶�8Bã4Tc5¶−g4Tc59

(Jennison et al. 1980).

Proof. See EC.1.2 in the e-companion. �
The drift of the BM refers to the difference of two compet-

ing means, which is unknown in our setting. In the following
lemma, we show that PICS of the BM with the unknown drift
is bounded by its counterpart without drift. This statement is
valid for general stochastic processes, not just for BM.

Lemma 3. Let Z4 · 5 denote a (discrete-time or continuous-
time) stochastic process. (Assume that Z4 · 5 has right-
continuous sample paths if Z4 · 5 is a continuous-time
stochastic process.) Let Zã4t5 = Z4t5 + ãt, where ã > 0.
Further, define T and Tã as the stopping times that Z4 · 5
and Zã4 · 5 first exit the region 4−g4t51 g4t55, where g4t5 is a
continuous and nonnegative function. Then, we have that

�8Zã4Tã5¶−g4Tã51Tã<�9¶�8Z4T 5¶−g4T 51T <�90

Proof. See EC.1.3 in the e-companion. �
Now, we can establish the statistical validity of Proce-

dure 1 and summarize it as Theorem 1.

Theorem 1. Suppose that there are k alternatives and
we are interested in selecting the alternative with the
largest mean. Assume that 4X1r 1X2r 1 0 0 0 1Xkr5, r = 1121 0 0 0 1
are independent and identically distributed (i.i.d.) and
jointly normally distributed with unknown mean vector
4�11�21 0 0 0 1�k5 and unknown positive definite covariance
matrix. If �1 > �2 > · · · > �k, Procedure 1 stops in finite
time with probability 1 (w.p.1) and selects the best alterna-
tive (i.e., alternative 1) with probability at least 1 −� (i.e.,
�8select alternative 19¾ 1 −�).

Remark 3. Theorem 1 only requires the covariance matrix
to be positive definite. Therefore, it allows the use of CRNs
that introduces positive correlation among observations from
different alternatives to make the comparisons sharper.

Proof. For any pair of alternatives i and j with i 6= j , since
�i−�j 6= 0, we see that the elimination between them occurs
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in finite time w.p.1 by part (1) of Lemma 2. Similarly, we
have all of the pairwise eliminations occur in finite time
w.p.1. Therefore, Procedure 1 stops in finite time w.p.1.

When Procedure 1 stops, define an incorrect-selection
(ICS) event happens when alternative 1 is eliminated by
some other alternative. Then, we have

�8ICS9

=�

{ k
⋃

i=2

8alternative 1 is eliminated by alternative i9

}

¶
k
∑

i=2

�8alternative 1 is eliminated by alternative i90 (4)

The inequality in (4) arises from the Bonferroni inequality.
For any i = 2131 0 0 0 1 k, we denote ICSi as the incorrect-
selection event that alternative 1 is eliminated by alter-
native i. To prove the statistical validity, we view each
incorrect-selection event ICSi separately. In particular, we
have

�8ICSi9=�8Z1i4�1i4Ni55¶−gc4�1i4Ni551Ni <�91

where Ni = min8n¾ n02 �Z1i4�1i4n55�¾ gc4�1i4n551n∈Z+9.
Let Y = 4n0 − 15S2

1i/�
2
1i and it follows that

�8ICSi9 = �

{

Z1i4t1i4Ni55¶−gc

(

�2
1i

S2
1i

t1i4Ni5

)

S2
1i

�2
1i

1 Ni<�

}

= Ɛ

[

�

{

Z1i4t1i4Ni55¶−gc

(

n0 −1
Y

t1i4Ni5

)

Y

n0 −1
1

Ni<��Y

}]

0 (5)

Under the normality assumption, we have shown that
8Z1i4t1i4n55: n ∈Z9 can be viewed as a BM with drift
�1 −�i observed at the discrete time points 8t1i4n5: n¾ n09.
By Basu’s theorem (Basu 1955), we see that Y follows a chi-
squared distribution with n0 − 1 degrees of freedom and is
independent of Z1i4t1i4n055= t1i4n056X̄14n05− X̄i4n057. Fur-
ther, Y is a function of X11 −Xi1, X12 −Xi2, 0 0 0 1X1n0

−Xin0

and thus is independent of X11 n0+1 − Xi1 n0+1, X11 n0+2 −

Xi1 n0+21 0 0 0 0 Therefore, Y is independent of Z1i4t1i4n55
for any n¾ n0. This implies that, conditioning on Y ,
8Z1i4t1i4n55: n¾ n09 can still be viewed as a BM with drift
�1 −�i observed at the discrete time points 8t1i4n5: n¾ n09.
Then, we get that

(5) ¶ Ɛ

[

�

{

B�1−�i
4Ti5¶−gc

(

n0 −1
Y

Ti

)

Y

n0 −1
1Ti<��Y

}]

by Lemma 2

¶ Ɛ

[

�

{

B4T 5¶−gc

(

n0 −1
Y

T

)

Y

n0 −1
1T <��Y

}]

by Lemma 3

=
�

k−1
1

where Ti = inf8t2 �B�1−�i
4t5� ¾ gc444n0 − 15/Y 5t5 ·

4Y /4n0 − 1559 and T = inf8t2 �B4t5� ¾ gc444n0 − 15/Y 5t5 ·

4Y /4n0 − 1559. The last equation holds due to the choice

of the design parameter c (see Equation (3)). Furthermore,
combining with (4), we have that �8ICS9 ¶ �. Therefore,
the conclusion of this theorem holds. �

In Theorem 1, we established the statistical validity of
Procedure 1 for the case when all of the means are unique—
i.e., �1 >�2 > · · ·>�k. More generally, the best alternative
may be unique, and there might be potential ties among
the nonoptimal alternatives—i.e., �1 > �2 ¾ · · · ¾ �k. For
this case, we show in the following proposition that Proce-
dure 1 can provide a statistical guarantee that is similar to
but weaker than that of Theorem 1.

Proposition 1. Under the same assumptions as in Theo-
rem 1, if �1 > �2 ¾ · · · ¾ �k, Procedure 1 terminates and
selects alternative 1 with probability at least 1 − � (i.e.,
�8termiante and select alternative 19¾ 1 −�).

Proof. For any sample path, part (1) of Lemma 2 implies
that Procedure 1 does not terminate in finite time only if all
of the remaining alternatives have the same mean. Because
the best alternative is unique, it suffices to state that the pro-
cedure does not terminate in finite time only if alternative 1
is eliminated. Besides, we have

�8alternative 1 is eliminated9

=�

{ k
⋃

i=2

8alernative 1 is elimianted by alternative i9

}

¶
k
∑

i=2

�8alernative 1 is elimianted by alternative i90 (6)

The inequality above arises from the Bonferroni inequality.
Notice that (6) is the same as (4), which is shown to be no
larger than � in the proof of Theorem 1. Therefore, we have

�8Procedure 1 does not terminate in finite time9
¶�8alternative 1 is eliminated9¶ �1

and

�8terminate and select alterantive 19
= 1 −�8alternative 1 is eliminated9¾ 1 −�0

Therefore, the proposition holds. �
If there are tied means among alternatives other than the

best, it is possible that Procedure 1 may not terminate in
finite time. Proposition 1 proves that the probability is at
most �. Therefore, in practical situations when users are
unsure whether the means are unique, the Procedure with a
stopping criterion is recommended to use, and the detailed
discussion is deferred to Section 6.

4. Procedures with Generally Distributed
Observations

In practice, observations are rarely jointly normally dis-
tributed and may even follow different distributions across
different alternatives. Therefore, we are motivated to relax
the normality assumption and extend our procedure to solve
general selection-of-the-best problems.
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When observations are generally distributed, it appears
difficult to design procedures that deliver a finite-sample
statistical validity as we do in Section 3. Therefore, we pro-
pose a new procedure that delivers an asymptotic statistical
validity—i.e., the procedure satisfies Equation (1) in a mean-
ingful limit.

Recall that, to design a sequential procedure, we face two
issues: (1) constructing a Brownian approximation to the
partial-sum difference process and (2) designing a proper
continuation region. For the case of generally distributed
observations, neither of these two issues are trivial.

Consider a pairwise comparison between alternatives 1
and i with i 6= 1. As in Equation (2), let Z1i4·5 denote
the partial-sum difference process on a set of time points
8t1i4n52 n = 1121 0 0 09. Under the normality assumption, we
have shown in Section 3 that 8Z1i4t1i4n552 n= 1121 0 0 09 can
be viewed as a BM process observed at discrete time points.
However, this will not be true for a general case. There-
fore, we consider a standardized version of 8Z1i4t1i4n552 n=

1121 0 0 09 with a scaling parameter M , that is

C1i4M1 t1i4s55 2=
Z1i4t1i4�Ms�55− t1i4Ms54�1 −�i5

√
M

=

∑�Ms�
l=1 4X1l −Xil5−Ms4�1 −�i5

√
M�2

1i

1 for s > 0 (7)

where �x� denotes the largest integer that is no bigger than x.
Then we approximate (7) by a BM in the limit using the fol-
lowing Functional Central Limit Theorem (see, e.g., Whitt
2002a, Theorem 4.3.2).

Lemma 4 (Functional Central Limit Theorem). Sup-
pose that 8Xi2 i¾ 19 is a sequence of i.i.d. random variables
with mean � and finite variance �2. Then,

∑�nt�
i=1 Xi − nt�

√
n�

d
→ B4t51 as n→ �1 in D601�51

where
d

→ denotes convergence in distribution and D is de-
fined as the Skorohod space.

According to Lemma 4 and the self-similarity scaling
property of a BM, we have that

C1i4M1 t1i4s55
d

→ �−1
1i B4s5

d
= B4t1i4s551

as M → �1 in D601�51 (8)

whereX d
=Y denotes thatX and Y are identically distributed.

Even though C1i4M1 t1i4s55 is defined for a general distribu-
tion, Lemma 4 guarantees its convergence to a known BM
in the limit.

We call the parameter M the scaling parameter because it
determines how the partial-sum process Zi14t1i4n55 is scaled
and how fast the scaled process Ci14M1 t1i4s55 converges to
a BM. To ensure the convergence in (8), we only need M to
grow to infinity.

We address the second issue by choosing one boundary
gc4t5 from the set G, similar to that in Section 3. To deter-
mine its design parameter c, we need to evaluate the first-exit
probability, which shrinks to zero in the asymptotic regime.
In this situation, it becomes impractical to find c numerically
as in Appendix B. Fortunately, there is a body of literature
on asymptotic approximations of this type of first-exit prob-
abilities. For instance, Jennen and Lerche (1981) provide the
asymptotic approximations for a list of boundaries. In the
following lemma, we present one of these approximations
where the boundary is gc4t5 =

√

6c+ log4t + 1574t + 15. In
this lemma, we need to use the concept of asymptotic equiv-
alence. In particular, we say f 4c5 is asymptotically equiva-
lent to g4c5 with respect to c, denoted as, f 4c5 c→�

∼ g4c5, if
limc→� f 4c5/g4c5= 1.

Lemma 5 (Jennen and Lerche (1981)). Let

gc4t5=
√

6c+ log4t + 1574t + 15 4c¾ 051

a nonnegative continuous function, and let B4t5 be a
Brownian motion without drift. Then �8B4T 5 ¶ −gc4T 5,
T <�9

c→�

∼
1
2e

−c/2, where T = inf8t: �B4t5�¾ gc4t59.

Lemma 5 provides a closed-form approximation to the
first-exit probability when gc4t5=

√

4c+ log4t + 1554t + 15.
This allows us to choose the value of c more easily compared
to the root-finding problem (3) in Section 3, although this
value is only an approximation.

4.1. The Procedure

In this subsection, we propose a sequential procedure for
generally distributed observations—i.e., Procedure 2.

Procedure 2 (Sequential Procedure for Generally
Distributed Observations). Setup. Select the PCS 1 −�
40 < � ¶ 1 − 1/k5, and a common first-stage sample
size n0 ¾ 2. Choose the boundary in the form gc4t5 =
√

6c+ log4t + 1574t + 15 and set c = −2 log42�/4k− 155.
Initialization. Let I = 81121 0 0 0 1 k9 be the set of alterna-

tives in contention. For all i= 1121 0 0 0 1 k, simulate n0 obser-
vations Xi11Xi21 0 0 0 1Xin0

from alternative i and calculate its
sample mean as

X̄i4n05=
1
n0

n0
∑

l=1

Xil0

For any i1 j with i 6= j , calculate the sample variance of their
difference,

S2
ij4n05=

1
n0 − 1

n0
∑

r=1

6Xir −Xjr − 4X̄i4n05− X̄j4n0557
20

Set n= n0.
Update. If n > n0, calculate the sample mean for each

alternative i∈ I , and for any pair of alternatives i1 j ∈ I with
i 6= j , update the sample variance S2

ij4n5 of their difference.
Screening. Let I old = I and

�ij4n5= n/S2
ij4n51 and

Zij4�ij4n55= �ij4n56X̄i4n5− X̄j4n570
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Define

I = I old
∖{

i ∈ I old2 Zij4�ij4n55¶−gc4�ij4n551

for some other j ∈ I old
}

0

Stopping Rule. If �I � = 1, stop and select the alternative
whose index is in I as the best. Otherwise, take one additional
observation Xi1 n+1 from each alternative i for i ∈ I , set n =

n+ 1 and go to Update.

Remark 4. Similar to Procedure 1, Procedure 2 can also
work with many choices of boundaries (i.e., G). As an
instance, Procedure 2 uses a specific boundary gc4t5 =
√

6c+ log4t + 1574t + 15, and the following results for Pro-
cedure 2 are shown for this specific boundary. Nevertheless,
these results can be easily extended to other boundaries in G.

Procedure 2 differs from Procedure 1 in two aspects. First,
Procedure 2 determines the value of c using an asymptotic
result, while Procedure 1 does it by solving a stochastic root-
finding problem (i.e., Equation (3)). Second, Procedure 2
updates the sample variances sequentially as more and more
observations are generated. This enables us to establish the
asymptotic validity of Procedure 2 based on the strong con-
sistency of the variance estimators.

4.2. Statistical Validity

Procedure 2 is only parameterized by the PCS value 1 −�.
Therefore, we consider an asymptotic regime, that is, PCS
goes to 1 (or � → 0). Under this asymptotic regime, a pro-
cedure is asymptotically valid if its actual probability of
incorrect selection (PICS) not only converges to 0 as � con-
verges to 0 but also converges at least as fast as � does; i.e.,
lim sup�→0 �8ICS9/�¶ 1.

To show the asymptotic validity of Procedure 2, we need
Lemma 6. It shows that the first-exit time goes to infinity as
� → 0 (or equivalently, c → �) with probability 1 (w.p.1).
Based on this lemma, we can prove that the variance estima-
tors at the exit time converge to the true values as � → 0.
This allows us to treat the unknown variances essentially as
their true values when analyzing the asymptotic statistical
validity of Procedure 2.

Lemma 6. Let 8Yi2 i = 1121 0 0 09 denote i.i.d. random vari-
ables with Ɛ6Y17 = �, and define Z4n5 =

∑n
i=1 Yi, for n =

1121 0 0 0 0 Let Nc =min8n∈Z+2 �Z4n5�¾ gc4n59, where gc4t5
is defined in Procedure 2. Then Nc → �, w.p.1, as c → �.

Proof. See EC.1.4 in the e-companion. �
Now we establish the asymptotic validity of Procedure 2

and summarize it in the following theorem.

Theorem 2. Suppose that there are k alternatives and we
are interested in selecting the alternative with the largest
mean. Assume that 4X1r 1X2r 1 0 0 0 1Xkr5, r = 1121 0 0 0 1 are
independent and identically jointly distributed with unknown
mean vector 4�11�21 0 0 0 1�k5, and their moment generat-
ing function exists in a neighborhood of 40101 0 0 0 105∈Rk.

Further, let the first-stage sample size n0 be a function
of � that satisfies n0 → � as � → 0. If �1 > �2 >
· · ·>�k, Procedure 2 stops in finite time w.p.1 and satisfies
lim sup�→0 �8alternative 1 is eliminated9/�¶ 1.

Remark 5. To ensure the strong consistency of sequentially
updated variance estimators, in addition to Lemma 6, we put
some technical conditions on the first-stage sample size n0,
as listed in Theorem 2. Although the theoretical condition
facilitates the asymptotic proof, it does not prescribe a spe-
cific setting of n0 in practice.

Proof. See EC.1.5 in the e-companion. �

Similar to Proposition 1, we establish Proposition 2 for
Procedure 2 in the case when the best alternative is unique
but the means are not all unique.

Proposition 2. Under the same assumptions as in Theo-
rem 2, if �1 > �2 ¾ · · · ¾ �k, Procedure 2 terminates and
eliminates alternative 1 with probability at most � in an
asymptotic regime; i.e.,

lim sup
�→0

�8terminate and eliminate alternative 19

�
¶ 1.

Proof. See EC.1.8 in the e-companion. �

5. Asymptotic Efficiency
When choosing a frequentist selection-of-the-best proce-
dure, one not only requires the procedure to deliver the
guaranteed PCS, but also wants the procedure to be
efficient—i.e., using as few observations as possible to select
the best. To understand the efficiency of our procedures,
we consider the general case when the observations are
jointly generally distributed. In this situation, we focus on
our asymptotic procedure (i.e., Procedure 2) and study its
average sample size asymptotically.

In Procedure 2, the strong consistency of variance esti-
mators leads to an asymptotic analysis that is similar to the
known-variances case. Therefore, for simplicity, we assume
that the variances are known in this section. In Section 5.1
we provide an analytic expression for the asymptotic aver-
age sample size required by Procedure 2, and in Section 5.2
we compare it to those of existing IZ procedures.

5.1. Asymptotic Average Sample Size

As a building block, we consider a pairwise comparison
between alternatives 1 and i with mean difference �1 −�i.
Lemma 6 implies that the sample size required to detect
them grows to infinity in the asymptotic regime. In this case,
their partial-sum difference process behaves more and more
like a line with slope �1 −�i. Therefore, a heuristic method
to calculate the average sample size is to find the intersec-
tion point between the boundary and the line (see Figure 2).
The method is called the mean path approximation. Perng
(1969) provides a rigorous proof of this heuristic method for
Paulson’s procedure, and the proof can be extended easily
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Figure 2. Heuristic mean path approximation method.

g (t )

–g (t)

Ni

(�1 – �i)t

to sequential IZ procedures with a triangular continuation
region (such as the KN procedure). The result is summarized
in Theorem 3.

Theorem 3 (Perng (1969)). Suppose that there are k alter-
natives and we are interested in selecting the alternative
with the largest mean. Assume that 4X1r 1X2r 1 0 0 0 1Xkr5, r =

1121 0 0 0 1 are independent and identically jointly distributed
with unknown mean vector 4�11�21 0 0 0 1�k5 and a positive
definite covariance matrix. Further, assume �1 − �¾ �2 ¾
· · · ¾ �k, where � > 0 is the IZ parameter. Let 4−aij +

�ij t1 aij − �ij t5 40 < �ij < �1 0 ¶ t ¶ aij/�ij5 be the trian-
gular region used for a pairwise comparison between alter-
natives i and j . Define Ni as the sample size required to
distinguish �1 and �i, for i = 2131 0 0 0 1 k, and define 1 − �
as the probability of correct selection. Then,

Ɛ6Ni7
�→0
∼

a1i�
2
1i

�1 −�i +�1i

1 for all i = 2131 0 0 0 1 k1

where �2
1i = Var6X11 −Xi17.

In particular, the KN procedure often chooses �ij = �/2
and aij = −41/�5 log42�/4k − 155. Based on Theorem 3, it
is straightforward to derive a theoretical expression for the
asymptotic average sample size of the KN procedure; i.e.,

ƐKN 6Ni7
�→0
∼

f 2�2
1i

4�1 −�i + �/25�
1 for i = 2131 0 0 0 1 k1 (9)

where f 2 = − log42�/4k− 155.
However, a rigorous proof has not been given so far for the

sequential procedures with a general boundary, such as the
one used in Procedure 2. In the next theorem, we accomplish
the task and show that this heuristic method is also valid for
Procedure 2 under mild conditions. The proof is included in
the appendix.

Theorem 4. Suppose that there are k alternatives and we
are interested in selecting the alternative with the largest
mean. Assume that 4X1r 1X2r 1 0 0 0 1Xkr5, r = 1121 0 0 0 1 are
independent and identically jointly distributed with unknown
mean vector 4�11�21 0 0 0 1�k5, and their moment generating

function exists in the neighborhood of 40101 0 0 0 105 ∈ Rk.
Let 4−gc4t51 gc4t55 denote the continuation region in Pro-
cedure 2, where gc4t5=

√

6c+ log4t + 1574t + 15. Define Ni

as the sample size required to distinguish �1 and �i, for
i = 2131 0 0 0 1 k, and define 1 − � as the probability of cor-
rect selection. If �1 > �2 > · · · > �k, then, in Procedure 2,
we have

Ɛ6Ni7
�→0
∼

c�2
1i

4�1 −�i5
2
1 for all i = 2131 0 0 0 1 k1 (10)

where �2
1i = Var6X11 −Xi17.

Remark 6. Although the theorem is proven when the
boundary function is gc4t5 =

√

6c+ log4t + 1574t + 15, the
proof can be easily extended to other boundaries.

Proof. See EC.1.6 in the e-companion. �
Theorem 4 provides a theoretical foundation to evaluate

the asymptotic average sample size using the mean path
approximation. For the comparison between alternatives 1
and i, it shows that the asymptotic average sample size is
inversely proportional to 4�1 −�i5

2—i.e., the square of their
true mean difference.

5.2. Comparisons Between Procedure 2 and
IZ Procedures

In this subsection, we compare the asymptotic average sam-
ple sizes of Procedure 2 to the KN++ procedure. There are
two reasons why we choose the KN++ procedure as the
benchmark. First, the KN++ procedure is the most similar
procedure to Procedure 2. Both allow unknown and unequal
variances and CRNs, and both break the comparisons into
pairwise comparisons and approximate the partial sums of
differences by BMs. Second, the KN++ procedure, as the
most efficient one in the family of the KN procedures, has
been well studied and compared in the literature (Branke
et al. 2007, Wang and Kim 2013) and implemented by com-
mercial simulation software. Notice that it is not our inten-
tion to argue that the KN++ procedure is the most efficient
procedure in the literature. Indeed, it is not. When there
are a large number of alternatives with equal unknown vari-
ance, the BIZ procedure of Frazier (2014) is more efficient
because it avoids the use of Bonferroni inequality to break
the comparisons into pairs, which causes inefficiency for
the KN++ procedure and our procedures as well. Therefore,
when the number of alternatives is large, we also expect the
BIZ procedure to outperform ours. However, the objective
of this comparison is to show that the avoidance of setting IZ
parameters may give an advantage to our procedures. Even
though the comparison is done between the KN++ procedure
and Procedure 2, we believe that the insights obtained here
hold robustly for all IZ procedures.

Since both the KN++ procedure and Procedure 2 decom-
pose the selection-of-the-best problem into pairwise com-
parisons, we compare their asymptotic average sample sizes
for the case of two alternatives (i.e., k = 2). Let ã denote
the difference of their means and set the variance of their
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Figure 3. (Color online) Ratios of asymptotic aver-
age sample sizes using the KN++ procedure
and Procedure 2 (with the boundary gc4t5 =
√

6c+ log4t + 1574t + 15) when ã/� varies.
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difference to 1. It is easy to calculate the asymptotic average
sample size required by Procedure 2 based on Theorem 4.
Meanwhile, given any specified IZ parameter �, the asymp-
totic average sample size of the KN++ procedure can be also
evaluated according to Theorem 3.

To compare the asymptotic average sample sizes, we vary
ã/�, which indicates how the chosen IZ parameter relates
to the true mean difference. In Figure 3, we plot the ratios
of sample sizes of the KN++ procedure and Procedure 2
with boundary

√

6c+ log4t + 1574t + 15 for different values
of ã/�. From Figure 3, we find that the KN++ Procedure
needs about one-fifth of the samples of Procedure 2 when
ã/�= 1. However, when ã/� is above 5, Procedure 2 begins
to out-perform the KN++ procedure. Particularly, as ã/�
becomes larger and larger than 5, Procedure 2 requires fewer
and fewer samples than the KN++ procedure.

Even though Procedure 2 appears to require more samples
when ã/� is smaller than 5, the disadvantage may vanish
when the number of alternatives is large. In this situation,
there are often many alternatives whose means are signifi-
cantly smaller than the best. This may result in large values
of ã/� for many pairwise comparisons and thus increase the
total number of observations required by the KN++ proce-
dure relative to Procedure 2.

To close this section, we summarize the asymptotic aver-
age samples sizes required by Procedure 2, the KN++ proce-
dure as well as Rinott’s procedure, and list them in Table 1.
For simplicity, Table 1 considers a pairwise comparison
where ã and �2 are the mean and variance of their differ-
ence. We have two findings from the table, and they are
consistent with the findings from Figure 3. First, both the
KN++ and Rinott’s procedures are sensitive to the choice
of �. In particular, the asymptotic sample sizes of the KN++

and Rinott’s procedures are inversely proportional to � and
its square. Second, the asymptotic sample size of Proce-
dure 2 is immune to the choice of � because Procedure 2 is

Table 1. Asymptotic average sample sizes of the Rinott’s
procedure, the KN++ procedure and Proce-
dure 2 to select from two random variables
whose difference is of mean ã and variance �2.

Rinott’s KN++

Procedures procedure procedure Procedure 2

Asymptotic sample size
h2�2

�2

f 2�2

4ã− �/25�
c�2

ã2

Note. h2 is the Rinott’s constant (see Rinott 1978).

IZ-free. Therefore, Procedure 2 is relatively most efficient if
� is chosen too conservatively.

6. A Stopping Criterion
One drawback of Procedures 1 and 2 is that the continuation
regions are open on the right-hand side, which may poten-
tially cause the procedures to run a very long time before
they stop or maybe never stop. As a remedy, part (1) of
Lemma 2 shows that these procedures can stop in finite time
w.p.1 in each pairwise comparison as long as the two alter-
natives have different means.

However, there might be two or more alternatives that
have the same means. Then, there is a positive probability
that our procedures may not terminate (seen from Proposi-
tions 1 and 2), resulting in an infinite sample size. To avoid
this problem, we design truncated procedures, which force
the original procedures to stop when a stopping criterion
is satisfied, even if there is more than one alternative in
contention.

Beyond avoiding an infinite sample size, users may have
practical reasons for designing such stopping criteria. For
instance, they may have a practically significant difference
below which difference in mean performances is not mean-
ingful. This could arise if the resolution of the simulation
model itself is limited (e.g., nearest $10,000), or if the pre-
cision of the software itself is finite (e.g., five decimal digits
is the default in Matlab). We refer to this limit as the error
tolerance �. Therefore, the revised goal is to select an alter-
native that is within � of the best, and to design a stopping
criterion that terminates once this goal is achieved.

Now, we illustrate how to design a stopping criterion that
corresponds to the error tolerance �. Denote I� as the set of
alternatives whose means are within � of the best, and the
goal is to select an alternative that is in I�. Intuitively, we
should choose a termination time T ∗4�5 such that only alter-
natives in I� can survive at T ∗4�5. In particular, we design
T ∗4�5 as follows:

Stopping Criterion. Determine a termination time T ∗4�5
that is a root to T�− gc4T 5= 0.

Basically, the choice of T ∗4�5 above is driven by the mean
path approximation (see Theorem 4). This method shows
that the asymptotic average time required to eliminate all of
the alternatives outside I� is bounded by the value which is a
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root of T�− gc4T 5= 0. In light of this, we determine T ∗4�5
as stated in Stopping Criterion above.

Provided the stopping criterion, we design a truncated
procedure—i.e., Procedure 3—that is the same as Proce-
dure 2 except adding a stopping rule as follows: if �I �> 1
and �ij4n5 ¾ T ∗4�5 for all i1 j ∈ I with i 6= j , let i∗ =

arg maxi∈I X̄i4n5 and return i∗. In the following theorem, we
show that Procedure 3 achieves the goal of selecting an alter-
native within � of the best, with at least the user-specified
PCS in the limit.

Theorem 5. Assume that 4X1r 1X2r 1 0 0 0 1Xkr5, r = 1121 0 0 0 1
are independent and identically jointly distributed with
unknown mean vector 4�11�21 0 0 0 1�k5 and their moment
generating function exists in a neighborhood of 40101
0 0 0 105∈Rk. Further, let the first-stage sample size n0 be a
function of � that satisfies n0 → � as �→ 0. Without loss of
the generality, assume that �1 ¾�2 ¾ · · ·¾�k. Let � denote
the tolerance error and 1 −� denote the user-specified PCS.
Let i∗ be the alternative selected by Procedure 3. Then, we
have, lim sup�→0 �8�i∗ <�1 − �9/�¶ 1.

Remark 7. We refer to “correct selection” as selecting the
best alternative and refer to “good selection” as selecting
any alternative within � of the best. (The definitions are con-
sistent with those in Ni et al. 2014.) Theorem 5 states that
Procedure 3 provides a good selection guarantee when �1 ¶
�2 + �. Furthermore, when �1 > �2 + �, Procedure 3 pro-
vides a correct selection guarantee because 8�i∗ ¾ �1 − �9
implies i∗ = 1. Therefore, Procedure 3 can provide both cor-
rect selection and good selection guarantees.

Proof. See EC.1.7 in the e-companion. �

If one treats � as an IZ parameter, Procedure 3 turns into
an IZ procedure because the selected alternative is within �
of the best (shown by Theorem 5). Nevertheless, we want
to emphasize that the concept of an error tolerance is dif-
ferent from an IZ parameter. When the difference between
two alternatives is larger than �, the average sample size
required by the existing IZ procedures depends critically on
the choice of �. In other words, a conservative � may lead
to excessive samples. In contrast, a conservative � will in
general not affect the required sample size as our procedures
are expected to stop long before they reach the maximal
sample size (due to Theorem 4). Another way to see this
is that the continuation regions of our procedures are not a
function of �. Therefore, an error tolerance can be set very
conservatively.

7. Numerical Experiments
In this section, we test the performance of our proce-
dures through extensive numerical experiments and com-
pare them with existing procedures. Firstly, we establish the
small-sample performance of Procedures 1 and 2. Secondly,
we consider the selection-of-the-best problem with various
numbers of alternatives. In this experiment, we compare the

efficiency of Procedure 2 with the KN++ procedure under
three different configurations of variances. Thirdly, we test
Procedure 3 that incorporates an error tolerance and com-
pare it with IZ procedures under different configurations of
means. Lastly, we test our procedures by addressing a real-
istic problem.

For simplicity, CRNs are not used in the experiments
because using CRNs to increase their efficiency is not
our focus.

7.1. Small-Sample Performance

To get rid of the effect of using the Bonferroni inequal-
ity, we consider the case of only two alternatives. Assume
that their observations are normally distributed with mean
4�11�25 and variance 45155. Further, assume alternative 1
is the better alternative which we would like to select. In
this experiment, we implement Procedures 1 and 2 to select
alternative 1 with a desired PCS 0.95. For different combi-
nations of 4�11�25 and the first-stage sample size n0, we
report the approximated values of c, the estimated PCS, and
the average sample size with 95% confidence interval across
10,000 microreplications in Table 2 .

From Table 2, we obtain several findings. First, both pro-
cedures deliver a larger PCS than the desired PCS, and their
delivered PCS decreases slightly as the true mean differ-
ence ã decreases from 0020 to 0005. This arises because
both procedures are designed for the case when the mean
difference is zero. Second, the average sample size of Proce-
dure 1 depends on the setting of n0. In particular, for a given
desired PCS, a smaller n0 leads to a larger sample size. This
occurs because Procedure 1 explicitly accounts for the n0 − 1
degrees of freedom of the variance estimator through using
different values of c. Third, Procedure 1 often needs more
samples than Procedure 2 does, but their difference tends to
be smaller as n0 increases. Specially, as n0 increases to 40,
Procedure 1 needs fewer observations than Procedure 2 does.
To understand this, as n0 increases, the randomness coming
from variance estimators fades away, and the corresponding
value of c for Procedure 1 tends to be smaller and even less
conservative (or smaller) than that of Procedure 2, which is
obtained by asymptotic approximation.

Table 2 shows that both procedures can be used to select
the best in this experiment. Therefore, users may face the
choice between Procedures 1 and 2, and our suggestions are
as follows. When observations are normally distributed, Pro-
cedure 1 would be preferred unless it is significantly less
efficient than Procedure 2, because Procedure 1 guarantees
PCS in small samples. Otherwise, Procedure 2 would be
preferred because it guarantees PCS although in an asymp-
totic regime while Procedure 1 can not. Besides, Procedure 2
is more easily used because of its closed-form expressions
for the design parameter c and achieves a higher efficiency
because it updates variance estimators sequentially.
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Table 2. The estimated PCS (Est. PCS) and the average sample sizes (Avg. SSize) with 95% confi-
dence intervals for Procedures 1 and 2 when observations are normally distributed.

Procedure 1 Procedure 2

�1 −�2 n0 c Est. PCS Avg. SSize c Est. PCS Avg. SSize

0.05 10 7.358 0.97 410149 ± 000195× 105 4.605 0.96 480126 ± 001255× 104

15 5.870 0.97 490905 ± 001605× 104 0.97 480298 ± 001275× 104

20 5.163 0.97 490181 ± 001485× 104 0.97 480393 ± 001275× 104

25 5.040 0.97 490124 ± 001425× 104 0.97 480518 ± 001265× 104

30 4.671 0.97 480710 ± 001385× 104 0.98 480536 ± 001265× 104

35 4.514 0.97 480509 ± 001365× 104 0.98 480500 ± 001255× 104

40 4.415 0.98 480411 ± 001335× 104 0.98 480492 ± 001255× 104

0.20 10 7.358 0.99 450849 ± 000975× 103 4.605 0.98 430952 ± 000675× 103

15 5.870 0.99 440971 ± 000835× 103 0.99 440020 ± 000655× 103

20 5.163 0.99 440526 ± 000785× 103 0.99 440070 ± 000675× 103

25 5.040 0.99 440427 ± 000745× 103 0.99 440057 ± 000665× 103

30 4.671 0.99 440173 ± 000705× 103 0.99 440120 ± 000665× 103

35 4.514 0.99 440181 ± 000705× 103 0.99 440108 ± 000675× 103

40 4.415 0.99 440077 ± 000685× 103 0.99 440124 ± 000605× 103

7.2. Large-Scale Selection of the Best

In practice, the means of alternatives are often spread out
when the number of alternatives is large. In light of this,
we consider a monotone decreasing configuration of means
4�11�21 0 0 0 1�k5 where �i = 105 − 005i, and an equal-
variance configuration where �2

i = 10 for all i. Our target
is to select alternative 1 with a desired PCS 0095. To show
the performance of our procedure to solve large-scale selec-
tions of the best, we vary the number of alternatives as k =

2015011001500.
To solve this problem, we use Procedure 2 for simplicity

of the simulation study because its design parameter c is
more easily determined. As a comparison, we implement the
KN procedure by choosing an IZ parameter �. It is worth-
while emphasizing that � is chosen to enable the implemen-
tation of the KN procedure, and we do not refer it to the
smallest difference users care to detect in this experiment.
Further, to make a fair comparison, we compare Procedure 2
with the KN++ procedure because both of them update vari-
ance estimators sequentially. In this experiment, we set n0

to 10.
To compare Procedure 2 with the KN++ procedure, we

consider different settings of � where 4�1 −�25/� = 1/4,
1/2, 1, 2, 4, 8. In Table 3, we report the estimated PCS and the
average sample sizes with 95% confidence intervals based on
1,000 macroreplications of each procedure. From the table,
we obtain the following three findings. Firstly, when users
select � that is larger than �1 − �2 in the KN++ proce-
dure, they may suffer from a lower PCS than they require,
seen from the third and fourth columns. Secondly, for any
fixed number of alternatives (see each row in Table 3), Pro-
cedure 2 demands fewer observations than the KN++ pro-
cedure, when � is much smaller than the true difference
�1 −�2. Furthermore, the gap of their sample sizes becomes
larger as � becomes smaller. Thirdly, from the second and
fifth columns, we can conclude that, although Procedure 2

needs more observations than the KN++ procedure when � is
exactly �1 −�2, the relative difference between their aver-
age sample sizes tends to be narrower as the number of
alternatives k increases. This implies the average sample size
required by Procedure 2 grows more slowly with k than the
KN++ procedure.

Furthermore, Procedure 2 is shown to be asymptotically
valid when the observations are generally distributed. To
show its small-sample performance for this general case,
we repeat the experiment above using the same parameters
except that all of the observations are exponentially dis-
tributed. The results are reported in Table 4 and they are
similar to that of the normally distributed case.

Last, we further investigate the efficiency of Proce-
dure 2 and the KN++ Procedure in equal, increasing, and
decreasing configurations of variances where �2

i = 10, 10 ×

40095 + 0005i5, and 10/40095 + 0005i5 for i = 1, 21 0 0 0 1 k,
respectively. To avoid reporting the similar results, in the
following Table 5, we only the report the results when obser-
vations are normally distributed. From this table, we find that
the same conclusions seen from Tables 3 and 4 are valid.

7.3. Comparisons with IZ Procedures

In this subsection, we consider a selection-of-the-best prob-
lem with an error tolerance � and solve this problem using
Procedure 3. If one treats � as an IZ parameter, IZ procedures
can also be used to solve this problem. In this experiment,
we choose the (two-stage) Rinott’s procedure and the (fully
sequential) KN++ procedures as representatives of IZ proce-
dures, and compare Procedure 3 with them in terms of the
efficiency.

We consider two different configurations of means. The
first one is the slippage configuration (SC) where �1 = 005,
�2 = �3 = · · · = �50 = 0. The second one is the mono-
tone decreasing configuration of means (MDM) where
�i = 1 − 005i for i = 1121 0 0 0 150. For both configurations
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Table 3. The estimated PCS and average sample sizes with 95% confidence interval for Procedure 2 and the KN++

procedure under equal configuration of variances when all observations are normally distributed.

KN++ procedure: 4�1 −�25/�

k Procedure 2 1/4 1/2 1 2 4 8

20 0.99 0.70 0.91 1.00 1.00 1.00 1.00
20816 × 103 20639 × 102 50503 × 102 10371 × 103 30247 × 103 70045 × 103 10470 × 104

±00082 × 103 ±00020 × 102 ±00064 × 102 ±00016 × 103 ±00029 × 103 ±00050 × 103 ±00007 × 104

50 1.00 0.72 0.94 0.99 1.00 1.00 1.00
30588 × 103 50904 × 102 90619 × 102 20014 × 103 40454 × 103 90779 × 103 20070 × 104

±00089 × 103 ±00023 × 102 ±00075 × 102 ±00018 × 103 ±00033 × 103 ±00054 × 103 ±00008 × 104

100 1.00 0.76 0.95 0.99 1.00 1.00 1.00
40388 × 103 10112 × 103 10540 × 103 20710 × 103 50506 × 103 10179 × 104 20514 × 104

±00089 × 103 ±00003 × 103 ±00008 × 103 ±00020 × 103 ±00034 × 103 ±00006 × 104 ±00009 × 104

500 0.99 0.79 0.97 1.00 1.00 1.00 1.00
90138 × 103 50164 × 103 50721 × 103 70217 × 103 10077 × 104 10877 × 104 30628 × 104

±00102 × 103 ±00003 × 103 ±00009 × 103 ±00021 × 103 ±00004 × 104 ±00006 × 104 ±00009 × 104

Table 4. The estimated PCS and the average sample sizes with 95% confidence intervals of Procedure 2 and the KN++

procedure when all observations are exponentially distributed.

KN++ procedure: 4�1 −�25/�

k Procedure 2 1/4 1/2 1 2 4 8

20 0.99 0.71 0.90 0.99 1.00 1.00 1.00
20902 × 103 20740 × 102 50470 × 102 10344 × 103 30143 × 103 60927 × 103 10463 × 104

±00084 × 103 ±00022 × 102 ±00067 × 102 ±00015 × 103 ±00028 × 103 ±00046 × 103 ±00007 × 104

50 0.99 0.74 0.95 1.00 1.00 1.00 1.00
30610 × 103 50972 × 102 90430 × 102 10932 × 103 40215 × 103 90316 × 103 20020 × 104

±00088 × 103 ±00026 × 102 ±00074 × 102 ±00017 × 103 ±00030 × 103 ±00052 × 103 ±00008 × 104

100 1.00 0.74 0.95 1.00 1.00 1.00 1.00
40396 × 103 10119 × 103 10525 × 103 20627 × 103 50306 × 103 10124 × 104 20414 × 104

±00092 × 103 ±00003 × 103 ±00008 × 103 ±00018 × 103 ±00031 × 103 ±00006 × 104 ±00009 × 104

500 1.00 0.79 1.00 1.00 1.00 1.00 1.00
90095 × 103 50167 × 103 50699 × 103 70114 × 103 10051 × 104 10806 × 104 30483 × 104

±00104 × 103 ±00003 × 103 ±00010 × 103 ±00018 × 103 ±00004 × 104 ±00006 × 104 ±00009 × 104

of means, we use the equal-variance configuration where
�2
i = 10, for all i = 1121 0 0 0 150. For each configuration, we

select the best using three different procedures and report
their average sample sizes based on 1,000 macroreplica-
tions of each procedure in Table 6. We set PCS to 0.95
and n0 to 10.

From Table 6, we obtain the following insights. Firstly,
the last column shows that the sample size required by Pro-
cedure 3 appears stable as the ratio 4�1 − �25/� varies
under MDM. It follows from that, under MDM, Procedure 3
tends to terminate early before reaching the stopping crite-
rion. Secondly, Procedure 3 has a wider confidence interval
under SC than the other two procedures. This occurs because
Procedure 3 either stops long before reaching the stopping
criterion or stops when the stopping criterion is met. This
implies that Procedure 3 effectively avoids infinite samples.
Thirdly, from the first two columns, we find that the sam-
ple size required by the Rinott’s procedure increases nearly
4 times as 4�1 −�25/� increases from 1 to 2, and increases
nearly 25 times as 4�1 −�25/� increases from 1 to 5. Similar
results hold for the KN++ procedure, although it increases

more slowly. Therefore, the Rinott’s procedure is the most
sensitive to the choice of �, then the KN++ procedure, and
Procedure 3 is the least sensitive to the choice of �. The
results in Table 6 are consistent with the theoretical results
listed in Table 1. Lastly, similar results appear for both the
normally and exponentially distributed cases.

7.4. Ambulance Allocation in Emergency Medical
Services System

An Emergency Medical Services (EMS) system is an impor-
tant component of public safety that attempts to allocate
scarce resources as critical events occur. In the EMS system,
one critical resource-allocation challenge is deploying sev-
eral ambulances to best serve requested emergency calls—
for instance, keeping response time small. The response
time for a call is the elapsed time from when the call is
received to when an ambulance arrives at the scene. Here, we
measure the performance as the fraction of requested calls
received that have response times of eight minutes or less.
In this experiment, we consider an example similar to that in
Ni et al. (2012).
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Table 5. The estimated PCS and average sample sizes with 95% confidence interval for Procedure 2 and the KN++

procedure under different configurations of variances when all observations are normally distributed.

KN++ procedure: 4�1 −�25/�

k Variances Procedure 2 1 2 4 8

20 Decreasing 0.99 0.99 1.00 1.00 1.00
20780 × 103 10326 × 103 30092 × 103 60720 × 103 10411 × 104

±00081 × 103 ±00016 × 103 ±00028 × 103 ±00049 × 103 ±00007 × 104

Equal 0.99 1.00 1.00 1.00 1.00
20816 × 103 10371 × 103 30247 × 103 70045 × 103 10470 × 104

±00082 × 103 ±00016 × 103 ±00029 × 103 ±00050 × 103 ±00007 × 104

Increasing 0.99 0.99 1.00 1.00 1.00
20916 × 103 10473 × 103 30423 × 103 70437 × 103 10536 × 104

±00085 × 103 ±00017 × 103 ±00031 × 103 ±00049 × 103 ±00008 × 104

50 Decreasing 0.99 1.00 1.00 1.00 1.00
30551 × 103 10881 × 103 40120 × 103 80970 × 103 10910 × 104

±00086 × 103 ±00017 × 103 ±00033 × 103 ±00052 × 103 ±00008 × 104

Equal 1.00 0.99 1.00 1.00 1.00
30588 × 103 20014 × 103 40454 × 103 90779 × 103 20070 × 104

±00089 × 103 ±00018 × 103 ±00033 × 103 ±00054 × 103 ±00008 × 104

Increasing 0.99 0.99 1.00 1.00 1.00
30635 × 103 20147 × 103 40958 × 103 10085 × 104 20268 × 104

±00090 × 103 ±00018 × 103 ±00034 × 103 ±00005 × 104 ±00002 × 104

100 Decreasing 1.00 1.00 1.00 1.00 1.00
40351 × 103 20592 × 103 50061 × 103 10060 × 104 20238 × 104

±00093 × 103 ±00019 × 103 ±00033 × 103 ±00006 × 104 ±00009 × 104

Equal 1.00 0.99 1.00 1.00 1.00
40388 × 103 20710 × 103 50506 × 103 10179 × 104 20514 × 104

±00089 × 103 ±00020 × 103 ±00034 × 103 ±00006 × 104 ±00009 × 104

Increasing 0.99 0.99 1.00 1.00 1.00
40444 × 103 20934 × 103 60350 × 103 10412 × 104 30000 × 104

±00093 × 103 ±00020 × 103 ±00036 × 103 ±00006 × 104 ±00009 × 104

Consider a city of size 15 miles by 15 miles. Suppose there
are four ambulances with traveling speed 24 miles per hour,
nine ambulance bases, and two hospitals in the city. Dis-
tances from point to point are measured by the Manhattan
metric. See Figure 4 for a map of this city. When a requested

Table 6. Average sample sizes with 95% confidence intervals for the Rinott’s procedure, the KN++ procedure, and
Procedure 3.

SC MDM

4�1 −�25/� Rinott KN++ Procedure 3 Rinott KN++ Procedure 3

Normally distributed observations
1 60071 × 104 10576 × 104 40781 × 104 60045 × 104 20002 × 103 30119 × 103

±00035 × 104 ±00061 × 104 ±00025 × 104 ±00025 × 104 ±00018 × 103 ±00053 × 103

2 20421 × 105 40022 × 104 60430 × 104 20426 × 105 40425 × 103 30633 × 103

±00010 × 105 ±00042 × 104 ±00217 × 104 ±00010 × 105 ±00033 × 103 ±00091 × 103

5 10515 × 106 10129 × 105 80857 × 104 10518 × 106 10254 × 104 30615 × 103

±00006 × 106 ±00008 × 105 ±10354 × 104 ±00006 × 106 ±00006 × 104 ±00086 × 103

Exponentially distributed observations
1 60071 × 104 10602 × 104 40879 × 104 60046 × 104 10933 × 103 30117 × 103

±00046 × 104 ±00015 × 104 ±00058 × 104 ±00048 × 104 ±00017 × 103 ±00050 × 103

2 20440 × 105 40020 × 104 60351 × 104 20426 × 105 40223 × 103 30583 × 103

±00019 × 105 ±00035 × 104 ±00148 × 104 ±00019 × 105 ±00030 × 103 ±00087 × 103

5 10518 × 106 10131 × 105 70685 × 104 10516 × 106 10194 × 104 30646 × 103

±00012 × 106 ±00007 × 105 ±00985 × 104 ±00012 × 106 ±00006 × 104 ±00089 × 103

call arrives, the EMS system will dispatch the call to the near-
est free ambulance. After the dispatched ambulance arrives
at the scene, the time spent there is exponentially distributed
with mean 12 minutes before carrying the patient to the
nearest hospital. Once the patient reaches the hospital, the
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Figure 4. (Color online) Map for the city.

3 6 9 12 15

3

6

9

12

15

Miles

M
ile

s

∗ Stands for a possible ambulance base and � stands for a hospital.

ambulance travels back to its home base to wait for the next
call. We assume that the call location is uniformly distributed
in the city. Our target is allocating these four ambulances to
possible bases to maximize the performance—i.e., the por-
tion of calls with response time no more than eight minutes.
In this experiment, we assume that more than one ambulance
can be allocated to the same base.

To select the optimal policy in this example, we are faced
with at least three challenges. First, there are 495 alternative
policies in this problem, which is not a small number for the
classic selection procedures. Second, the observations from
each alternative policy are generally distributed and with
unknown variances. Last and most important, the ideal case
is to set the IZ parameter to zero and select the best policy
in this problem because when human life is concerned, no
difference is so small that we are indifferent. In other words,
when the IZ parameter is set as 0.01, it implies that 0001 ×

100% of the citizens are in a dangerous situation because
it may be fatal if their calls are not handled in time. To
circumvent these challenges, we use Procedure 2 that is IZ-
free. In our experiment, we set the PCS to 0.99 and replicate
the selection process 1,000 times. The result shows that the
optimal policy is selected as the best with probability 10000

Table 7. Comparisons of our procedures and the KN++ procedure under different settings
of the IZ parameter.

Procedure 3 KN++ procedure

� Good selection Selection prob. Avg. SSize Selection prob. Avg. SSize

0.01 Policy 1 1.00 0.93
Policy 2 0.00 10859 × 104 0.04 70943 × 103

Policy 3 0.00 ±00013 × 104 0.02 ±00027 × 103

Policy 4 0.00 0.01
0.001 Policy 1 1.00 20102 × 104 1.00 10107 × 105

±00022 × 104 ±00003 × 105

0 Policy 1 1.00 20097 × 104 NA NA
±00021 × 104

and the average total sample size required is 2010×104, seen
from Table 7.

One may argue that the IZ procedures (e.g., the KN++

procedure) can also be utilized to select the optimal policy
by choosing a conservative IZ parameter. To compare the
performances of Procedure 3 and the KN++ procedure, we
run the following experiments when � is set as 0.01 and
0.001, respectively; the results are listed in Table 7. Via
Monte Carlo simulation, we evaluated the performance of
Policies 1, 2, 3, and 4 as 0.8189, 0.8162, 0.8151, and 0.8144
because they are all selected as the best in our experiments,
and Policy 1 is the optimal policy.

From Table 7, we obtain the following conclusions. First,
both procedures select a policy within � of the best with
a probability greater than 0.99. Second, when � is 0.01,
Procedure 3 achieves a larger PCS, although it costs about
1.5 times more samples than the KN++ procedure. As �
decreases to 0.001, the sample size required by the KN++

procedure increases faster than that of Procedure 3, imply-
ing that the KN++ procedure is more sensitive to the setting
of �.

8. Conclusion
In this paper, we propose a new frequentist selection-of-
the-best formulation which selects the best alternative with
a user-specified probability of correct selection whenever
the alternatives have unique means. Under this formulation,
we design a class of sequential procedures based on the
Law of the Iterated Logarithm. Among these procedures,
the design parameters are obtained by solving numerically
a one-dimensional root-finding problem or using asymptotic
approximating results. We call them Procedures 1 and 2,
and they are shown to be statistically valid in a finite
regime and an asymptotic regime, respectively. The merit of
Procedures 1 and 2 is that they free users from having to
specify an IZ parameter. In addition, we add a stopping cri-
terion to turn them into an IZ procedure (Procedure 3). The
numerical results show that our procedures are less sensitive
to the setting of IZ parameter and more efficient than the KN
procedure when there are a large number of alternatives with
many significantly inferior ones.
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