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Abstract. When working with models that allow for many candidate solutions, simulation
practitioners can benefit from screening out unacceptable solutions in a statistically controlled
way. However, for large solution spaces, estimating the performance of all solutions through
simulation can prove impractical. We propose a statistical framework for screening solutions
even when only a relatively small subset of them is simulated. Our framework derives its su-
periority over exhaustive screening approaches by leveraging available properties of the func-
tion that describes the performance of solutions. The framework is designed to work with a
wide variety of available functional information and provides guarantees on both the confi-
dence and consistency of the resulting screening inference. We provide explicit formulations
for the properties of convexity and Lipschitz continuity and show through numerical exam-
ples that our procedures can efficiently screen outmany unacceptable solutions.
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1. Introduction
Operations researchers increasingly rely on stochastic
simulations to understand complex systems. These
simulationmodels are typically endowedwith a vector
of parameterized inputs we term a solution. Each solu-
tion has an associated performance that can be estimat-
ed by running replications of the simulation with the
corresponding inputs. Motivating applications of this
general approach arise in simulation optimization, fea-
sibility determination, andmodel calibration.

When there are many candidate solutions, it can be
difficult to thoroughly evaluate the performance of all
solutions through exhaustive simulation. A more rea-
sonable approach is to first screen out, meaning remove
from consideration, solutions regarded as unacceptable
based on initial experiments. However, obtaining even
a single replication from all candidate solutions is
sometimes impractical. Thus, our goal is to provide a
method for screening solutions that can work even
when simulating only a small subset of them. Screening
procedures can be employed to efficiently remove un-
acceptable solutions before running a more intensive
algorithm (Nelson et al. 2001) or for post hoc analysis
(Boesel et al. 2003). This use of the term “screening” dif-
fers from “factor screening,” which entails removing
solution-defining variables having minimal impact on

the performance (Bettonvil andKleijnen 1997,Wan et al.
2006).

Although we discuss our methodological framework
in general, we at times illustrate its uses for simulation
optimization, in which typically the goal is to return a
single solution. Within this setting, screening methods
can be used in isolation to return a set of solutions be-
lieved to have optimal or near-optimal performances.
The decision maker can then make a final selection from
this set based on secondary performance measures or
other practical considerations. Alternatively, the set of
solutions returned by a screening procedure can be pro-
vided as input to a simulation-optimization algorithm
designed for discrete feasible regions, such as COM-
PASS (Hong and Nelson 2006, Xu et al. 2010), nested
partitions (Shi and Ólafsson 2000), or any number of
ranking-and-selection (R&S) algorithms (Nelson et al.
2001). Screening methods can also be embedded within
a simulation-optimization search, for example, nested
partitions, adaptive random search (Andradóttir and
Prudius 2010), and empirical stochastic branch and
bound (Xu andNelson 2013), to assess the plausible opti-
mality of candidate solutions before simulating them.
Our methods differ from many stand-alone simulation-
optimization algorithms in that they deliver marginal
(sometimes finite-sample) guarantees on a returned set
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of solutions as opposed to asymptotic guarantees on a
single returned solution.

Classical subset-selectionmethods (Gupta 1965,Nelson
et al. 2001, Boesel et al. 2003) return a subset of solutions
and guarantee that the optimal solution is retained with
high probability. Although these methods are highly ef-
fective and have been extended to parallel computing en-
vironments (Ni et al. 2014), they do not solve our problem
as posed as they still require simulating all candidate sol-
utions. Thesemethods treat the performances of solutions
as being unrelated to their location in the solution space
and, therefore, do not exploit any structural properties of
the performance function.

A closely related technique that directly targets the
performance function is simulation metamodeling.
Here, one uses simulation outputs from replications
obtained at a small set of solutions to build an ap-
proximate model of the performance function, often
based on statistical or machine learning models.
These metamodels allow one to predict performances
at unsimulated solutions. Some metamodeling meth-
ods formalize functional properties as constraints
and determine the metamodel that best fits the simu-
lation outputs subject to those constraints, for exam-
ple, convex and polynomial regression (Lim and
Glynn 2012, Kleijnen 2015). Others impose a proba-
bilistic structure, for example, Gaussian process re-
gression (Ankenman et al. 2010) or Gaussian Markov
random fields (Salemi et al. 2019b). Although meta-
models are central to some simulation-optimization
searches, for example, stochastic trust-region meth-
ods such as STRONG (Chang et al. 2013) and
ASTRO-DF (Shashaani et al. 2018), to the best of our
knowledge metamodels have not been used for
screening. Furthermore, metamodels do not natural-
ly lend themselves to probabilistic guarantees about
the relative performance of a solution (e.g., optimali-
ty) without extremely strong assumptions (Wan et al.
2016). For example, the commonly used commercial
software OptQuest employs neural networks to re-
move solutions from consideration (Laguna 2011),
but the procedure lacks statistical guarantees on the
screening inference. Our methods achieve the best of
both: screening out unsimulated solutions while pro-
viding a statistical guarantee akin to that of subset
selection.

Our framework converts general information about
the performance function into a screening approach
delivering statistical guarantees. This is valuable be-
cause, for some simulation models, it is possible to
analytically or empirically establish properties of the
performance function, such as Lipschitz continuity,
convexity, or bounds. More specifically, we propose
screening solutions by measuring the discrepancy
between the observed data and the space of perfor-
mance functions having certain known properties; our

framework, thus, shares some concepts with con-
strained statistical inference (Silvapulle and Sen 2005).
When further restricting the space of functions to
those for which a particular solution is acceptable, this
discrepancy measures the plausible acceptability of
said solution. A very large discrepancy at a solution
implies it is implausible that the solution is acceptable.
Our methods accordingly remove from consideration
solutions for which the discrepancy is sufficiently
large—an act we term plausible screening. We prescribe
reasonable discrepancies and cutoffs that achieve
standard statistical properties desired in screening.
With proper care, our methods can provide confi-
dence—which can be thought of as the probability of
correct selection guarantee from subset selection—
and consistency—the concept that any unacceptable so-
lution is screened out in the limit. Our results here
substantially extend the preliminary results presented
in Plumlee and Nelson (2018) and Eckman et al.
(2020).

This article introduces the screening framework, de-
tails the computational implementation, and provides
some numerical examples. In Section 2, we mathemati-
cally formulate the problem of screening unacceptable
solutions, and in Section 3, we motivate our approach of
exploiting available information about the performance
function. Section 4 lays out the theoretical underpinning
for assessing plausible acceptability and presents an al-
gorithm for constructing a subset that attains asymptotic
confidence and a weak form of consistency. We then
present an alternative algorithm in Section 5 that can, in
certain instances, more efficiently construct a relaxed
subset of solutions. In Section 6, we test the algorithms
on realistic simulation-optimization problems. We con-
clude in Section 7with potential extensions of the frame-
work and open research questions.

2. Setting and Goals
This section describes the setup for evaluating solu-
tions via stochastic simulation, the general definition
of acceptable solutions, and the statistical guarantees
we desire in screening.

2.1. Stochastic Simulation
We lay out a mathematical framework for screening
simulated solutions from a set of candidate solutions
X ⊆ R

d, which can be discrete or continuous. Each solu-
tion x ∈ X has an associated scalar quantity of interest
labeled μ(x), which is unknown but can be estimated
by sampling replications of a stochastic simulation. We
refer to μ(x) as the performance of solution x. For situa-
tions in which X is large, meaning either a large finite
set, a countably infinite set, or a continuous space of sol-
utions, estimating the performances of all candidate
solutions is impractical or impossible. Thus, a decision
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maker simulates only a subset of k solutions, X ≡ {x1,
x2, : : : ,xk} ⊆ X , termed the experimental set. Although
we discuss the experimental set X generically, it may be
chosen, for example, to fillX or to concentrate sampling
around a region of interest. We find it convenient to
consider the restriction of the function μ : X �→ R to X,
denoted by μ(X) ≡ (μ(x1),μ(x2), : : : ,μ(xk))�, which is the
vector of the performances of the simulated solutions.
Although not directly observable, this vector can be es-
timated through simulation on the limited experimen-
tal set.

Let Yℓ(x) denote the (stochastic) output of the ℓth
independent and identically distributed (i.i.d.) simula-
tion replication at a solution x with E[Yℓ(x)] � μ(x) for
all ℓ � 1, 2, : : : and all solutions x in X . For any pair
of solutions x and x′, Yℓ(x) and Yℓ(x′) are related via
a common covariance function Σ : X × X �→ R de-
scribed by Σ(x,x′) ≡ Cov(Yℓ(x),Yℓ(x′)). The variance-
covariance matrix denoted by Σ(X) gives the covariance
between outputs for all pairs of solutions in the experi-
mental set, and we assume that Σ(X) is positive definite.
For a given ℓ, defineYℓ ≡ (Yℓ(x1),Yℓ(x2),: : : , Yℓ(xk))�, the
vector of outputs from the ℓth simulation replications at
each solution in the experimental set. The vectors
Y1,Y2, : : : , are assumed to be mutually independent
and identically distributed. In our finite-sample results,
we additionally assume that simulation outputs are
jointly normally distributed,meaning

Yℓ ~N (μ(X),Σ(X)) for ℓ � 1, 2, : : : : (1)

We consider two ways of simulating replications
across solutions:

Setting 1: Independent sampling: Outputs at differ-
ent solutions are independent (i.e., Σ(X) is diagonal),
and the number of replications taken at each solution
xi ∈ X is ni for i � 1, 2, : : : ,k, possibly unequal.

Setting 2: Dependent sampling: Outputs at different
solutions are dependent—as would be the case if com-
mon randomnumbers (CRN)were used—and an equal
number of replications is taken at each solution xi ∈ X,
that is, ni � n for i � 1, 2, : : : , k.

We estimate μ(X) by μ̂ ≡ (μ̂1, μ̂2,: : : , μ̂k)�, where μ̂i �
ni−1

∑ni
ℓ�1Yℓ(xi) for i � 1, 2, : : : , k and Σ(X) by

Σ̂ ≡
diag(̂σ2

1, σ̂
2
2, : : : , σ̂

2
k) where σ̂2

i � (ni − 1)−1∑ni
ℓ�1

(Yℓ(xi) − μ̂i)2for i � 1, 2, : : : ,k in Setting 1;

[̂σ2
ij]k×k where σ̂2

ij � (n− 1)−1∑n
ℓ�1

(Yℓ(xi) − μ̂i)(Yℓ(xj) − μ̂j)
for i, j � 1, 2, : : : ,k in Setting 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
We assume that Σ̂ is positive definite with probability
one.

2.2. Acceptable Solutions
For a given performance function μ, we define A as
the set of solutions deemed acceptable by the decision
maker, that is, those whose performances exhibit
some quality of interest. Although A depends on the
unknown function μ, we choose to suppress μ from
the notation. Different definitions of acceptability arise
in a variety of simulation applications and can be il-
lustrated within the setting of production planning,
such as semiconductor wafer fabrication (Liu et al.
2011). Discrete-event simulation models are used in
this domain to study the costs associated with a given
release plan—a schedule of batch jobs for different
product types—subject to stochastic demand for the
products. A decision maker may be interested in find-
ing a release plan x whose expected total costs (de-
fined as the sum of work-in-progress, inventory, and
backlog costs) is within δ dollars of the smallest. Alter-
natively, the decision maker may wish to determine
whether a given release plan satisfies a service re-
quirement, for example, that the associated expected
backlog cost is below μ0. It may also be of interest to
improve upon a control or default release plan xc, such
as the one suggested by a simple model. On the other
hand, the decision maker may be interested in release
plans whose expected work in progress is within ε
units of μ† (Spearman et al. 1990).

Although we leave A purposely vague to demon-
strate the versatility of the proposed framework, one can
describe these common examples ofAmathematically:

• Optimization: {x ∈ X : μ(x) ≤minx′∈Xμ(x′) + δ} for
some optimality gap δ ≥ 0.

• Feasibility determination: {x ∈ X : μ(x) ≤ μ0} for
some threshold μ0.• Comparison with a control: {x ∈ X : μ(x) ≤ μ(xc)}
for some control solution xc ∈ X .

• Comparison with a target: {x ∈ X : |μ(x) −μ†| ≤ ε}
for some tolerance ε ≥ 0 and target μ†.

In the first three examples, it is assumed without
loss of generality that smaller performance is prefera-
ble. A common feature is that determining whether a
given solution belongs to A entails checking a (possi-
bly infinite) system of linear inequalities with respect
to the candidate solutions’ performances. We later le-
verage this property to develop tractable methods for
inferring whether an arbitrary solution is acceptable.

2.3. Statistical Guarantees in Screening
Ideally, the decision maker seeks to identify the full
set of acceptable solutions and no others, to serve
as the basis for some decision. In the presence of simu-
lation error, the decision maker must settle for a subset
of solutions having desirable statistical guarantees in
terms of screening, that is, inferring which solutions are
acceptable (Bechhofer et al. 1995). Let Sn denote the
subset of solutions returned after obtaining replications
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at solutions in X as specified by n ≡ (n1,n2, : : : ,nk) and
screening all solutions in X . Screening all solutions in a
countably infinite or continuous solution space X is im-
possible. In such situations, one could discretize X and
screen all solutions in the discretized set; however, this
approach suffers in higher dimensions. Our screening
machinery could also be employed to screen a smaller
number of solutions that are of particular interest.

Our definitions of statistical guarantees of sub-
sets suppose that the performance function μ be-
longs to some function space M, which we specify
in Section 3.2.

Definition 1 (Finite-Sample Confidence). A subset Sn

achieves finite-sample confidence 1− α for α ∈ (0, 1]
if, for mini�1,2,: : : ,kni ≥ 2 for Setting 1 (respectively,
mini�1,2,: : : ,kni ≥ k+ 1 for Setting 2) and any μ ∈M,
P(x0 ∈ Sn) ≥ 1− α for all x0 ∈A.

Finite-sample confidence states that, for any perfor-
mance function in M, each acceptable solution is cor-
rectly screened with marginal probability exceeding
1− α. For the most part, finite-sample confidence is un-
attainable unless the random outputs of the simulation
replications come from a known family of distribu-
tions, as in Equation (1). A more widely achievable
property is asymptotic confidence, which follows from
designing methods for normally distributed outputs
and applying the central limit theorem.

Definition 2 (Asymptotic Confidence). A subset Sn

achieves asymptotic confidence 1− α for α ∈ (0, 1] if, for
any μ ∈M, P(x0 ∈ Sn)�1− α as mini�1,2,: : : ,kni →∞ for
all x0 ∈A.

In Definition 2, the statement P(x0 ∈ Sn)�1− α
means that, for any ε > 0, there exists an n(ε,x0)
such that, for all n for which mini�1,2,: : : ,kni ≥ n(ε,x0),
P(x0 ∈ Sn) ≥ 1− α− ε. Finite-sample and asymptotic
confidence are marginal guarantees, holding solution-
wise. For finite solution spaces, one could conceivably
deliver set-wise guarantees by splitting α over |X|; we
chose not to explore this further.

Finite-sample and asymptotic confidence describe
a subset’s ability to avoid screening out acceptable
solutions with high probability but not its ability to
screen out unacceptable solutions, that is, those that
do not belong to A. For this, we require the notion of
consistency.

Definition 3 (Consistency). A subset Sn achieves con-
sistency if, for any μ ∈M, P(x0 ∈ Sn) → 0 as mini�1,2,: : : ,k
ni →∞ for all x0 ∉A.

Except in special cases, such as exhaustive simula-
tion in which X � X , consistency is unachievable be-
cause, even with direct evaluation of μ(X), the rest of
the performance function is indeterminable. We soon
introduce a less exacting form of consistency that

accounts for having simulated at only solutions in the
experimental set.

3. Screening Using Functional Properties
In this section, we explain how known functional
properties of the performance function can be com-
bined with our screening framework. Section 3.3
develops the main ideas behind our methods in a
simplified setting in which solutions are simulated
without error.

3.1. Functional Properties of the Performance
Function

Our goal is to use information obtained from a small
experimental set to screen out a massive number of
solutions that, given the data, could not plausibly be
acceptable. Importantly, we seek the ability to screen
out even unsimulated solutions. This task would be
impossible without some means of relating an unsi-
mulated solution’s performance to those of simulated
solutions from the experimental set. Our approach op-
erates under the assumption that the decision maker
possesses known or assumed properties of the perfor-
mance function μ that enable such comparisons. Ex-
amples include knowledge that μ is convex (likewise
concave, strongly convex, or almost convex) over X ,
Lipschitz continuous (likewise Hölder continuous or
second-order Lipschitz continuous) with a known or
assumed upper bound on the associated constant or a
polynomial in x with known or assumed degree. This
type of information can also be augmented with auxil-
iary properties on the performances of individual sol-
utions, such as bounds on μ or known performances
of some solutions.

Our framework involves checking whether an arbi-
trary function lies in a function space described by
the known properties. Some other methods instead as-
sume a probabilistic structure for μ and leveragemeas-
ures over function spaces. For instance, it is common
in metamodeling (Santner et al. 2003, Salemi et al.
2019a) and Bayesian optimization (Frazier et al. 2009,
Scott et al. 2011) to treat μ as a realization of a Gaussian
process on X . Gaussian processes postulate structural
information in the form of a probability model that
characterizes the performance function via correla-
tion in the performances of neighboring solutions. Al-
though this structure is never actually true, it provides
a powerful paradigm for guiding a search. Our screen-
ing framework instead exploits actual properties of the
performance function, and therefore, its conclusions
are independent of any hypothesized prior distribu-
tion or estimates of artificial parameters. By the same
token, our approach differs from that of estimating the
posterior probability that μ satisfies certain functional
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properties, for example, convexity (Jian and Hender-
son 2020).

Situations in which such knowledge of functional
properties is available are not rare. In Section 6, we ex-
plicate two numerical examples in which Lipschitz
continuity or convexity information is present. The
functional properties in these examples are identified
by studying continuous extensions of problems that
originally feature discrete feasible regions. We call at-
tention to two common, practical techniques for veri-
fying functional properties of simulation models.

3.1.1. Inheritance from Sample-Path Functions. Many
properties of sample-path functions are inherited when
applying the expectation operator, for example, con-
vexity (Shaked and Shanthikumar 1988), continuity
(Shapiro and Wardi 1996), and bounds. Proving that
the sample-path functions possess any such property
with probability one implies that the performance func-
tion does aswell (Kim et al. 2015). Examples include

Stochastic activity networks. The expected length of
the longest path is a convex function in terms of the
mean task durations; see appendix E of Plambeck et al.
(1996) for a derivation.

Tandem production lines with unreliable machines. The
steady-state throughput is a convex function in terms
of the cycle times of the machines (Plambeck et al.
1996).

Inventory stocking under dynamic customer substitution.
The expected profit can be shown to be a Hölder-
continuous function in terms of the initial inventory
levels (Mahajan and van Ryzin 2001).

3.1.2. Stochastic Orders. Some stochastic orders im-
ply an inequality relating two expected values (Shaked
and Shanthikumar 2007). This approach can be used to
relate μ(x) and μ(x′) for some x≠ x′ or to relate μ(x) to
another expected value that is known, thereby provid-
ing a bound on μ(x). Examples include

GI=GI=c queueing systems. Many random quantities
of interest (e.g., sequential departure times) are stochas-
tically ordered when comparing a GI=GI=c queueing
system with a first-in, first-out service discipline to an-
other in which arrivals are arbitrarily assigned among c
channels, independent of the service process (Wolff
1977).

Portfolio optimization. A risk-averse decision mak-
er wishes to assemble a portfolio from a finite collec-
tion of assets to maximize the expected return rate
while requiring that the portfolio’s return rate sto-
chastically dominate a benchmark rate (Dentcheva
and Ruszczyński 2006).

3.2. Spaces of Performance Functions
We incorporate functional properties into our frame-
work by characterizing how they restrict the set of

functions to which μ can belong and, in turn, the val-
ues its restriction μ(X) can take. Let F denote the set
of functions mapping from X to R and let M ⊆F de-
note the set of functions that possess the specified
functional properties. Furthermore, for a given per-
formance function m ∈M, let A(m) represent the cor-
responding set of acceptable solutions. Because
screening takes place by examining individual solu-
tions x0 ∈ X , we define M(x0) ≡ {m ∈M : x0 ∈A(m)},
the set of functions in M for which solution x0 is
acceptable.

The set M(x0) is difficult to work with because ele-
ments of M(x0) are infinite dimensional. We achieve a
more tractable formulation by projecting M(x0) onto
R

k, with elements of this projected set corresponding
to vectors of the performances of solutions in X. Recall
that μ(X) represents the performances of the solutions
in our experimental set, x1,x2, : : : ,xk. We similarly use
the notation m(X) to denote the values an arbitrary
function m takes at those same x1,x2, : : : ,xk. The result-
ing projection ofM(x0) onto R

k is defined as

M(x0)
≡ m ∈ R

k : there exists m ∈M(x0) such that m(X) �m
{ }

,

the set of vectors of performances of the solutions
x1,x2, : : : ,xk for which there exists an interpolating
function m belonging to M(x0). We illustrate these
definitions for two problems: feasibility determination
for a Lipschitz-continuous performance function and
minimization of a convex performance function. Com-
plete derivations are given in Online Appendix EC.1.

Example 1 (Feasibility Determination for a Lipschitz-
Continuous Function). Let A � {x ∈ X : μ(x) ≤ μ0} for
some threshold μ0 and suppose that μ is known to be
Lipschitz continuous with constant γ. The set of
γ-Lipschitz functions for which a given solution x0 is
feasible with respect to μ0 is given by

M(x0)
� m ∈F : |m(x) −m(x′)|≤ γ ||x− x′|| for all x,x′ ∈ X
{
and m(x0) ≤ μ0

}
,

where ||·|| denotes the Euclidean norm. Furthermore,

M(x0) �{
m ∈ R

k :mi −mj ≤ γ ||xi − xj || for all i, j � 1, 2, : : : , k and

mi ≤ μ0 + γ ||xi − x0 || for all i � 1, 2, : : : ,k
}
,

wheremi is the ith component of the vectorm.

Example 2 (Minimizing a Convex Function). Let
A � {x ∈ X : μ(x) ≤minx′∈Xμ(x′)} and suppose that μ is
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known to be convex. One formulation of the set of convex
functions forwhich a given solution x0 is optimal is

M(x0) �
{
m ∈F : for all x ∈ X , there exists ξ(x) ∈ R

d

such that

m(x) −m(x′) ≤ (x− x′)�ξ(x) for all x′ ∈ X and

m(x0) ≤m(x)
}
,

where ξ(x) represents a subgradient at the solution x.
Furthermore,

M(x0) �
{
m ∈ R

k : there exists m0 ∈ R and

ξ1,ξ2, : : : ,ξk ∈ R
d such that

mi −mj + (xj − xi)�ξi ≤ 0 for all i, j � 1, 2, : : : , k

mi −m0 + (x0 − xi)�ξi ≤ 0 for all i � 1, 2, : : : ,k

−mi +m0 ≤ 0 for all i � 1, 2, : : : ,k
}
:

Here, m0 represents the performance of solution x0
and ξ1,ξ2, : : : ,ξk represent subgradients at solutions
x1,x2, : : : ,xk. (The term m0 could be projected out to
further simplify the formulation ofM(x0).)

It follows from these definitions that, for a given per-
formance function μ ∈M, its restriction μ(X) is in
M(x0) if x0 is an acceptable solution. The converse,
however, does not necessarily hold, because the re-
striction of μ to X does not determine the performances
of solutions in the rest of the solution space. We next
demonstrate the central roleM(x0) plays in screening.

3.3. Screening Solutions Without Estimation
Error

Temporarily assume that solutions’ performances can
be calculated directly without simulation, that is, the
decisionmaker candirectly obtainμ(X). Given that only
solutions in the experimental set have been evaluated,
some solutions likely cannot be correctly screened with
certainty. A reasonable approach is to classify as be-
longing to A any solution x0 for which there exists a
function inM(x0) that interpolates μ(X). We denote the
resulting subset of solutions by

S(X) ≡ {x0 ∈ X : μ(X) ∈M(x0)}:
This notation reflects the dependence of the subset S(X)
onX; a different experimental set would yield a different
subset of solutions that are possibly acceptable.

Example 1 (Continued). For a γ-Lipschitz performance
function μ, the set of solutions that are possibly feasi-
ble with respect to a threshold μ0 is given by

S(X) � x0 ∈ X : max
i�1,2,: : : ,k

μ(xi) − γ ||xi − x0 ||{ } ≤ μ0

{ }
:

Example 2 (Continued). For a convex performance
function, the set of possibly optimal solutions is
given by

S(X) �
{
x0 ∈ X : there exists m0 ∈ R and

ξ1, ξ2, : : : , ξk ∈ R
d such that

(xj − xi)�ξi ≤ μ(xj) − μ(xi) for all i, j � 1, 2, : : : , k

−m0 + (x0 − xi)�ξi ≤ −μ(xi) for all i � 1, 2, : : : , k

m0 ≤ μ(xi) for all i � 1, 2, : : : , k
}
:

The subset S(X) is the smallest subset that contains all
acceptable solutions having only evaluated solutions
in X and only knowing the given properties of μ. If an
arbitrary solution x0 is not in S(X), we conclude that
there does not exist an interpolating function in
M(x0); hence, it is impossible that x0 is an acceptable
solution. Therefore, all acceptable solutions are in-
cluded in this subset, that is, A ⊆ S(X). In addition, if
X � X , then all solutions can be correctly screened,
meaning S(X) �A. Thus, the gap between these two
subsets of solutions comes from the fact that the ex-
perimental set comprises only a subset of the candi-
date solutions.

To determine if a solution x0 belongs to S(X), one
must check whether μ(X) belongs to M(x0). If M(x0) can
be expressed as a polyhedron with an explicit constraint
matrix and right-hand-side vector, as in Example 1, then
checking if μ(X) is in M(x0) is straightforward. More
generally, ifM(x0) can be implicitly described as the pro-
jection of a polyhedron, as in Example 2, then checking if
μ(X) is in M(x0) involves solving a linear program. In
Section 5, we exploit this fact to devise efficient methods
for screening solutions. One can imagine further ex-
panding this framework to nonlinear constraints, but
this paper focuses on the potential in polyhedral
representations.

As a setup for the following sections, we present a
relaxed version of consistency featuring S(X).
Definition 4 (S(X) Consistency). A subset Sn achieves
S(X) consistency if, for any μ ∈M, P(x0 ∈ Sn) → 0 as
mini�1,2,: : : ,kni →∞ for all x0 ∉ S(X).

As A is a subset of S(X), we conclude that S(X)
consistency holds whenever consistency (Definition
3) holds. The property of S(X) consistency implies
that, as the simulation effort at solutions in X in-
creases to infinity, the probability that a given solu-
tion is in Sn goes to zero for any solution that could
be screened out if μ(X) were known. In other words,
an S(X)-consistent subset asymptotically screens out
all solutions that—given the limited experimental set
and known functional properties of the performance
function—cannot possibly be acceptable.
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4. Plausible Screening
In this section, we give an overview of our method of
accounting for simulation error alongside theoretical
results that justify its use.

4.1. Overview
When solutions in the experimental set are simulated
without error, as in Section 3.3, a natural subset to return
is S(X), which consists of all solutions x0 for which
μ(X) ∈M(x0). However, when there is simulation error,
naively plugging in the estimator μ̂ for the unknown
μ(X) and retaining all solutions x0 for which μ̂ ∈M(x0)
does not produce a subset achieving confidence and
S(X) consistency. Because the probability that μ̂ ∈M(x0)
is not well controlled, this likely results in a set that elim-
inates too many solutions, thus violating the confidence
guarantee through undercoverage.We properly account
for the uncertainty about μ(X) by developing a subset
comprising solutions x0 for which μ̂ is sufficiently close
to M(x0), where the precise meaning of “sufficiently
close” ensures our guarantees of confidence and S(X)
consistency are delivered.

To measure the distance between μ̂ and M(x0), we
first introduce the standardized discrepancy between μ̂
and a performance vector m � (m1,m2, : : : ,mk), de-
noted by dn(m, μ̂, Σ̂). The vector of sample sizes, n,
and sample variance-covariance matrix, Σ̂, appear in
the standardized discrepancy for the purpose of scal-
ing differences between performance vectors in line
with the estimation error; specific examples are given
as follows. We hereafter assume that the standardized
discrepancy satisfies the following condition.

Condition 1. dn(m, μ̂, Σ̂) ≥ 0 for all m ∈ R
k and

dn(μ̂, μ̂, Σ̂) � 0 with probability one.

Additional conditions are introduced in Section 4.2
that are necessary for maintaining confidence and
S(X) consistency.
Minimizing the standardized discrepancy over per-

formance vectors inM(x0) gives the minimum standard-
ized discrepancy of x0,

Dn(x0, μ̂, Σ̂) ≡ min
m∈M(x0)

dn(m, μ̂, Σ̂), (2)

which can be interpreted as the distance between the
sample mean vector μ̂ and the set M(x0). The mini-
mum standardized discrepancy is an indication of
how likely it is that, given the sample data, the true
performance function μ belongs to M(x0), the space of
functions that possess the known functional proper-
ties and for which solution x0 is acceptable. A smaller
value of Dn(x0, μ̂, Σ̂) indicates stronger evidence that
x0 is an acceptable solution, and a larger value of
Dn(x0, μ̂, Σ̂) indicates stronger evidence that x0 is an
unacceptable solution.

We say that a function m is plausible with respect
to an arbitrary solution x0 if it belongs to M(x0)
and its restriction m(X) is sufficiently close to μ̂ in
terms of the standardized discrepancy between the
two vectors. From Definition 2, a solution x0 admits
a plausible function if and only if its minimum
standardized discrepancy Dn(x0, μ̂, Σ̂) is sufficiently
small. Our screening method, which we refer to as
plausible screening (PS), returns the subset compris-
ing solutions x0 for which there exists a plausible
function. To be precise, the PS subset SPS

n consists of
solutions x0 for which μ̂ is within a distance D of
M(x0), that is,

SPS
n ≡ x0 ∈ X :Dn(x0, μ̂, Σ̂) ≤ D

{ }
:

Equivalently, SPS
n can be defined as all x0 ∈ X such

that μ̂ ∈ R(x0), where

R(x0) ≡ m̃ ∈ R
k :Dn(x0, m̃, Σ̂) ≤ D

{ }
is the set of performance vectors that are within a dis-
tance D to M(x0). Just as M(x0) is the performance set
for which x0 is possibly acceptable when μ(X) is di-
rectly observed, its random relaxation R(x0) can be
viewed as a performance set for which x0 is plausibly
acceptable in light of the uncertainty about μ(X).

4.2. Statistical Guarantees
From the definition of SPS

n , we can see that choosing D

as the 1− α quantile of the minimum standardized
discrepancy Dn(x0, μ̂, Σ̂) leads to finite-sample confi-
dence. However, the distribution of the minimum
standardized discrepancy depends on the unknown
quantities μ(X) and Σ(X) in addition to sample sizes,
functional constraints, and the definition of acceptabil-
ity. For the cases we investigate, namely, Lipschitz
continuity and convexity of μ, the associated quantile
cannot be evaluated numerically or by Monte Carlo.
We circumvent this by considering the statistic
dn(μ(X), μ̂, Σ̂), which first order stochastically domi-
nates the minimum standardized discrepancy be-
cause, when x0 is an acceptable solution, μ(X) ∈M(x0),
and hence, dn(μ(X), μ̂, Σ̂) ≥minm∈M(x0)dn(m, μ̂, Σ̂) �
Dn(x0, μ̂, Σ̂). We introduce standardized discrepancies
for which dn(μ(X), μ̂, Σ̂) is pivotal under a normality
assumption; that is, its distribution is independent of
μ(X) and Σ(X). Its distribution is also independent of
M(x0) because setting m � μ(X) avoids the minimiza-
tion in Definition 2. This simplification allows us to
derive a deterministic, uniform cutoff D that ensures
SPS
n has the desired statistical properties.
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We require that the pairing of dn(·, μ̂, Σ̂) and D satis-
fy three conditions for all μ(X) ∈ R

k and Σ(X) ∈ R
k×k

positive definite:

Condition 2. P(dn(μ(X), μ̂, Σ̂) ≤ D) ≥ 1− α for sufficient-
ly largemini�1,2,: : : ,kni.

Condition 3. P dn(μ(X), μ̂, Σ̂) ≤ D
( )

→ 1− α as mini�1,2,: : : ,k
ni →∞.

Condition 4. maxm∈Rk ||μ̂ −m || :{
dn(m, μ̂, Σ̂) ≤ D} →w:p:1 0

as mini�1,2,: : : ,kni →∞, where || · || again denotes the Euclidean
norm.

Although the choice of D satisfying the conditions
depends on the values of k, n, and α, we choose to
suppress this dependence in the notation.

Conditions 2 and 3 relate to finite-sample and as-
ymptotic confidence, respectively, ensuring that D is
sufficiently large. Condition 4, on the other hand, re-
lates to consistency. It ensures that D remains suffi-
ciently small as the sample sizes increase so that, for a
solution to be included in SPS

n , the restriction of the
best-fitting model to the solutions in the experimental
set must more closely align with the observed sample
means.

Theorems 1 and 2 establish that, under Conditions
2–4, SPS

n possesses the desired properties of confidence
and S(X) consistency; proofs appear in Online Appen-
dix EC.3.

Theorem 1. If dn(·, μ̂, Σ̂) and D satisfy Conditions 2
and 3, then SPS

n achieves finite-sample confidence and as-
ymptotic confidence.

Theorem 2. If dn(·, μ̂, Σ̂) and D satisfy Condition 4, then
SPS
n achieves S(X) consistency.

4.3. Standardized Discrepancies
Our screening framework can easily accommodate
different choices of standardized discrepancies and
cutoffs. We present several examples that satisfy Con-
ditions 1–4 and provide a representative proof in On-
line Appendix EC.3. Condition 2 is established under
the normality assumption stated in Equation (1).

In Setting 1, Conditions 1–4 are satisfied by

d1n(m, μ̂, Σ̂) ≡ ∑k
i�1

���
ni

√
σ̂i

|̂μi −mi|

with D1 defined as the 1− α quantile of the sum of the
absolute value of k independent t-distributed random
variables, each with degrees of freedom n1 − 1,n2 − 1,
: : : ,nk − 1, respectively; by

d2n(m, μ̂, Σ̂) ≡∑k
i�1

ni
σ̂
2
i

(μ̂i −mi)2

with D2 defined as the 1−α quantile of the sum of
k independent F-distributed random variables, each
with numerator degrees of freedom one and denom-
inator degrees of freedom n1 − 1,n2 − 1, : : : ,nk − 1, re-
spectively; and by

d∞n (m, μ̂, Σ̂) ≡ max
i�1,2,: : : ,k

���
ni

√
σ̂i

|̂μi −mi|

with D∞ defined as the 1−α quantile of the maxi-
mum of the absolute value of k independent t-dis-
tributed random variables, each with ni − 1 degrees
of freedom. In our discussion, we find it convenient
to refer to these standardized discrepancies by the
shorthand d1n, d

2
n, and d∞n . Plumlee and Nelson (2018)

focus on the choice of d2n and D2, and Eckman et al.
(2020) explores connections to existing screening
methods, such as the Screen-to-the-Best (STB) proce-
dure (Nelson et al. 2001).

In Setting 2, Conditions 1–4 are satisfied by

dCRNn (m, μ̂, Σ̂) ≡ n(μ̂ −m)�Σ̂−1(μ̂ −m)

with DCRN defined as k(n− 1)=(n− k) times the 1− α
quantile of an F-distributed random variable with nu-
merator degrees of freedom k and denominator de-
grees of freedom n – k (Anderson 1984). In Setting 2,
for Σ̂ to be invertible with probability one, a minimum
of k + 1 replications must be obtained from each solu-
tion, that is, n ≥ k+ 1 (Anderson 1984).

As can be seen from these examples, a uniform cut-
off D can be specified as the 1− α quantile of the pivot-
al statistic dn(μ(X), μ̂, Σ̂). The given cutoffs D1, D2, D∞,
and DCRN are the tightest uniform cutoffs for their re-
spective standardized discrepancies that deliver finite-
sample confidence irrespective of the properties of μ.
To see this, consider the case in which the decision
maker has complete knowledge of the performances
of the solutions in the experimental set, that is,
M(x0) � {μ(X)}. Thus, Dn(x0, μ̂, Σ̂) � dn(μ(X), μ̂, Σ̂) and
the specified cutoffs are exactly the 1− α quantiles of the
minimum standardized discrepancies. The coverage of
any acceptable solution x0 is therefore exactly 1−α.

5. Computational Considerations and
Relaxed Screening

Constructing SPS
n entails repeatedly solving the opti-

mization problem described in Definition 2 and com-
paring its optimal value, Dn(x0, μ̂, Σ̂), to the cutoff D
for each x0 ∈ X . Depending on the difficulty of the
optimization problem and the number of candidate
solutions, constructing SPS

n in this manner could be
computationally expensive. In this section, we present
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an alternative subset consisting of solutions for which
μ̂ belongs to a polyhedral relaxation of R(x0). Screen-
ing a solution, therefore, involves solving a linear pro-
gram which, in certain cases, can be substantially
cheaper. Compared with the subset SPS

n , this approach
results in a more conservative subset in the sense that
it contains all of the solutions in SPS

n and possibly
more.

5.1. Polyhedral Relaxation of R(x0) via a Relaxation
of M(x0)

We demonstrate this conservative approach for the
situation in which M(x0) can be described as the pro-
jection of a polyhedron.

Assumption 1. For each solution x0 ∈ X ,

M(x0) �
m ∈ R

k : there exists w ∈ R
q such that Am+Cw ≤ b

{ }
,

for some A ∈ R
p×k, C ∈ R

p×q, b ∈ R
p, where A, C, and b

may depend on x0 and X.

For A, C, and b in Assumption 1, we suppress x0
and X for notational convenience.

Assumption 1 depends on both the choice of func-
tion space and the definition of the set of acceptable
solutions. This assumption holds for most combina-
tions discussed in this paper, for example, feasibility
determination for a Lipschitz-continuous function or
minimization of a convex function. From the expres-
sions for M(x0) in Examples 1 and 2, one can directly
obtain the corresponding A, C, and b.

To explain our approach, define the polyhedron P ≡
{(m,w) ∈ R

k × R
q : Am+Cw ≤ b} such that the projec-

tion of P onto R
k is M(x0). We obtain a relaxation of

M(x0) by first relaxing P, by increasing its right-hand-
side vector b, and then projecting the enlarged polyhe-
dron onto R

k. To compensate for the uncertainty
about μ(X), we offset b by defining

b′j � bj +max
m∈Rk

a�j (μ̂ −m) : dn(m, μ̂, Σ̂) ≤ D
{ }

for all

j � 1, 2, : : : ,p,

where aj is the jth row of A, expressed as a column
vector. This offset to bj is the maximum amount by
which the left-hand side of the constraint, a�j m+ c�j w,
could increase if we plugged in a model m that is suf-
ficiently close to μ̂ as measured by the standardized
discrepancy. Condition 1 implies that, for any

a ∈ R
k, maxm∈Rk a�(μ̂ −m) : dn(m, μ̂, Σ̂) ≤ D

{ }
≥ 0; thus,

bj
′ ≥ bj with probability one for all j � 1, 2, : : : ,p.

For the four standardized discrepancies outlined in
Section 4.2,

max
m∈Rk

a�j (μ̂ −m) : d1n(m, μ̂, Σ̂) ≤ D1
{ }

� D1 max
i�1,2,: : : ,k

σ̂i���
ni

√ |aji| ,

max
m∈Rk

a�j (μ̂ −m) : d2n(m, μ̂, Σ̂) ≤ D2
{ }

�
��������������
D2∑k

i�1

σ̂
2
i

ni
a2ji

√
,

max
m∈Rk

a�j (μ̂ −m) : d∞n (m, μ̂, Σ̂) ≤ D∞{ }
� D∞∑k

i�1

σ̂i���
ni

√ |aji| , and

max
m∈Rk

a�j (μ̂ −m) : dCRNn (m, μ̂, Σ̂) ≤ DCRN
{ }

�
����������������
DCRN

n
a�j Σ̂aj

√
,

for all j � 1, 2, : : : ,p; derivations appear in Online Ap-
pendix EC.2. In the case of dCRNn and DCRN, adjusting
the right-hand-side vector in this way follows the ap-
proach of Anderson (1984) for constructing simulta-
neous confidence intervals for linear combinations of
the components of μ(X); see equation (15) therein.
From these expressions, it is apparent that b′ ≡ (b′1,b′2,
: : : ,b′p)� is a random vector whose components are

functions of Σ̂ and n but not μ̂.

5.2. Relaxed Plausible Screening
The projection of the relaxation ofP ontoRk is given by

R′(x0) ≡
m ∈ R

k : there exists w ∈ R
q such that Am+Cw ≤ b′

{ }
:

The polyhedron R′(x0) is a random relaxation of
M(x0), and Lemma 1 further shows that it is also a re-
laxation of R(x0); the proof of Lemma 1 can be found
in Online Appendix EC.3.

Lemma 1. If Assumption 1 holds, then R(x0) ⊆ R′(x0) with
probability one for all x0 ∈ X .

Our more conservative screening method, which
we refer to as relaxed plausible screening (RPS), re-
turns a subset SRPS

n defined as

SRPS
n ≡ x0 ∈ X : μ̂ ∈ R′(x0){ }

,

the conservatism of which is made clear in Corollary 1.

Corollary 1. If Assumption 1 holds, then SPS
n ⊆ SRPS

n with
probability one.
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Theorems 3 and 4 establish that, under Conditions
2–4, SRPS

n possesses the desired properties of confi-
dence and S(X) consistency.
Theorem 3. If dn(·, μ̂, Σ̂) and D satisfy Conditions 2 and
3, then SRPS

n achieves finite-sample confidence and asymp-
totic confidence.

Theorem 4. If dn(·, μ̂, Σ̂) and D satisfy Condition 4, then
SRPS
n achieves S(X) consistency.
The relaxation R′(x0) that is used to construct SRPS

n

depends on the representation of M(x0) in Assumption
1. Hence, a different representation ofM(x0)—meaning
a different choice of A, C, and b—can result in a differ-
ent relaxation R′(x0) and, thus, different solutions be-
ing included in SRPS

n . The extreme case of this would
be the elimination of C altogether as shown in Theo-
rem 5. This result demonstrates that the representation
M(x0) � m ∈ R

k : Am ≤ b
{ }

for some A ∈ R
p×k and b ∈

R
p yields a tighter polyhedral relaxation of R(x0) and,

thus, a smaller subset.

Theorem 5. Suppose Assumption 1 holds and that, for a
fixed x0 ∈ X ,

M(x0) � m ∈ R
k : there exists w ∈ R

q such that
{
Am+Cw ≤ b}

� m ∈ R
k : Am ≤ b

{ }
,

for some A ∈ R
p×k, C ∈ R

p×q, b ∈ R
p, A ∈ R

p×k, and b ∈ R
p .

Then, for any μ ∈M,

R
′(x0) ≡ m ∈ R

k : Am ≤ b
′{ }
⊆ R′(x0) with probability one,

where

b
′
j � bj+max

m∈Rk
{a�j (μ̂−m) : dn(m, μ̂,Σ̂) ≤D} for all j� 1,2, : : : ,p:

In some cases, for example, optimizing a Lipschitz-
continuous function, deriving an explicit polyhedral rep-
resentation ofM(x0) is relatively straightforward, and in
other cases, for example, optimizing a convex function,
it is challenging. Projecting out some or all components
of w has the potential to yield a less conservative subset
SRPS
n but can come at the cost of an increase in the num-

ber of constraints implicitly describing M(x0). Although
classical techniques for eliminating variables, for exam-
ple, Fourier–Motzkin elimination, can cause an explo-
sion in the number of constraints, many of them redun-
dant, recent advances are more promising (Jing et al.
2018).

Remark 1. Both SPS
n and SRPS

n exhibit an appealing, in-
tuitive trait: given the same observed simulation out-
puts, knowing additional functional properties of μ

leads to a smaller subset. That is, adding constraints
that further shrink M(x0) results in more solutions be-
ing screened out. This assertion is made mathemati-
cally precise in Online Theorems EC.1 and EC.2.

5.3. Optimization Problems
Checking whether μ̂ ∈ R′(x0) amounts to checking the
feasibility of a system of linear equations—namely,
does there exist a w ∈ R

q such that Cw ≤ b′ −Aμ̂? This
is equivalent to determining the sign of the optimal
value of a related linear program:

zn ≡max
w,η

η s:t: Cw+ η1p ≤ b′ −Aμ̂, (3)

where 1p is a p-vector of ones. The notation zn reflects
the dependence of the parameters of the optimization
problem on the sample sizes; it is also convenient in
the proofs of the asymptotic guarantees delivered by
SRPS
n . If zn ≥ 0, the solution x0 is included in SRPS

n ; oth-
erwise, it is excluded.

On the other hand, constructing SPS
n requires evalu-

ating Dn(x0, μ̂, Σ̂) ≡min(m,w)∈P dn(m, μ̂, Σ̂). Definition 3
therefore reduces the number of decision variables by
roughly k, relative to optimizing over P. If M(x0) can
be expressed as a projection with few extra variables
(small q), then solving the problem in Definition 3
may be appreciably faster than solving min(m,w)∈P
dn(m, μ̂, Σ̂) with greater savings as the size of the ex-
perimental set increases. Furthermore, if a large num-
ber of solutions are to be screened, the computational
savings from working with SRPS

n can be substantial.
Table 1 summarizes properties of the optimization
problems associated with screening solutions via the
PS and RPS methods for the four standardized
discrepancies.

Remark 2. Example 1 features an explicit polyhedral
representation of M(x0), that is, q � 0. Thus, for feasi-
bility determination for Lipschitz performance func-
tions, SRPS

n can be constructed without optimization
by simply checking whether Aμ̂ ≤ b′ for each solution.

6. Numerical Experiments
To illuminate the theoretical developments thus far in
a more practical light, we implement the PS and RPS
approaches on two simulation-optimization problems.
Both examples illustrate how prior knowledge of func-
tional properties can assist in screening out swathes of
unacceptable solutions using only a limited experimen-
tal set. In each case, a discrete simulation-optimization
problem is posed, but functional properties are estab-
lished by studying extensions of the performance
function or sample-path functions to a continuous so-
lution space. Our first example in Section 6.1 illus-
trates how the behavior of PS varies depending on
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the standardized discrepancy and demonstrates the
advantages over subset-selection procedures. In a
much larger example described in Section 6.2, PS and
RPS screen out hundreds of thousands of solutions
using an experimental set consisting of only 100
solutions.

We implement our methods in MATLAB using the
software’s built-in optimization algorithms with their
default settings: linprog (dual-simplex method) for linear
programs and quadprog (interior-point method) for qua-
dratic programs. Source code is available at https://
github.com/daveckman/plausible-screening. We ran
our experiments on a high-performance computing clus-
ter using eight cores on a compute node with 256 GB of
RAM. For the first example, we ran independent macro-
replications of our methods in parallel to study the dif-
ferences between methods, and for the larger second
example, we classified solutions in parallel to mirror a
reasonable implementation in practice.

6.1. Newsvendor Problem
The first problem is a modified version of the classical
newsvendor problem (Porteus 1990). Here, a vendor or-
ders inventory of a given product in discrete quantities
at a per-unit order cost corder, observes a realization of
stochastic demand V for a continuous quantity of the
product, and sells it at a per-unit sales price psales. For
example, consider a gas station operator who orders
gasoline in truckloads but sells it in continuous quanti-
ties at the pump. At the end of the sales period, leftover
inventory is salvaged at a per-unit price psalvage, and un-
met demand incurs a fixed per-unit cost of cshortage.

The vendor’s objective is to determine the order
quantity that maximizes the expected profit or, equiva-
lently, minimizes the expected loss over the following
sales period. For a fixed realization of demand, V, the
loss associated with an order quantity x is given by

Y(x,V) � corderx − psalesmin {V, x} − psalvagemax {x − V, 0}
+ cshortagemax {V − x, 0}: (4)

The sample-path function Y(·,V) is convex in x provid-
ed psales ≥ psalvage. Furthermore, Y(·,V) is γ-Lipschitz

continuous with constant γ �max {psales + cshortage − corder,
corder − psalvage}. The expected loss function μ(x) :� EV

[Y(x,V)] inherits these properties from the sample-path
functions as discussed in Section 3.1. In our experiments,
we set corder � 3, psales � 9, psalvage � 1, and cshortage � 1 with
V beingWeibull distributedwith scale parameter 50 and
shape parameter two.

We considered a feasible region X � {1, 2, : : : , 200}
and tested our methods by simulating at five evenly
spaced solutions (20, 60, 100, 140, 180) with a total
sample size of 400 replications. Though not presented
in this article, we varied the experimental set and ar-
rived at similar conclusions as the ones presented in
this article. We tested the PS method with the d1n, d

2
n,

and d∞n standardized discrepancies and 1− α � 0:95
when either exploiting the properties that μ is convex
or Lipschitz continuous with γ � 7. As a benchmark,
we applied the STB subset-selection procedure of
Nelson et al. (2001), which takes an equal number of
i.i.d. replications from all solutions in X and achieves
both finite-sample confidence (under the normality as-
sumption) and asymptotic confidence. Given the
same total sample size of 400, the STB procedure took
two replications at each feasible solution. We ran
3,000 macroreplications of each procedure.

With a small total sample size spread thinly over the
solution space, the STB procedure struggled to elimi-
nate solutions, failing to screen out any solutions on
93.8% of the macroreplications and never screening
out more than four solutions. In addition, each feasible
solution was retained on at least 99.5% of the macrore-
plications. Figure 1 shows the empirical probability
that individual solutions were included in SPS

n for d2n;
curves for d1n and d∞n were similar. In both the Lipschitz
and convex cases, our method retained the optimal so-
lution, A � {x∗} � {61}, on all macroreplications, indi-
cating conservatism. The two instances of functional
properties led to interesting features in the geometry
of the retained solutions. In the Lipschitz case, PS
screened out solutions near clearly suboptimal solu-
tions in the experimental set, namely, x � 20, x � 140,
and x � 180, and in the convex case, it screened out
those on the periphery of the feasible region. Because

Table 1. Properties of the Plausible Screening and Relaxed Plausible Screening Optimization
Problems

Subset Discrepancy Linear/quadratic Number of decision variables Number of constraints

SPS
n d1n Linear 2k+ q p+ 2k

d2n Quadratic k + q p
d∞n Linear k+ q+ 1 p+ 2k
dCRNn Quadratic k + q p

SRPS
n All Linear q + 1 p

Note. k is the number of solutions in X, and p and q are the number of constraints and extra variables in the
description ofM(x0) as in Assumption 1.
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the probability of being in SPS
n is neither zero nor one

for many solutions, the composition of SPS
n varied from

macroreplication tomacroreplication evenwith 80 rep-
lications taken at each solution in X. The subset SPS

n

also differed from S(X), the subset of solutions that
would be returned by an oracle who can observe μ(X)
without simulation error, implying that more solutions
could be screened out if the number of replications
were increased.

We also varied the total sample size, testing budgets
of 400, 600, 1,000, 2,000, and 4,000 replications. Figure 2

shows the average subset sizes for the four proce-
dures when fixing k � 5 and increasing the total sample
size. All methods returned smaller subsets on average
when taking more samples with STB reducing the gap
relative to PS. This is a consequence of the limited
inference PS canmake, having simulated only a fixed ex-
perimental set. Specifically, as the total sample size in-
creases, SPS

n achieves S(X) consistency—the cardinality
of which is shown in Figure 2—while STB eventually
screens out all strictly suboptimal solutions. Figure 2
demonstrates that knowing μ is convex leads to more

Figure 1. (Color online) Empirical Probability of Including Individual Solutions in SPS
n for the d2n Standardized Discrepancy

with 80 Replications Taken at k � 5 Equally Spaced Solutions When Separately Using Knowledge That the Objective Function Is
Lipschitz Continuous or Convex

Notes. The thin gray line depicts the (shifted and scaled) objective function, the black dotted line indicates the desired coverage
of 1−α � 0:95, the black Xs indicate the solutions in the experimental set, and the shaded regions indicate the solutions in S(X).
(a) Lipschitz. (b) Convex.

Figure 2. (Color online) Average Subset Sizes for the STB Procedure and PS with the d1n, d
2
n, and d∞n Standardized Discrepancies

for k � 5 and Different Total Sample Sizes

Notes. The black dotted line indicates the cardinality of S(X). All average sample sizes are individually precise to within 61 with 95% confi-
dence. (a) Lipschitz. (b) Convex.
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powerful screening than knowing a universal Lipschitz
constant. In both cases, PS screened out anywhere from
15% to 65% of the feasible solutions on average while
simulating only 2.5% of them, and more solutions could
be screened out if the decision maker were willing to ac-
cept more risk as represented by the nominal confidence
level. A separate analysis measuring the average
average-optimality gap of the solutions in the returned
subsets yielded the same conclusions. Figure 2 also gives
a sense of how the average subset sizes of PS are affected
by the variability of the outputs because the expressions
for the standardized discrepancies indicate that increas-
ing ni is tantamount to decreasing σ̂2

i .
We also compared PS with the dCRNn standardized

discrepancy to a version of the STB procedure that
accommodates the use of CRN; see section 3 of Nel-
son et al. (2001) for STB details. We again took k � 5
with a total sample size of 400 replications, and each
procedure generated its replications using CRN
across solutions. Figure 3 shows the empirical proba-
bility that individual solutions were included in the
returned subset for STB with CRN and PS when ex-
ploiting knowledge that μ is Lipschitz continuous.
The STB procedure with CRN was more liberal in
screening out solutions—returning an average subset
of size 28—but severely undercovered the optimal
solution, retaining it on only 36% of the macrorepli-
cations. This behavior is a consequence of the severe
nonnormality of the outputs and the use of CRN
with a small sample size per solution. To be precise,
the STB procedure with CRN obtains two sample-
path functions Y(·,V1) and Y(·,V2) and performs

pairwise comparisons based on the variance of
Y(x,V1) −Y(x′,V1) and Y(x,V2) −Y(x′,V2) for solu-
tions x,x′ ∈ X . From Equation (4), it can be seen that,
for x,x′ ∉ [min {V1,V2},max {V1,V2}], the variance of
the two differences is zero, implying that any solu-
tion x0 ∉ [min {V1,V2},max {V1,V2}] will be screened
out. Because the mode of the Weibull distribution
from which V1 and V2 is generated is about 35.4, the
STB subsets are biased to the left of x∗ � 61.

PS with dCRNn screened out similar solutions to its
counterparts that use independent sampling but re-
turned somewhat smaller subsets with an average size
of 104 solutions. (In the convex case, PS similarly re-
turned smaller subsets when using CRN with an aver-
age size of 70.) This additional screening power should
be weighed against the increased difficulty of the under-
lying optimization problems, that is, the need to solve
quadratic programswith denseHessianmatrices.

6.2. Tandem Production Line Problem
The second problem is a resource-allocation problem for
a production line with manufacturing blocking (e.g.,
buffers) adapted from Plambeck et al. (1996). The deci-
sion maker is tasked with allocating discrete resources
across five single-server stations arranged in a tandem
(serial) configuration. Each station processes products
using a first-in, first-out service discipline. If station i is
allocated ai resources, its cycle (processing) time for a
given product is assumed to be exponentially distribut-
ed with rate parameter ρi � ρi(1+ ai), where ρi is a base
processing rate. We set ρ1 � 3, ρ2 � 5, ρ3 � 2, ρ4 � 5,
and ρ5 � 1.

Figure 3. (Color online) Empirical Probability of Including Individual Solutions in the STB Subset and SPS
n with the dCRNn Stan-

dardized Discrepancy with 80 Replications Taken at k � 5 Equally Spaced Solutions When Using Knowledge That the Objective
Function Is Lipschitz Continuous

Notes. (a) STB with CRN. (b) PS with dCRNn .
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There is a buffer in front of each machine for prod-
ucts awaiting processing. If the buffer is full, upstream
stations can become blocked, whereas if it is empty,
downstream stations can become starved. We assume
that there is an infinite supply of products immediately
available to process at station 1 and an infinite-capacity
buffer in front of that station; that is, there is no external
arrival process. The buffer capacities in front of stations
2–5 are fixed at 4, 6, 8, and 4, respectively.

The decision maker’s objective is to allocate 50 re-
sources to minimize the expected completion time of
the 100th product. Under the preceding assumptions, a
continuous extension of the objective function is convex
in the allocation x ≡ (a1,a2,a3, a4, a5); see section IV.B of
Shanthikumar and Yao (1989) for a complete deriva-
tion. We restrict attention to solutions that allocate all
available resources, that is, a1 + a2 + a3 + a4 + a5 � 50,
where ai ∈ Z for i � 1, 2, : : : ,k, resulting in a total of
316, 251 feasible solutions. Because of this tight con-
straint, the feasible region can be reduced to a four-
dimensional space.

Shanthikumar and Yao (1989) provide dynamic re-
cursion equations for simulating the completion times
of all products, thereby avoiding the need to run a full
discrete-event simulation of the system. Even so, we
consider this problem to be representative of large-
scale discrete simulation-optimization problems for
which simulating all feasible solutions is impractical,
but properties of the objective function may be
known. In such cases, the available computational
budget may permit only a small fraction of feasible
solutions to be simulated. We fixed a total sample size
of 10,000 replications, which is enough to simulate
one replication from about 3% of the feasible solu-
tions. We ran a single macroreplication of the PS and
RPS methods with d1n, d

2
n, and d∞n . An experimental set

consisting of k � 100 reasonably space-filling solutions
was determined using the type of designs employed
in Mak and Joseph (2018); hence, 100 replications
were generated at each solution in X.

Screening and timing results for each method are
given in Table 2. All three versions of PS screened out
more than 60% of the feasible solutions while simulat-
ing only 0.03% of them. The efficacy of RPS varied de-
pending on the standardized discrepancy. For d∞n , the
same subset of solutions was returned by PS and RPS
(i.e., SPS

n � SRPS
n ), yet for d1n, no solutions were screened

out by RPS. We suspect that this disparity between PS
and RPS for d1n is due to the sparsity of A and the rap-
id growth rate of D1 with increasing k. In particular,
the offset D1maxi�1,2,: : : ,k σ̂i=

���
ni

√( ) |aji| is likely much
larger than D∞∑k

i�1 σ̂i=
���
ni

√( ) |aji|, leading to a more con-
servative subset.

Remark 3. In all of our experiments for PS and RPS
with d∞n , we observed that, on all macroreplications,
SPS
n � SRPS

n for both the Lipschitz and convex cases.
Theorem EC.3 formalizes this observation and proves
that it holds with probability one for the Lipschitz
case. We were unable to prove an analogous result for
the convex case.

All together, the results in Table 2 illustrate the di-
verse performance of the various methods. PS with d2n,
which required the solution of quadratic programs,
was the most computationally intensive procedure. At
the other extreme, PS with d1n was roughly 20 times
faster, but retained about twice as many solutions.
The most effective and efficient procedure was RPS
with d∞n ; it removed more than 80% of the feasible sol-
utions with an overall run time of about eight core
hours. As a practical recommendation, for either d2n or
d∞n , the faster RPS method can be run first, followed
by the PS method on the solutions in the returned
subset SRPS

n . This approach notably does not require
splitting α to preserve the statistical guarantee as is
sometimes the case with multistage selection proce-
dures (Nelson et al. 2001).

Figure 4 shows the sorted minimum standardized
discrepancies of the feasible solutions, Dn(x0, μ̂, Σ̂), rel-
ative to the cutoff, D, for the three versions of PS. The
minimum standardized discrepancies were divided by
the cutoffs and log-transformed to produce a clear,
standardized comparison. The flat stretches on the left-
hand side of Figure 4 correspond to solutions x0 for
which there exists an x0-optimal convex function that
coincides with the best-fitting convex function (with re-
spect to the standardized discrepancy) at solutions in
X. More solutions can be screened out if a tighter statis-
tically valid cutoff value is used, especially for the d1n
standardized discrepancy—the potential gains for the
d2n and d∞n standardized discrepancies are more limited.

Without an oracle for evaluating the true objective
function, we took 500 replications at each feasible

Table 2. Times and Subset Sizes for a Single Macroreplication on the Tandem Production Line
Problem

Method and discrepancy Time per solution, s Subset size (|SPS
n | / |SRPS

n |) Fraction screened

PS with d1n/RPS with d1n 0.08/0.07 123,904/316,251 60.8%/0%
PS with d2n/RPS with d2n 1.63/0.09 69,198/83,748 78.1%/73.5%
PS with d∞n /RPS with d∞n 0.40/0.09 61,897/61,897 80.4%/80.4%
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solution (using CRN) and estimated the optimality
gaps—the differences in performance between each
solution and the optimal solution—based on the sam-
ple means. Figure 5 shows the optimality gaps for the
feasible solutions as well as those in SPS

n and SRPS
n with

d2n. The results demonstrate that PS and RPS can
screen out a large portion of the inferior solutions
while retaining high-quality solutions.

7. Conclusions and Discussions
This article describes a novel but nascent framework
for screening solutions whose performances can be
evaluated via stochastic simulation. In contrast to tra-
ditional subset-selection procedures, our methods can
screen out unsimulated solutions, making them appeal-
ing statistical-inference techniques for large-scale simula-
tion-optimization problems on which such procedures
are otherwise unworkable. For the plausible screening
method, solutions are screened by minimizing a stan-
dardizeddiscrepancy—a functionmeasuring the distance
between the sample means and a given vector—over a
feasible region characterized by known properties of the
performance function. For the relaxed plausible screening
method, solutions are screened by checking the feasibility
of a system of linear equations. Both methods return sub-
sets of solutions that attain typical statistical properties
of confidence and consistency. Experimental results dem-
onstrate the power of exploiting known functional prop-
erties with varying degrees of effectiveness for different
standardized discrepancies. When the functional proper-
ties and definition of acceptability entail comparing the
performances of only a few solutions, that is, the con-
straint matrix A is sparse, as is the case when optimizing
Lipschitz continuous or convex performance functions,
we recommend the d∞n standardized discrepancy as an ef-
ficient and powerful choice.

The proposed methodology can be extended well
beyond the initial treatment in this paper. Other, more
sophisticated, forms of functional properties can be in-
corporated, such as local Lipschitz continuity, quasi-
convexity, or unimodality. One could also imagine
employing stochastic gradient estimators to further
enhance screening. Answering the question of how
one acquires functional information is critical to con-
vert this idea into a practical tool. One direction could
pair this methodology with existing tests for function-
al properties (Juditsky and Nemirovski 2002, Lim
2020) or schemes for estimating Lipschitz constants
(Calliess 2017). Another tact is to explicitly leverage
our minimal discrepancy to test for functional proper-
ties of performance functions, though we have not ful-
ly developed these ideas. We conjecture that there are
many classes of simulation problems with functional
information available upon careful examination. De-
veloping new methods for analytically verifying and
empirically detecting functional properties is an im-
portant direction for future research.

The asymptotic guarantees delivered by ourmethods—
confidence and consistency—are predicated on the esti-
mator of μ(x) being asymptotically normal and consistent.
It should be possible to develop PS methods for cases in
which μ(x) is a functional other than the mean, such as a
quantile, forwhich themaximum likelihood estimator sat-
isfies these conditions.

Figure 5. (Color online) Histogram of the Optimality Gaps of
Solutions Retained in SPS

n , the Optimality Gaps of Additional
Solutions in SRPS

n , and the Optimality Gaps of All Remaining
Solutions for the d2n Standardized Discrepancy

Figure 4. (Color online) Sorted Logarithm of ScaledMini-
mum Standardized Discrepancies of Feasible Solutions for
a Single Macroreplication of PS with the d1n, d

2
n, and d∞n

Standardized Discrepancies

Notes. The horizontal black dotted line differentiates solutions that
are retained (below) and screened out (above). The vertical black dot-
ted lines indicate subset sizes.
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Another area of future research is how the choice of
the experimental set, X, and the number of simulation
replications allocated to solutions in it, n, dictate the
effectiveness of our methods. There are many relevant
practical questions that can be addressed: Given a
fixed budget, is it better to obtain few replications at
many solutions or more replications at fewer solu-
tions? Given the known properties of μ, how should
the solutions in X be spread over X? The answers to
these questions might be informed by an asymptotic
analysis of our methods as k and n increase together.
Extending our methods to allow for sequential experi-
mentation has great potential. Adaptively identifying
solutions in X at which to obtain more replications or
new solutions to add to X can lead to more efficient
and powerful screening. However, preserving the sta-
tistical guarantees of such procedures requires careful
attention.

Combining PS methods with simulation-optimization
algorithms is another worthy topic for further investiga-
tion. Important issues in the design of new combined
procedures include how best to use the subsets and in-
ferences provided by plausible screening methods. The
statistical guarantees offered by our screening methods
pair especially well with those delivered by R&S algo-
rithms, such as ensuring that a near-optimal solution is
ultimately selectedwith high probability.
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