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The Effects of Common Random Numbers
on Stochastic Kriging Metamodels

XI CHEN, BRUCE E. ANKENMAN, and BARRY L. NELSON, Northwestern University

Ankenman et al. introduced stochastic kriging as a metamodeling tool for representing stochastic simulation
response surfaces, and employed a very simple example to suggest that the use of Common Random Numbers
(CRN) degrades the capability of stochastic kriging to predict the true response surface. In this article we
undertake an in-depth analysis of the interaction between CRN and stochastic kriging by analyzing a richer
collection of models; in particular, we consider stochastic kriging models with a linear trend term. We also
perform an empirical study of the effect of CRN on stochastic kriging. We also consider the effect of CRN
on metamodel parameter estimation and response-surface gradient estimation, as well as response-surface
prediction. In brief, we confirm that CRN is detrimental to prediction, but show that it leads to better
estimation of slope parameters and superior gradient estimation compared to independent simulation.
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1. INTRODUCTION

Beginning with the seminal papers of Kleijnen [1975] and Schruben and Margolin
[1978], simulation researchers have been interested in the impact of incorporating
Common Random Numbers (CRN) into experiment designs for fitting linear regression
metamodels of the form

Y (x) = f(x)�β + ε (1)

to the output of stochastic simulation experiments. In Model (1), Y (x) is the simulation
output, x = (x1, x2, . . . , xp)� is a vector of controllable design or decision variables,
f(x) is a vector of known functions of x (e.g., x1, x2

3 , x1x7), β is a vector of unknown
parameters of appropriate dimension, and ε represents the intrinsic variability in the
simulation output assuming no bias in this metamodel.

CRN is a variance reduction technique that attempts to induce a positive correlation
between the outputs of simulation experiments at distinct design points (settings of
x in the context of Model (1)) and thereby reduce the variance of the estimator of the
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expected value of their difference. For k ≥ 2 design points, a large literature has shown
that, properly applied, CRN reduces the variance of “slope” parameters in (1), and
therefore estimates of the response-surface gradient, while often inflating the variance
of the intercept term. See, for instance, Donohue et al. [1992, 1995], Hussey et al.
[1987a, 1987b], Kleijnen [1988, 1992], Nozari et al. [1987], and Tew and Wilson [1992,
1994].

It is fair to say that for Model (1) the role of CRN has been thoroughly examined.
The purpose of this article is to undertake a similar analysis of the interaction of CRN
and a new metamodeling technique called stochastic kriging Ankenman et al. [2008;
2010]. Stochastic kriging is an extension of kriging, which is typically applied to deter-
ministic computer experiments (see, for instance, Santner et al. [2003]), to stochastic
simulation. Kriging treats the unknown response surface as a realization of a Gaus-
sian random field that exhibits spatial correlation, while stochastic kriging accounts
for the additional uncertainty in stochastic simulation due to intrinsic sampling noise.
Stochastic kriging is related to kriging with a “nugget effect” that treats the measure-
ment errors as independent and identically distributed mean-zero random variables;
stochastic kriging makes modeling additional properties of the random errors possi-
ble, namely unequal variances and correlation of the random errors across the design
space. The focus of this article is the effects of introducing correlated random errors
via CRN.

Ankenman et al. [2010] used a two-point problem with all parameters known and
no trend model to show that CRN increases the Mean Squared Error (MSE) of the
MSE-optimal predictor at a prediction point that has equal spatial correlation with
the two design points. They speculated that CRN will not be helpful for prediction in
general. In this article we generalize their two-point problem to allow unequal spatial
correlations between the design points and the prediction point and inclusion of a
linear trend model; further, we do not assume that the trend model parameters are
known. Therefore we show that the detrimental effect of CRN was not an artifact of the
assumptions of Ankenman et al. [2010]. We then extend the result given in Appendix
EC.2 in Ankenman et al. [2010] for k ≥ 2 spatially approximately uncorrelated design
points and show that CRN inflates the MSE of prediction. In contrast to prediction, we
show that CRN typically improves the estimation of trend model parameters (i.e., β) by
reducing the variances of the slope parameters; CRN also improves gradient estimation
in the sense that the gradient estimators from stochastic kriging are less affected
by simulation noise when CRN is employed. A numerical study looks into the joint
effect on prediction of using CRN and estimating the intrinsic variance; estimating the
intrinsic variance is fundamental to stochastic kriging. All of these results are obtained
under the assumption that the parameters of the spatial correlation model are known.
Therefore, we close this article with two empirical studies in which this assumption is
relaxed, and we evaluate the effects of CRN on parameter estimation, prediction, and
gradient estimation in the context of estimating all the parameters of the stochastic
kriging model.

2. STOCHASTIC KRIGING

In this section we briefly review stochastic kriging as developed in Ankenman et al.
[2010] and the particular simplifications we exploit in this article.

In stochastic kriging we represent the simulation’s output on replication j at design
point x as

Y j(x) = f(x)�β + M(x) + ε j(x) = Y(x) + ε j(x), (2)

where M is a realization of a mean zero Gaussian random field; that is, we think of
M as being randomly sampled from a space of functions mapping �p → �. Therefore,

ACM Transactions on Modeling and Computer Simulation, Vol. 22, No. 2, Article 7, Publication date: March 2012.



The Effects of Common Random Numbers on Stochastic Kriging Metamodels 7:3

Y(x) = f(x)�β+M(x) represents the unknown response surface at point x. In this article
we will focus with only one exception on the special case

Y(x) = β0 +
p∑

d=1

βdxd + M(x). (3)

Finally, ε1(x), ε2(x), . . . represents the independent and identically distributed sampling
noise observed for each replication taken at design point x. We sometimes refer to M(x)
and ε j(x) as the extrinsic and intrinsic uncertainties, respectively, at design point x, as
they were defined in Ankenman et al. [2010].

Yin et al. [2010] also propose an extension of kriging to stochastic simulation. Their
metamodel is similar to Eq. (2), except that ε j(x) is also modeled as a Gaussian random
field that is independent of M, and they take a fully Bayesian approach by treating all
of the model parameters as having prior distributions. While directly accounting for
parameter uncertainty, their model does not allow the effect of CRN to be separated
from the spatial structure of the intrinsic variance of the simulation output.

For most of the analysis in this article we assume that the variance V = V(x) ≡
Var[ε(x)] at all design points is equal, while allowing the possibility that ρ(x, x′) ≡
Corr[ε j(x), ε j(x′)] > 0 due to CRN. In most discrete-event simulation settings the vari-
ance of the intrinsic noise V(x) depends (perhaps strongly) on the location of design
point, x, and one of the key contributions of stochastic kriging is to address experiment
design and analysis when this is the case. However, there are a number of reasons that
we will not consider heterogeneous intrinsic variance except in the empirical study:
In practice, V(x) can take many forms, making it nearly impossible to obtain useful
expressions for the effect of CRN. Further, if the variance of the noise depends on x,
then complicated experiment design techniques (e.g., as developed in Ankenman et al.
[2010]) are needed to properly counteract the effects of the nonconstant variance. Once
again, this would not lead to tractable results. In some sense, the equal variance as-
sumption used in this article is intended to represent the conditions after the proper
experiment design strategy has mitigated the effects of the nonconstant variance. We
do include one example in the empirical study that manifests nonconstant V(x) as a
check that our conclusions are unaffected.

In our setting an experiment design consists of n simulation replications taken at all
k design points {xi}k

i=1. When we assume equal variances, then taking n the same at all
design points seems reasonable and again greatly simplifies the analysis; furthermore,
equal n is appropriate for CRN so that replication j has a companion for all design
points.

Let the sample mean of simulation output at xi be

Ȳ(xi) = 1
n

n∑
j=1

Y j(xi)

= Y(xi) + 1
n

n∑
j=1

ε j(xi) (4)

= β0 +
p∑

d=1

βdxd + M(xi) + 1
n

n∑
j=1

ε j(xi)

and let Ȳ = (
Ȳ(x1), Ȳ(x2), . . . , Ȳ(xk)

)�. Define �M(x, x′) = Cov[M(x), M(x′)] to be the
covariance of points x and x′ implied by the extrinsic spatial correlation model; and
let the k × k matrix �M be the extrinsic spatial variance-covariance matrix of the k
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design points {xi}k
i=1. Finally, let x0 be the prediction point, and define �M(x0, ·) to be

the k × 1 vector that contains the extrinsic spatial covariances between x0 and each of
the k design points; that is,

�M(x0, ·) = (
Cov[M(x0), M(x1)], Cov[M(x0), M(x2)], . . . , Cov[M(x0), M(xk)]

)�
.

Since M is stationary, �M and �M(x0, ·) are of the following form

�M = τ 2

⎛⎜⎜⎝
1 r12 . . . r1k

r21 1 . . . r2k
...

...
. . .

...
rk1 rk2 . . . 1

⎞⎟⎟⎠ and �M(x0, ·) = τ 2

⎛⎜⎜⎜⎝
r1
r2
...

rk

⎞⎟⎟⎟⎠ ,

where τ 2 > 0 is the extrinsic spatial variance. Gradient estimation only makes sense if
the response surface is differentiable. The differentiability of Gaussian process models
like Eq. (3) depend on the differentiability of its spatial correlation function as the
distance between design points goes to zero. See, for instance, Santner et al. [2003,
Section 2.3.4]. In particular, the sample paths are infinitely differentiable if the popular
Gaussian correlation function is used. Therefore we choose to adopt the Gaussian
correlation function Corr[M(xi), M(x�)] = exp{−∑p

j=1 θ j(xij − x�j)
2} in this article. To

simplify notation, the spatial correlation between the design point xi and the prediction
point x0 is ri = Corr[M(x0), M(xi)], and the spatial correlation between two design points
xh and xi is rhi = Corr[M(xh), M(xi)]. To obtain tractable results, the spatial correlation
parameter is assumed the same across all dimensions in this article, that is, θ j =
θ, j = 1, 2, . . . , p. This assumption, although not always appropriate in practice, helps
facilitate the analysis and demonstrate the theme of this article without introducing
unnecessary technical difficulties. We remove this restriction in the empirical study.

To make the k-point models tractable, in forthcoming Sections 3.2 and 4.2 we let
�M = τ 2 Ik where Ik denotes the k × k identity matrix. This form of �M indicates that
the design points are spatially uncorrelated with one another, which might be plausible
if the design points are widely separated in the region of interest. In addition, to derive
results for the k-point trend model in Section 4.2, we further assume that �M(x0, ·) =
τ 2(r0, r0, . . . , r0)�; this scenario might be plausible if the design points are widely sepa-
rated, say at the extremes of the region of interest, while x0 is central. These assump-
tions are useful for insight and tractability, but not necessary for stochastic kriging.

What distinguishes stochastic kriging from kriging is that we account for the sam-
pling variability inherent in a stochastic simulation. Let �ε be the k × k variance-
covariance matrix implied by the sample average intrinsic noise with (h, i) element

�ε(xh, xi) = Cov

⎡⎣ n∑
j=1

ε j(xh)/n,

n∑
j=1

ε j(xi)/n

⎤⎦
across all design points xh and xi. The anticipated effect of CRN is to cause the off-
diagonal elements of �ε to be positive. To make our results tractable in Sections 3
and 4, we let

�ε = V
n

⎛⎜⎜⎝
1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1

⎞⎟⎟⎠ , (5)
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where ρ > 0, meaning we assume equal variance and correlation. Again, these assump-
tions are useful for insight and tractability, but not necessary for stochastic kriging.
The MSE-optimal predictor (metamodel) provided by stochastic kriging takes the form

Ŷ(x0) = f(x0)�β̂ + �M(x0, ·)�[�M + �ε]−1(Ȳ − Fβ̂),

where the rows of F are f(x1)�, f(x2)�, . . . , f(xk)�. In the mathematical analysis in
Sections 3 and 4, we will suppose that only β needs to be estimated, while �M, �ε and
�M(x0, ·) are known. In Section 5, we consider what happens when �ε is estimated, and
numerically assess its impact on prediction performance. Finally, our empirical studies
in Sections 6 and 7 will estimate every parameter and reexamine the effects of CRN in
this context.

3. INTERCEPT MODELS

In kriging metamodeling for deterministic computer experiments, the most common
form is the intercept model (no other trend terms, better known as “ordinary kriging”)
since (it is argued) the random field term M is flexible enough to account for any
variation across the response surface. In this section, we study intercept models and
how the use of CRN affects parameter estimation, prediction, and gradient estimation.
All results are derived in the online supplement to this article.

3.1. A Two-Point Intercept Model

Consider the two-point intercept model Y j(x) = β0 + M(x) + ε j(x) with β0 unknown,
design points x1 and x2 with equal numbers of replications n, and prediction point x0,
with xi ∈ �, i = 0, 1, 2. Therefore, Y(x0) = β0 + M(x0) is the response that we want
to predict, β0 is the parameter we need to estimate, and dY(x0)/dx0 is the gradient of
interest.

The Best Linear Unbiased Predictor (BLUP) of Y(x0), the stochastic kriging predictor,
is

Ŷ(x0) = Ȳ(x1) + Ȳ(x2)
2

+
τ 2
(
Ȳ(x1)−Ȳ(x2)

2

)
τ 2(1 − r12) + V

n (1 − ρ)
(r1 − r2) (6)

with MSE

MSE	 = τ 2 (1 − (r1 + r2)
)+ 1

2

[
τ 2(1 + r12) + V

n
(1 + ρ) − τ 4(r1 − r2)2

τ 2(1 − r12) + V
n (1 − ρ)

]
. (7)

We can show that dMSE	
/dρ is always positive, hence it follows that the use of CRN,

which tends to increase ρ, increases the MSE	 of the best linear unbiased predictor for
this two-point intercept model. Notice that for the spatial variance-covariance matrix
of (Y(x0), Ȳ(x1), Ȳ(x2))� to be positive definite, the following condition must be satisfied:
−r2

12 + 2r1r2r12 + 1 − (r2
1 + r2

2 ) > 0.
The Best Linear Unbiased Estimator (BLUE) of β0 corresponding to the BLUP of

Y(x0) is

β̂0 = Ȳ(x1) + Ȳ(x2)
2

(8)

and it is easy to see that its variance is increasing in ρ since it is a sum of positively
correlated outputs. Thus, the MSE of prediction and the variance of β̂0 are both inflated
by CRN.
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Let ∇̂sk denote the gradient of the predictor Ŷ(x0) at x0 in the stochastic kriging
setting. Under the assumptions given in Section 2, it follows that

∇̂sk = dŶ(x0)
dx0

= −2θ [r1(x0 − x1) + r2(x2 − x0)]
τ 2
(
Ȳ(x1)−Ȳ(x2)

2

)
[
τ 2(1 − r12) + V

n (1 − ρ)
] . (9)

To assess the impact of CRN, we choose as a benchmark the gradient estimator that
would be obtained if there were no simulation intrinsic variance; that is, if the response
surface could be observed noise-free. We are interested in the impact of CRN on the
“distance” between the noisy and noise-free gradient estimators to measure whether
CRN helps mitigate the effect of intrinsic variance on gradient estimation.

Let ∇̂sk(n) be the gradient estimator when n simulation replications are used at each
design point, and let ∇̂sk(∞) be the gradient estimator as n → ∞, which can be obtained
by simply setting the intrinsic variance V = 0 in Eq. (9). It follows that

E
[∇̂sk(n) − ∇̂sk(∞)

]2 = 2θ2
(
r1(x0 − x1) + r2(x2 − x0)

)2(
(1 − r12)/[ V

n (1 − ρ)] + 1/τ 2
)

(1 − r12)
. (10)

From Eq. (10), we see that CRN decreases the mean squared difference between these
two estimators. In the extreme case as ρ → 1, even if n is not large, the gradient
estimator from stochastic kriging converges to the “ideal” case because the effect of
stochastic noise on gradient estimation is eliminated by employing CRN.

3.2. A k-Point Intercept Model

In the previous section we were able to show that CRN is detrimental to response
surface prediction and parameter estimation, but is beneficial to gradient estimation
in a two-design-point setting. In this section we are able to draw the same conclusions in
a particular k-point (k ≥ 2) intercept model, Y j(x) = β0 +M(x)+ε j(x), with β0 unknown.
Under the assumptions given in Section 2, the following results can be obtained.

The BLUP of Y(x0) is

Ŷ(x0) = 1
k

k∑
i=1

Ȳ(xi) + τ 2(V
n (1 − ρ) + τ 2

) ( k∑
i=1

riȲ(xi) − 1
k

(
k∑

i=1

Ȳ(xi)

)(
k∑

i=1

ri

))
(11)

with MSE

MSE	 = τ 2 + τ 4

V
n (1 − ρ) + τ 2

⎛⎝1
k

(
k∑

i=1

ri

)2

−
k∑

i=1

ri
2

⎞⎠
+

V
n

(
(k − 1)ρ + 1

)+ τ 2

k
− 2τ 2

(
1
k

k∑
i=1

ri

)
. (12)

Notice that for the spatial variance-covariance matrix of (Y(x0), Ȳ(x1), . . . , Ȳ(xk))� to be
positive definite, it must be that

∑k
i=1 r2

i < 1. We show in the online supplement to this
article that under this condition dMSE	

/dρ is positive for any ρ ∈ [0, 1), hence CRN
increases MSE	.
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The BLUE of β0 corresponding to the BLUP of Y(x0) is

β̂0 = 1
k

k∑
i=1

Ȳ(xi) (13)

and its variance is easily shown to be an increasing function of ρ.
Similar to the analysis of gradient estimation in Section 3.1, let ∇̂sk = (∇̂sk1 ,

∇̂sk2 , . . . , ∇̂skp)
� denote the gradient of Ŷ(x0) at x0 in the stochastic kriging setting;

notice that now ∇̂sk is a random vector in �p. We can show that for j = 1, 2, . . . , p, the
jth component of the gradient is

∇̂sk j = ∂Ŷ(x0)

∂x0 j

= −2θτ 2

τ 2 + V
n (1 − ρ)

·
k∑

i=1

((
Ȳ(xi) − 1

k

k∑
h=1

Ȳ(xh)

)
(x0 j − xij )ri

)
, (14)

where the ith design point xi = (xi1 , xi2 , . . . , xip)� is a vector in �p, i = 1, . . . , k. Recall

that ri = exp{−θ
∑p

j=1(x0 j − xij )
2} is the spatial correlation between xi and x0, and that

we assume that the design points are spatially approximately uncorrelated, meaning
that they are separated enough that rij ≈ 0, for i �= j.

Now for p > 2, we continue to use ∇̂sk(∞) as the benchmark to evaluate gradient
estimation in the stochastic kriging setting. We use the inner product to measure the
“distance” between the two random vectors ∇̂sk(n) and ∇̂sk(∞) at the prediction point
x0 ∈ �p and call it the mean squared difference between these two gradient estimators.
We can show that〈∇̂sk(n) − ∇̂sk(∞), ∇̂sk(n) − ∇̂sk(∞)

〉 = p∑
j=1

E
[(∇̂sk j (n) − ∇̂sk j (∞)

)2]

= 4θ2(
1

V
n (1−ρ)

+ 1
τ 2

) p∑
j=1

⎛⎝ k∑
i=1

(x0 j − xij )
2r2

i − 1
k

(
k∑

i=1

(x0 j − xij )ri

)2
⎞⎠ . (15)

As in Section 3.1, we arrive at the conclusion that for this k-point intercept model, CRN
decreases the mean squared difference between these two gradient estimators.

4. TREND MODELS

Although many practitioners use intercept models for kriging, it remains to be seen
what models will be most effective when noise is introduced. Also, in linear regres-
sion models, CRN is known to be most helpful for estimating slope parameters and
so it seems likely that CRN will perform best under a trend model that, like a re-
gression model, includes slope parameters. For these reasons and for completeness,
we next study the effects of CRN on stochastic kriging with a linear trend model (the
counterpart of “universal kriging”).

4.1. A Two-Point Trend Model

Consider the two-point trend model Y j(x) = β0 + β1x + M(x) + ε j(x) with β0 and β1
unknown, so that Y(x0) = β0 + β1x0 + M(x0) is the unknown response that we want to
predict at point x0. Without loss of generality, suppose that x1 < x2. Then we can show
the following results.
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The BLUP of Y(x0) is

Ŷ(x0) = Ȳ(x2)(x0 − x1) + Ȳ(x1)(x2 − x0)
(x2 − x1)

(16)

with MSE

MSE	 = 2τ 2 + V
n

− 2ab
(a + b)2

[
τ 2(1 − r12) + V

n
(1 − ρ)

]
− 2τ 2

(a + b)
(ar1 + br2), (17)

where a = x2−x0, b = x0−x1, a+b = x2−x1. Eq. (17) implies that for this two-point trend
model, when x0 ∈ (x1, x2), CRN increases MSE	; however, if we do extrapolation, that is,
x0 /∈ (x1, x2), then CRN will decrease MSE	. Notice that the literature on kriging claims
that kriging does not perform well in extrapolation, so kriging should be restricted to
interpolation. Finally, if x0 = x1 or x2, we get Ŷ(x0) = Ȳ(x1) or Ȳ(x2), respectively; in
this case MSE	 is reduced to V/n, the same with and without using CRN.

The BLUE of β = (β0, β1)� corresponding to the BLUP of Y(x0) is

β̂ = 1
(x2 − x1)

(
x2Ȳ(x1) − x1Ȳ(x2)
Ȳ(x2) − Ȳ(x1)

)
. (18)

It follows that

Var(β̂0) =
(

τ 2 + V
n

)
+ 2x1x2

(x2 − x1)2

[
τ 2(1 − r12) + V

n
(1 − ρ)

]
(19)

Var(β̂1) = 2
[
τ 2(1 − r12) + V

n (1 − ρ)
]

(x2 − x1)2 (20)

and

Cov(β̂0, β̂1) = −(x1 + x2)
[
τ 2(1 − r12) + V

n (1 − ρ)
]

(x2 − x1)2 .

From Eq. (20), we see that CRN reduces the variance of β̂1. Also notice that Eq. (19)
implies that if x1x2 < 0, so that 0 is interior to the design space, then CRN inflates the
variance of β̂0, while if x1x2 > 0, so that β̂0 is an extrapolated prediction of the response
at x = 0, then CRN decreases the variance of β̂0.

Finally, following the analysis in Section 3.1, we can show that the mean squared
difference between the gradient estimators obtained when the number of replications
n is finite and when n → ∞ is

E
[∇̂sk(n) − ∇̂sk(∞)

]2 = 2V(1 − ρ)
n(x1 − x2)2 . (21)

Eq. (21) shows that CRN decreases the mean squared difference between these two
estimators. Observe that the extrinsic spatial variance τ 2 has no influence on this mean
squared difference at all.

4.2. A k-Point Trend Model

For the two-point trend model we were able to draw conclusions similar to those we
found for the intercept model and an additional conclusion related to the estimation of
the slope parameter. Specifically, we found that CRN is detrimental to response surface
prediction at any point inside the region of experimentation since it increases the MSE
of prediction, but CRN is beneficial to estimation of the slope parameter by decreasing
the variance of its estimator and beneficial to gradient estimation since it decreases
the effect of noise. As with the intercept model we can extend the conclusions of the
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two-point trend model to a k-point (k ≥ 2) trend model if additional restrictions are
made.

Consider the k-point trend model Y j(x) = β0 +∑p
d=1 βdxd + M(x) + ε j(x), where p ≥ 2.

Suppose that we have a k × (p + 1) orthogonal design matrix Dk of rank p + 1

Dk =

⎛⎜⎜⎝
1 x11 . . . x1p
1 x21 . . . x2p
...

...
. . .

...
1 xk1 . . . xkp

⎞⎟⎟⎠
which means that the column vectors of Dk are pairwise orthogonal. Such an assump-
tion on Dk is not yet common for kriging, because kriging usually employs space-filling
designs such as a Latin hypercube sample, but orthogonal and nearly orthogonal Latin
hypercube designs are being introduced. Nevertheless, in addition to the assumptions
given in Section 2 orthogonality makes the analysis tractable enough to give the fol-
lowing results.

The BLUE of β = (β0, β1, · · · , βp)� corresponding to the BLUP of Y(x0) is

β̂ = (D�
k �−1Dk)−1D�

k �−1Ȳ, (22)

where � = �M + �ε. More explicitly,

β̂0 = 1
k

k∑
i=1

Ȳ(xi) (23)

and

β̂ j =
∑k

i=1 xijȲ(xi)∑k
i=1 x2

i j

, j = 1, 2, . . . , p. (24)

The resulting BLUP of Y(x0) is

Ŷ(x0) = f(x0)�β̂, (25)

where f(x0) = (1, x01, x02, . . . , x0p)�. The corresponding optimal MSE is

MSE	 = τ 2

⎛⎝1 + 1
k

+
p∑

j=1

x2
0 j∑k

i=1 x2
i j

− 2r0

⎞⎠+ 1
k

V
n

⎛⎝1 + k
p∑

j=1

x2
0 j∑k

i=1 x2
i j

⎞⎠
+ 1

k
V
n

ρ

⎛⎝(k − 1) − k
p∑

j=1

x2
0 j∑k

i=1 x2
i j

⎞⎠ . (26)

Notice that if

k − 1
k

>

p∑
j=1

x2
0 j∑k

i=1 x2
i j

(27)

then CRN increases MSE	.
To help interpret this result, consider a k = 2p factorial design where the design

points are xij ∈ {−1,+1}. Then Eq. (27) reduces to
∑p

j=1 x2
0 j < k − 1. Therefore, CRN

will inflate the MSE	 of Ŷ(x0) at prediction points inside a sphere of radius
√

2p − 1
centered at the origin (which is also the center of the experiment design). Notice that

ACM Transactions on Modeling and Computer Simulation, Vol. 22, No. 2, Article 7, Publication date: March 2012.



7:10 X. Chen et al.

for p > 1 we have
√

2p − 1 >
√

p, the radius of the sphere that just contains the design
points and is the usual prediction region of interest. Also notice that when p = 1 we
recover the condition for the two-point trend model, for which we have more general
results available in Section 4.1 without the orthogonality assumption.

We next focus on the effect of CRN on Cov(β̂). Because of the orthogonality assump-
tion, the expression for Cov(β̂) becomes much simpler. It can be shown that

Cov(β̂) = (
D�

k �−1Dk

)−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

V
n [1+(k−1)ρ]+τ 2

k 0 . . . 0

0
V
n (1−ρ)+τ 2∑k

i=1 x2
i1

. . . 0
...

...
. . .

...

0 0 . . .
V
n (1−ρ)+τ 2∑k

i=1 x2
ip

⎞⎟⎟⎟⎟⎟⎟⎠ . (28)

Hence we arrive at a similar conclusion to the one obtained in Section 4.1: CRN re-
duces the variances of β̂1, β̂2, · · · , β̂p. Here the first diagonal term manifests that CRN
increases Var(β̂0), which is consistent with Section 4.1 since 0 is interior to the design
space.

Now let

∇̂sk = (∇̂sk1 , ∇̂sk2 , . . . , ∇̂skp)
�

denote the gradient of Ŷ(x0) at x0 in the stochastic kriging setting. We can show that
for j = 1, 2, . . . , p, the jth component of the gradient is

∇̂sk j = ∂Ŷ(x0)
∂x0 j

= d�M(x0, ·)
dx0 j

�−1(Ȳ − Dkβ̂) + β̂ j

= β̂ j .

Following the analysis in Section 3.2, we define the following inner product to measure
the “distance” between the two random vectors ∇̂sk(n) and ∇̂sk(∞) at prediction point
x0.

〈∇̂sk(n) − ∇̂sk(∞), ∇̂sk(n) − ∇̂sk(∞)〉 =
p∑

j=1

E
[(∇̂sk j (n) − ∇̂sk j (∞)

)2]

= V
n

(1 − ρ)
p∑

j=1

(
k∑

i=1

x2
i j

)−1

(29)

Eq. (29) shows that CRN decreases the mean squared difference between these two
gradient estimators. Similar to the result in Section 4.1, we see that only the intrinsic
noise affects this mean squared difference, whereas the extrinsic spatial variance has
no influence on it at all.

5. ESTIMATING THE INTRINSIC VARIANCE-COVARIANCE MATRIX

To this point in the article we have assumed that �ε, the variance-covariance matrix
of the intrinsic simulation noise, was known. However, a key component of stochastic
kriging is estimating �ε; to examine the impact of estimating it we will need additional
assumptions that are consistent with those in Ankenman et al. [2010]. This will allow
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us to prove that estimating the intrinsic variance-covariance matrix does not lead to
biased prediction. Then, by modifying the k-point intercept model in Section 3.2, we
study the impact of estimating the common intrinsic variance when there is correlated
random noise among design points induced by CRN. In the following analysis, we treat
�ε as unknown but everything else as known including β.

We begin with formally stating the following assumption.

ASSUMPTION 5.1.

(1) The random field M is a stationary Gaussian random field.
(2) For design point xi , i = 1, 2, . . . , k, the random noise from different replications

ε1(xi), ε2(xi), . . . are independent and identically distributed (i.i.d.) N (0, V(x)).
(3) For the jth replication, j = 1, 2, . . . , n, the k × 1 vector of random noise across

all design points [ε j(x1), ε j(x2), . . . , ε j(xk)]� has a multivariate normal distribution
with mean 0 and variance-covariance matrix �̃ε (with usage of CRN).

(4) The random noise is independent of M.

Notice that the only new condition added here, given those already stated in Section 2,
is the multivariate normality of the random noise across all design points in the same
simulation replication (Condition 3). This, along with Condition 2, will be most appro-
priate when the replication resultsY j(xi) are themselves the averages of a large number
of within-replication outputs (e.g., the average customer waiting time from replication
j is the average of many individual customer waiting times). Condition 1 is how we
characterize our uncertainty about the true response surface and is always an approxi-
mation, while Condition 4 can be justified because we allow the variance of the random
noise V(x) to be a function of location x, eliminating any remaining dependence on M.

Under Assumption 5.1, the multivariate normality of (Y(x0), Ȳ(x1), . . . , Ȳ(xk)) follows
from a proof similar to Ankenman et al. [2010]. The stochastic kriging predictor (41)
given at the beginning of Section A.2 of the online supplement of this article, is the con-
ditional expectation of Y(x0) given Ȳ. The k×1 vector of sample average random noise at
all k design points [ε̄(x1), ε̄(x2), . . . , ε̄(xk)]� has a multivariate normal distribution with
mean 0 and variance-covariance matrix �ε, where ε̄(xi) = n−1∑n

j=1 ε j(xi), i = 1, 2, . . . , k
and ε j(xi) is the random noise at design point xi in the jth replication. It follows that
�ε = n−1�̃ε.

Now let S denote the sample variance-covariance matrix of the intrinsic noise across
the k design points. We have

S =

⎛⎜⎜⎝
S11 S12 . . . S1k
S21 S22 . . . S2k

...
...

. . .
...

Sk1 Sk2 . . . Skk

⎞⎟⎟⎠ , (30)

where

Si� = 1
n − 1

n∑
j=1

(Y j(xi) − Ȳ(xi))(Y j(x�) − Ȳ(x�)) (31)

= 1
n − 1

n∑
j=1

(ε j(xi) − ε̄(xi))(ε j(x�) − ε̄(x�)).
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In words, Si� is the sample covariance of the random noise at design points xi and
x�, i, � = 1, 2, . . . , k. We use n−1S to estimate �ε. The next result shows that estimating
�ε in this way introduces no prediction bias. The proof can be found in Section A.8 of
the online supplement to this article.

THEOREM 5.2. Let �̂ε = n−1S, where S is specified as in Eq. (31). Definê̂Y(x0) = f(x0)�β + �M(x0, ·)�[�M + �̂ε]−1(Ȳ − Fβ), (32)

where f(xi) denotes the (q + 1) × 1 vector of functions f(xi), i = 0, 1, . . . , k and F is the
k × (q + 1) model matrix of full rank

F =

⎛⎜⎜⎜⎝
f(x1)�
f(x2)�

...
f(xk)�

⎞⎟⎟⎟⎠ .

If Assumption 5.1 holds, then E[̂̂Y(x0) − Y(x0)] = 0.

Recall the k-point intercept model Y j(x) = β0 + M(x) + ε j(x), where the design points
{xi}k

i=1 are in �p and equal numbers of replications n are obtained from each of them.
In Ankenman et al. [2010] the effect of estimating intrinsic variance was investigated
assuming the intrinsic noise at each design point to be independent and identically
distributed with a common intrinsic variance. Following Ankenman et al. [2010], we
next focus on how much variance inflation occurs when �ε is estimated under the same
assumptions as in Ankenman et al. [2010] but with the addition of CRN. Suppose

�M = τ 2

⎛⎜⎜⎝
1 r · · · r
r 1 · · · r
...

...
. . .

...
r r · · · 1

⎞⎟⎟⎠
and �M(x0, ·) = τ 2(r0, r0, . . . , r0)� with r0, r ≥ 0. This represents a situation in which
the extrinsic spatial correlations among the design points are all equal and the design
points are equally correlated with the prediction point.

Notice that for the spatial variance-covariance matrix of (Y(x0), Ȳ(x1), . . . , Ȳ(xk))� to
be positive definite, the condition r2

0 < 1/k + r(k − 1)/k must be satisfied. To make the
analysis tractable but still interesting, we assume that �̃ε has the following form, with
ρ known and V unknown.

�̃ε = V

⎛⎜⎜⎝
1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1

⎞⎟⎟⎠
Hence it follows that �ε = n−1�̃ε. As in Ankenman et al. [2010], we suppose that there
is an estimator V̂ of V such that V̂ ∼ Vχ2

n−1/(n−1), namely (n−1)V̂/V has a chi-squared
distribution with degrees of freedom n − 1. In Section A.9 of the online supplement
to this article we show that the MSE of Ŷ(x0), the stochastic kriging predictor with V
known, is

MSE	 = τ 2

(
1 − kr2

0

1 + Cργ + (k − 1)r

)
, (33)
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where Cργ = γ

n (1 + (k − 1)ρ) and γ = V/τ 2 denotes the ratio of the intrinsic variance
to the extrinsic variance, which is (roughly speaking) a measure of the sampling noise
relative to the response surface variation. On the other hand, the MSE of ̂̂Y(x0) obtained
by substituting V̂ for V is

MSE = τ 2E

⎡⎢⎣1 + kr2
0

[
1 + Cργ + (k − 1)r

](
1 + V̂

VCργ + (k − 1)r
)2 − 2kr2

0(
1 + V̂

VCργ + (k − 1)r
)
⎤⎥⎦ . (34)

We assess the MSE inflation and the effect of CRN on it by evaluating the ratio of (34)
to (33) numerically. The MSE inflation ratio is largest when n is small and r0 and r are
large, so in the numerical analysis we show the inflation ratio as a function of γ = V/τ 2

and ρ for n = 10, r = 0, 0.1, 0.2 and r0 at 95% of the maximum value it can take. We use
k = 50 design points throughout the study for convenient comparison with the results
given in Ankenman et al. [2010].

We summarize our findings as follows and refer readers to Section A.10 of the online
supplement to this article for a detailed discussion. There is a penalty associated with
estimating intrinsic variance; that is, doing so always inflates prediction MSE relative
to using the (unknown) true value of �ε. However, for a fixed value of the spatial
correlation of a given response surface, CRN can either magnify or diminish this penalty
depending on the ratio of the intrinsic variance to the extrinsic variance, or in other
words, depending on which source of variation dominates for that particular response
surface. The MSE inflation that results from estimating �ε is even more substantial
in the presence of CRN when spatial variation dominates intrinsic variation (τ 2 � V).
On the other hand, the MSE inflation from estimating �ε is dimishished by using CRN
when intrinsic variation dominates spatial variation (τ 2 � V).

These effects of CRN on MSE inflation hold for response surfaces with varying
degrees of smoothness. Interestingly, we found that the smoothness of the response
surface actually matters. Specifically, strong spatial correlation of the response surface
tends to counteract the effect of CRN on MSE inflation, whatever it is. A response
surface with “strong spatial correlation” tends to be smoother than one with weaker
spatial dependence, since the value of the response at any point tends to be similar to—
that is, strongly correlated with—other points in close proximity. When CRN magnifies
the MSE inflation, then strong spatial correlation reduces the magnification. On the
other hand, when CRN diminishes the MSE inflation, it is less effective at doing so
when the surface exhibits strong spatial correlation.

Lastly we suggest that discretion needs to be exercised when one interprets the
results preceding, because even if the MSE inflation ratio is close to 1, the MSE	 itself
can be large; therefore ratio = 1 does not mean that the particular setting provides a
good prediction. Similarly, a large MSE inflation ratio does not necessarily imply that
a particular experimental setting provides poor prediction. Finally from the discussion
in Section A.10 of the online supplement to this article we conclude that even with this
small value of n (recall that n = 10), the MSE inflation ratio is slight over an extreme
range of γ = V/τ 2. As n increases, the inflation vanishes. This suggests that the penalty
for estimating V will typically be small.

6. AN EXPERIMENT WITH GAUSSIAN RANDOM FIELDS

From the two-point and k-point intercept and trend models we gained some insight
into the impact of CRN on parameter estimation, prediction, and gradient estimation
for stochastic kriging. However, to obtain these results we had to assume all model
parameters except β (Sections 3–4) and �ε (Section 5) were known. In this section, we
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confirm these insights empirically when all parameters must be estimated. The factors
we investigate are the strength of the correlation ρ induced by CRN; the number of
design points k; the strength of the extrinsic spatial correlation coefficient θ ; and the
ratio of the intrinsic variance to the extrinsic variance γ = V/τ 2.

We consider a one-dimensional problem where the true response surface is Y(x) =
10+3x +M(x) with x ∈ [0, 1]. The Gaussian random field M, denoted by GRF(τ 2, θ ), has
extrinsic spatial covariance between points x and x′ given by �M(x, x′) = τ 2 exp{−θ (x −
x′)2}. A test-function instance is created by sampling M ∼ GRF(τ 2, θ ), and we sample
multiple instances as part of the experiment. We fix τ 2 = 1 but θ is varied to obtain
smooth and rough response surface instances.

The simulation response observed at point x on replication j is Y j(x) = 10 + 3x +
M(x) + ε j(x), where the random noise ε j(x), j = 1, 2, . . . , n is i.i.d. N (0, V); since we
assume equal variance it is reasonable to take the same number of replications, n, at
each design point. The effect of CRN is represented by specifying a common correlation
ρ = Corr[(ε j(x), ε j(x′)] for x �= x′, j = 1, 2, . . . , n. We vary γ = V/τ 2 = V to introduce
random noise of different relative intensities.

An equally spaced grid design of k design points x ∈ [0, 1] is used, with k ∈ 
k =
{4, 7, 13, 25}. We make n = 100 replications at each design point, and control V so that
γ /n = V/n ∈ 
γ = {0.01, 0.25, 1}, corresponding to low, medium, and high intrinsic
variance. We took θ ∈ 
θ = {4.6052, 13.8155} (or equivalently, exp(−θ ) ∈ {0.01, 10−6},
where exp(−θ ) is the correlation between the most distant design points in [0, 1]); notice
that small θ tends to give a smoother response surface. We vary ρ in 
ρ = {0, 0.4, 0.8}
to assess the effect of increasing correlation induced by CRN; for each θ ∈ 
θ we sample
10 true response surfaces, and for each response surface we run 5 macroreplications for
each {k, ρ, γ } ∈ 
k × 
ρ × 
γ combination; for a fixed {θ, k, ρ, γ } and response surface,
the macroreplications differ only in their randomly sampled ε j(x).

Thus, altogether there are 2 × 10 × 4 × 3 × 3 × 5 = 3600 experiments. For each
one we fit a stochastic kriging metamodel using maximum likelihood estimation as
described in Ankenman et al. [2010], do prediction and gradient estimation at 193
equally spaced points in [0, 1], and record the values of the estimated parameters
β̂0, β̂1, τ̂ 2 and θ̂ . The stochastic kriging code used in these experiments can be found at
www.stochastickriging.net.

We evaluate the impact on prediction by MSSE, the mean of the sum of squared errors
of the predicted values at the 193 check points, namely, MSSE(Ŷ) = 193−1∑193

i=1(Y(xi)−
Ŷ(xi))2; we evaluate parameter estimation by recording the absolute difference between
the true and estimated parameter on each trial; and we evaluate gradient estimation
by computing the sample correlation between the true and estimated gradient across
the 193 check points.

A brief preview of our findings is as follows.

—CRN does not aid prediction and instead increases the MSSE.
—CRN does reduce the variability of the slope estimator β̂1.
—CRN does improve gradient estimation in the sense that it introduces a strong

positive correlation between the estimated gradient and the true gradient.

These findings are consistent with our results in the previous sections.
Boxplots in Figures 1–4 provide more details. For brevity, we show only graphs

corresponding to the number of design points k = 7. In each figure, the left panel
shows the sample statistics of interest obtained from the smoother response surface
with θ = 4.6052; while the right panel shows the statistics obtained from the rougher
response surface with θ = 13.8155. Within each panel from the left to the right, 3
groups of boxplots are ordered by increasing γ /n; within each group, three individual
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Fig. 1. MSSE for k = 7.

Fig. 2. |β0 − β̂0| for k = 7.

boxplots are ordered by increasing ρ. Notice that each individual boxplot is a summary
of 50 data points from 5 macroreplications on each of 10 surfaces.

To evaluate prediction, we calculate the MSSE by averaging the squared difference
between the true response Y(x0) and the predicted value Ŷ(x0) at x0 across 193 check
points. A summary of the MSSE for k = 7 is shown in Figure 1. It is easy to see
that increasing ρ increases MSSE, and leads to wider interquantile range. This is
especially true when θ is large, or equivalently, when the extrinsic spatial correlation
is small. As we expected, for fixed ρ, increasing γ /n will increase MSSE. On the other
hand, we mention (without showing graphs) that for fixed ρ, increasing the number of
design points k leads to narrower interquantile range when γ /n is not large. Finally, by
observing the sets of three boxplots that are grouped close together to show the effect
of increasing ρ, we conclude that CRN does not help prediction.

For parameter estimation, we use the Absolute Deviation (AD), that is, |β j − β̂ j |. A
summary of the statistical dispersion of |β j − β̂ j |, j = 0 and 1 for k = 7 is shown in
Figures 2 and 3. For |β1 − β̂1|, we see in Figure 3 that increasing ρ decreases |β1 − β̂1|;
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Fig. 3. |β1 − β̂1| for k = 7.

Fig. 4. Corr(∇̂true(n),∇̂sk(n)) for k = 7.

this effect is more evident when θ is small. The effect of ρ on |β0−β̂0| is not as obvious as
on |β1−β̂1|. As we expected, for fixed ρ, increasing γ /n leads to increased ADs and wider
interquantile range for both parameters. Finally, we mention (without showing graphs)
that increasing the number of design points k moves the interquantile range closer to 0
and helps to estimate slope parameter even better. We conclude that CRN improves the
estimation of the slope parameter, but its effect on estimating the intercept parameter
is not as clear.

To evaluate gradient estimation, we use the correlation between the true gradient
and the gradient estimated in the stochastic kriging setting instead of using the mean
squared difference between them, since in most applications it is far more important
to find the correct direction of change rather than the magnitude of this change. There-
fore, Corr(∇̂true(n),∇̂sk(n)) gives a better view of the effect of ρ on gradient estimation
under the influence of θ and k. We use the finite-difference gradient estimate from
the noiseless response data as the true gradient ∇̂true(n). A summary of the correla-
tions between ∇̂sk(n) and ∇̂true(n) for k = 7 is shown in Figure 4. It is obvious that
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increasing ρ consistently increases Corr(∇̂true(n),∇̂sk(n)) for all γ /n values, and makes
the interquantile range narrower as well as moving them toward 1; in fact, this effect
is more manifest when γ /n is large. Typically, for fixed ρ, increasing γ /n decreases
Corr(∇̂true(n),∇̂sk(n)) and leads to wider interquantile range. Furthermore, we mention
(without showing graphs) that increasing the number of design points k increases
Corr(∇̂true(n),∇̂sk(n)) and makes the interquantile range narrower. We conclude that
CRN improves gradient estimation by introducing a strong positive correlation be-
tween the estimated gradient and the true gradient.

For each parameter set {ρ, γ, θ, k}, we also estimated τ 2 and θ for the 10 response
surfaces, each with 5 macro-replications. The estimates θ̂ and τ̂ 2 obtained are not as
good as β̂0 and β̂1 when compared to their known true values. For brevity, we choose
not to present these results.

7. M/M/∞ QUEUE SIMULATION

In this section, we move a step closer to realistic system simulation problems. Let Y(x)
be the expected steady-state number of customers in an M/M/∞ queue with arrival
rate x1 and mean service time x2; it is known that Y(x) = x1x2 and the distribution of
the steady-state queue length is Poisson with mean Y(x). Notice that the variance of
the response is x1x2 which changes across the design space.

Therefore, given values for x1 and x2 we can simulate a steady-state observation by
generating a Poisson variate with mean x1x2. Given a set of design points {xi1, xi2}k′

i=1,
we induce correlation across design points by using the inverse CDF method [Law
and Kelton 2000], where k′ denotes the number of design points used. Specifically, for
replication j

Y j(xi) = F−1
xi

(U j), i = 1, 2, . . . , k′, (35)

where U1,U2, . . . ,Un are i.i.d. U(0,1); n is the number of simulation replications, and
F−1

xi
(·) represents the inverse CDF of a Poisson distribution with mean xi1xi2. Notice that

our experiment differs from what would occur in practice because we only take a single
observation of the queue length on each replication, rather than the average queue
length over some period of time. This allows us to compute the correlation induced by
CRN, values of which typically are greater than 0.9 in this setting.

In stochastic kriging when the response surface Y(x) is unknown, we assume that
it takes the form Y(x) = f(x)�β + M(x). Three different specifications of f(x)�β are
considered to evaluate the effects of CRN: they are

Model 1. An intercept-only model, f(x)�β = β0;
Model 2. A misspecified trend model, f(x)�β = β0 + β1x1 + β2x2;
Model 3. A correctly specified trend model, f(x)�β = β0 + β1x1 + β2x2 + β3x1x2.

By “correctly specified” we mean that Model 3 can recover the true response surface
x1x2 while the other two cannot.

Our experiment design is as follows. We consider the design space 1 ≤ xd ≤ 5, d = 1, 2.
For design points we use a Latin hypercube sample of k ∈ {5, 20, 50} points, and
augment the design with the four corner points (1, 1), (1, 5), (5, 1) and (5, 5) to avoid
extrapolation. Thus, there are k′ = k + 4 design points in total. At each design point
n = 400 simulation replications are made either using CRN as in Eq. (35), or sampled
independently. We then fit stochastic kriging metamodels with trend terms specified
as Models 1, 2, and 3 and make 100 macroreplications of the entire experiment.

For each model specification, we evaluate the impact on predication by ̂MISE(Ŷ), the
approximated mean integrated squared error of Ŷ. We evaluate gradient estimation by
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Table I. The Scaled Mean Integrated Squared Error of
Predictions Obtained for the Three Response Models with

and Without Using CRN

Model 1 Model 2 Model 3
k′ Indep. CRN Indep. CRN Indep. CRN
9 82.5 68 501 267 12 13

(9.8) (7) (112) (99) (1) (2)
24 20 55 25 65 6.2 13

(1) (9) (2) (10) (0.4) (2)
54 9.5 72 12 73 4.0 7.0

(0.6) (11) (1) (10) (0.3) (1.2)

Table II. The Scaled Mean Integrated Squared Error of Gradient Estimates Obtained for the Three Response
Models with and without Using CRN

Model 1 Model 2 Model 3
k′ Indep. CRN Indep. CRN Indep. CRN

∂Ŷ(x0)
∂x01

∂Ŷ(x0)
∂x02

∂Ŷ(x0)
∂x01

∂Ŷ(x0)
∂x02

∂Ŷ(x0)
∂x01

∂Ŷ(x0)
∂x02

∂Ŷ(x0)
∂x01

∂Ŷ(x0)
∂x02

∂Ŷ(x0)
∂x01

∂Ŷ(x0)
∂x02

∂Ŷ(x0)
∂x01

∂Ŷ(x0)
∂x02

9 84
(10)

90
(15)

8.4
(1.4)

8.8
(1.5)

748
(204)

782
(209)

388
(177)

367
(169)

3.7
(1.1)

3.4
(0.4)

0.48
(0.07)

0.50
(0.08)

24 30 31 2.8 2.8 39 64 3.2 3.4 2.2 3.4 0.37 0.39
(3) (4) (0.4) (0.3) (4) (15) (0.3) (0.4) (0.4) (0.6) (0.05) (0.05)

54 15 19 3.0 2.9 23 26 2.9 2.9 6.7 13 0.26 0.29
(2) (3) (0.5) (0.4) (4) (3) (0.4) (0.4) (2.1) (3) (0.04) (0.05)

Table III. Results for the Slope Parameters for the Correctly Specified Trend Model with and without
Using CRN

β̂0(β0 = 0) β̂1(β1 = 0) β̂2(β2 = 0) β̂3(β3 = 1)
k′ Indep. CRN Indep. CRN Indep. CRN Indep. CRN
9 −0.009 −0.003 −0.001 −0.001 0.001 −0.001 1.000 1.000

(0.0095) (0.0024) (0.0040) (0.0009) (0.0043) (0.0009) (0.0016) (0.0003)
24 −0.016 −0.004 0.004 −0.001 0.006 −0.001 0.998 1.000

(0.0090) (0.0028) (0.0031) (0.0007) (0.0036) (0.0007) (0.0012) (0.0002)
54 0.008 −0.006 −0.003 0.000 −0.004 0.000 1.001 1.000

(0.0082) (0.0021) (0.0030) (0.0005) (0.0029) (0.0005) (0.0010) (0.0002)

computing ̂MISE(∇̂skd), d = 1 and 2. In both cases, we approximate MISE by using a
2500 check-point grid in [1, 5]2. Formally,

̂MISE(Ŷ) = 1
100

100∑
�=1

1
2500

2500∑
i=1

(Y(x′
i) − Ŷ�(x′

i))
2

and

̂MISE(∇̂skd) = 1
100

100∑
�=1

1
2500

2500∑
i=1

(∇d(x′
i) − ∇̂skd(x′

i, �))2,

where the Integrated Squared Error (ISE) is approximated by averaging the sum of
squared errors over the 2500 check points and the Mean Integrated Squared Error
(MISE) is approximated by averaging the approximated ISE over 100 macroreplica-
tions. Notice that for better presentation of the results, values shown in Tables I and II
are calculated without the scaling factor 1/2500. Finally we give summary statistics
for the parameter estimates of the correctly specified trend model (Model 3).

The effects of CRN on prediction, gradient estimation, and parameter estimation can
be found in Tables I–III. The values in parentheses are the corresponding standard
errors. In brief, we found that the results derived in the previous sections still hold;
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that is, CRN improves gradient estimation and estimation of slope parameters, but
does not aid prediction.

In Table I, we observe for all three model specifications that the ̂MISE(Ŷ) is smaller
with independent sampling than with CRN, with the exception of Models 1 and 2 when
the number of design points is very small (k′ = 9); increasing the number of design
points make this effect even more apparent. Notice that the misspecified trend model
(Model 2) gives even worse prediction results than the intercept model (Model 1), while
the correctly specified trend model is much better.

In Table II, it is observed that CRN improves gradient estimation for all three
response models. The values for the sample means and standard errors obtained on
the correctly specified trend model are much smaller than the corresponding values
from the other two response models. We observe once again that the misspecified
trend model (Model 2) gives much worse gradient estimates than the intercept model
(Model 1) does.

Lastly, we are interested in knowing how CRN affects estimates of the slope parame-
ters for the correctly specified trend model. The results given in Table III manifest that
CRN reduces variances of the slope parameter estimates to a great extent; increasing
the number of design points does not improve the results much in this case. Notice that
if the correctly specified trend model is assumed, one is able to successfully recover the
true response model with moderately large number of replications.

8. CONCLUSIONS

CRN is one of the most widely used variance reduction techniques; in fact, with most
simulation software one would have to carefully program the simulation to avoid using
it. Therefore, it is important to understand its effect on a new metamodeling technique
such as stochastic kriging. Previous research with other metamodels, such as linear
regression, has shown that CRN often leads to more precise parameter estimation, es-
pecially with slope parameters that are essentially gradients. However, since CRN can
inflate the variability of parameters such as the intercept, it can reduce the precision
of the actual prediction.

The parameters, the form, and even the underlying assumptions of stochastic kriging
are substantially different from traditional metamodels. Nevertheless, in this article
we have provided compelling evidence that CRN has effects on the stochastic kriging
metamodel that are similar or at least analogous to the effects seen in more traditional
metamodel settings. Specifically, we have used a variety of tractable models to show
that CRN leads to: (1) less precise prediction of the response surface in terms of MSE,
(2) better estimation of the slope terms in any trend model, and (3) better gradient
estimation.

In addition, we are able to show that under Assumption 5.1 in Section 5, estimating
the intrinsic variance-covariance matrix �ε introduces no prediction bias to the plug-in
BLUP. A thorough numerical analysis of the MSE inflation that is induced by estimat-
ing �ε revealed that stronger spatial correlation counteracts the effect of CRN on MSE
inflation.

Finally, through an experiment with Gaussian random fields and an M/M/∞ queue
example we assessed the impact of CRN on prediction, parameter estimation, and
gradient estimation when the parameters of the trend model β, of the random field τ 2

and θ , and the intrinsic variance-covariance matrix �ε are all estimated as would be
required in actual application. The conclusions given by the empirical evaluation were
consistent with our analytical results.

The implications of our results are that when the actual prediction values matter,
CRN is not recommended. Such scenarios might occur in financial risk analysis or
tactical decision making where the primary purpose of the metamodel is to produce
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predictions of the response in places where no actual simulations have been made and
the predicitons are needed quickly (long before actual simulation runs would finish).
CRN is recommended for use in gradient estimation for simulation optimization or if
the metamodel is a physics-based model where better parameter estimates are of great
value to, say, establish sensitivities. Sensitivity analysis is also particularly useful for
verification and validation of simulation models. Since CRN substantially improves
the performance of stochastic kriging gradient estimators, a fruitful area for future
research is applying stochastic kriging and CRN to simulation optimization.

ACKNOWLEDGMENTS

We would like to thank the referees and editors for comments and suggestions for improvement of our article.

REFERENCES

ANKENMAN, B., NELSON, B. L., AND STAUM, J. 2010. Stochastic kriging for simulation metamodeling. Oper.
Res. 58, 371–382.

ANKENMAN, B. E., NELSON, B. L., AND STAUM, J. 2008. Stochastic kriging for simulation metamodeling. In
Proceedings of the Winter Simulation Conference, S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson,
and J. W. Fowler, Eds., IEEE, Los Alamitos, CA, 362–370.

CHEN, X., ANKENMAN, B., AND NELSON, B. L. 2010. Common random numbers and stochastic kriging. In Pro-
ceedings of the Winter Simulation Conference. B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and
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