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Abstract 
The use of cycle time � throughput curves in the semiconductor manufacturing industry is 

imperative to strategic planning.  Exhaustive simulation runs of complex queueing 
networks are analyzed here with the intention of finding network characteristics that vary 
the conventional functional form of the mean and higher moment cycle time � throughput 
curves. The functional form for the mean and higher moment CT/TH curves contains an 

exponential term in the denominator that accounts for the explosion of the cycle time 
mean and variance at high traffic intensities and is generally fixed.  We explore cases 
where the value of the exponent must be adjusted significantly in order to achieve the 

best fit of empirical data.   The networks we simulate represent a subset of characteristics 
deemed common in wafer fabrication plants.  Presented here are analyses of data 
generated by models characterized by re-entrant flow, queues in series, batching, 

prioritization queueing schema, and stochastic machine failure.  Results from models 
exhibiting the �Shortest Processing Time First� queueing discipline and machine failure 

reveal varying values of the exponent p in the mean CT/TH curve and these as well as 
other models fit higher moment models with varying exponents. 
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Introduction 
  
 In this paper we examine several features of manufacturing networks and how 
those network topologies influence the generation of rational-function models of the 
cycle time � throughput curves.  More specifically, we gear our research toward the 
semiconductor or wafer fabrication industry and topologies that are typical in that sector.   
This is one portion of a larger study being conducted by Professors Barry Nelson and 
Bruce Ankenman of Northwestern University in conjunction with the work of Gerald T. 
Mackulak and John W. Fowler of Arizona State University and funded by a grant from 
the National Science Foundation.  Also contributing to the findings in this paper is 
Northwestern PhD candidate Feng Yeng.   

The project arose out of the great need for more effective methods of strategic 
planning for manufacturing.  Cycle time-throughput curves are extremely useful for 
managing inventory, planning delivery, and making cost estimates.  If the curves are 
accurate, a firm can confidently determine the start rate needed to achieve a total system 
processing time or alternatively the amount of time to allocate to a task that requires a set 
throughput.  If an estimated cycle time � throughput curve is not indicative of the true 
system behavior, costly mistakes can be made in planning.  Making the curve accurate 
over a large range of possible throughputs or start rates is particularly important to firms 
that experience a great deal of variability in order sizes and frequency. 

Sophisticated models are needed to approximate the cycle time � throughput 
curves of manufacturing networks due to the exponential behavior of the process cycle 
time as the system nears capacity.  Nelson, Ankenman, and Yeng developed robust 
models to account for this explosive behavior that vary fundamentally from previous 
research in the area.  Specifically, Cheng and Kleijnen examined functional forms of 
models for the M/M/1 queue using FIFO, SPTF, and LPTF, as well as a network of 
queues in a packet assembly/disassembly device.  Their generalized model called for a 
polynomial factor to account for error in the theoretical formula while fixing the other 
aspects of the functional form.  The models used in this research, on the other hand, allow 
the fundamental functional form to change while always using the lowest degree 
polynomial factor possible, sometimes only a constant.  The functional form for the mean 
cycle time � throughput curve that we use is shown below where f(TH) is the polynomial 
factor as a function of the throughput and p is allowed to vary.   

 
Mean Cycle Time = f(TH)/(1-TH)^p 

 
It is the intention of this portion of the research to find network topologies and 

characteristics typical in semiconductor manufacturing processes that necessitate varying 
values of p.  In previous research, p was always fixed at one for the mean cycle time 
model.  The higher moments of the cycle time � throughput curve traditionally adhere to 
similar functional forms, with the exponent in the denominator also fixed.  We 
hypothesize that when allowed to vary, certain topologies will necessitate vastly different 
exponent values to achieve the best fit of the data. 

In designing our simulation experiments, we use principles outlined by Ward 
Whitt in his 1989 paper �Planning Queueing Simulations.�  Due to increasing variance at 
higher throughputs, it is necessary to generate more data at higher throughput points in 
order to maintain a uniform relative error.  A uniform relative error based on a 95% 
confidence interval at the highest throughput is used as a basis for calculating the 
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necessary number of replications run at each design point.  Initial condition bias is also an 
influential factor in large, complicated networks of queues and portions of the simulation 
runs are truncated to account for this �warm-up� period and ensure steady-state 
measurements.  Consistent with Cheng and Kleijnen�s work, we also choose design 
points that are concentrated at high throughputs and more spread out at low traffic 
intensities.  
 We develop simulation models exhibiting various topological characteristics 
typical in semiconductor manufacturing.  Firstly, we examine re-entrant flow of entities 
into various parts of the system.  Coupled with this analysis, we manipulate the number 
of queues in series while varying the number of entity re-entries and the length of the 
network segment that is repeated.  A second set of topologies involve queues in series 
where entities are batched, processed as batches, and unbatched multiple times 
throughout a network.  Embedded with this is an analysis of the location of a bottleneck 
queue or multiple bottlenecks located within the system.  This is to confirm Ward Whitt�s 
well known stipulation that a queueing network can be generalized to the behavior of any 
bottleneck queues, and to see if any exceptions to the rule can be found.    
 Similar to Cheng and Kleijnen�s study, we test the robustness of our functional 
models by simulating systems utilizing queueing disciplines other than FIFO.  In the 
semiconductor industry, multiple part classification and complex prioritization schemes 
can be represented by a myriad of queueing methods.  Our work focuses on LIFO and 
SPTF, as well as a random queueing procedure, which we call SIRO or �Service in 
Random Order.�  Random machine downtime and failure can also be a major disruptive 
factor in manufacturing networks and has been seldom modeled in past research.  We 
present data generated by simulation models exhibiting the aforementioned conditions 
and examine the resulting fits to a set of our models.    
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Method 
 
Initial Experimental Design/Model Development 
 The network topologies we analyzed were modeled in Arena, an advanced 
simulation software package.  Entities in our Arena models represent individual silicon 
wafers traversing a manufacturing system.  We modeled the entity arrivals into the 
system as a Poisson process, which means arrivals occur one at a time at independent and 
stationary increments.  The exponentially distributed mean time between arrivals in our 
Poisson arrival process is a parameter that can be set for each simulation run to obtain the 
desired throughput.  In reality, arrival processes in wafer fabrication processes are likely 
to be much less variable, so using a Poisson process in our models accounts for any 
conceivable level of variability in the field.  Process modules in our models simulate 
different delays and processing stations encountered by the wafers.  The time spent in 
these modules can be represented by statistical distributions with user-defined means and 
standard deviations.  Like the time between arrivals, we modeled the mean service time 
in each of our process modules to be exponentially distributed to account for sources of 
variability in wafer processing times. The queues in our process modules used the FIFO 
or �First-In-First-Out� queueing discipline with infinite capacity queues for most of our 
simulations.  Arena is also able to model the �Last-In-First-Out� queueing discipline as 
well as queue sorting based on entity attributes. In some of our later models, we 
experimented with LIFO, SPTF (Shortest Processing Time First), and SIRO (Service in 
Random Order) to account for any amount of complexity in queue sorting.  The paths of 
the wafer entities through the manufacturing network are determined by our arrangement 
of the process modules and parameters of the system.  After a simulation run, Arena can 
calculate statistics such as the average time an entity spends in the system, average queue 
length, and server utilization that can be written to file for further analysis.  
 Initially, we examined several network topologies that our research team 
determined were common in the manufacture of silicon wafers.   Preliminary data was 
gathered with models using processes in series, reentrant-flow, batching, bottleneck 
queues in different locations, and combinations of these phenomena.  In addition, we later 
examined models incorporating machine failure.  Our first major focus, however, was on 
three of these topology characteristics:  re-entrant flow (entities going back and repeating 
certain processes), different numbers of queues within the re-entry loops (entities 
repeating a series of several processes or only a single process), and different numbers of 
queues in series.  Respectively, the parameters K, Seg, and Q made up our experimental 
design in 12 scenarios. 
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K (# Loops) Seg (Segment Length) Q (# of Queues) 
3 1 3 
5 1 3 
3 3 3 
5 3 3 
3 1 10 
5 1 10 
3 3 10 
5 3 10 
3 1 20 
5 1 20 
3 3 20 
5 3 20 

Figure 1: Experimental Design  
 
 The processes were arranged linearly with the repeated segments always at the 
end of the chain.  For example, with Q = 20, Seg = 1, and a K = 5, the last process is 
repeated by each entity five times.  With Q = 3, Seg = 3, and K = 3, entities flow through 
the entirety of the system (only three processes long) a total of three times.  All in all, 
these scenarios can subject the entities to going through as few as 5 total processes (Q = 
3, Seg = 1, K = 3) and as many as 32 (Q = 20, Seg = 3, K = 5). 
 The Arena model was constructed such that the parameters could be easily 
manipulated and data gathered efficiently.  The basic structure of the first model we used 
(see Figure 2 below) was two process modules, one that contained a sub-module where 
the entities actually traversed the manufacturing network, and one with a sub-module 
where the entity data was written to file.  The rest of the top view of the model is simply 
the create and dispose modules where the entities enter and leave the system, and some 
assignment modules that attach a creation time attribute to the entities and count the 
entities as they leave the system.   
 

 
Figure 2: Basic Arena Model View 1 

 
The sub-model showing the actual network topology is the heart of the 

experiment and is shown in Figure 3 below.  Upon entering the sub-module, entities are 
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assigned attributes that tell them how many times they must loop back into the system 
after completing the series of 20 processes and how many processes they must repeat in 
their loop.  In the model, the first 17 or the first 10 queues can be set with process times 
of zero so the entities can behave as though they were only really encountering 3 or 10 
processes in addition to being able to traverse all 20.    

 

 
Figure 3: Basic Arena Model View 2 
 

After making their way through all the processes in series, the entities encounter a 
set of decide modules that direct them to go back to a certain spot in the series 
(depending of the value of Seg) and repeat those processes a set number of times 
(depending on the value of K).  After completing the main sub-model, each entity�s data 
is written to file via write modules contained in the sub-module shown in Figure 4.  Each 
write module creates a file of a different name that�s dependent on the scenario being run.  
In our first models, the files contained all raw data points for all reps showing the 
throughput, the rep number, and the cycle time for each entity.  These .dat files were then 
imported into Excel where we could compute across-replication statistics.   Later, we 
modified the data output to print only the mean and standard deviation of the wafers� 
total time through the system per each replication.  The majority of our analysis was 
performed on the mean cycle times, but having the standard deviation for each replication 
enabled us to do higher moment analyses on a small subset of our models.  
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Figure 4: Basic Arena Model View 3 

 
For our exploratory runs, we ran an arbitrary 10,000 entities per replication for 10 

reps. The arrival rate was taken from Professors Nelson and Ankenman�s �Make-to-order 
with low volumes and high marginal profits� example in their National Science 
Foundation proposal which gave an example of a typical silicon wafer manufacturer 
operating at about 25,000 wafer starts per month.  This translated to an average time 
between arrivals of 0.864 minutes or an arrival rate of 1.16 wafers per minute.  We set a 
uniform mean process time (1/µ) of 0.1 minutes for all 20 process modules and increased 
the arrival rate (λ) to achieve higher throughputs.  Inserting these values into the formula 
for throughput (Formula 1) gives us: 
 

TH = λ/µ = 1.15/10 = 0.12 
 

Since we were interested in high throughputs near system capacity where the 
cycle time rises explosively and becomes highly variable, we needed either a slower 
service time or a higher arrival rate with which to work.  Initial data was run with arrival 
rates ranging from 6.67 wafers per minute (TH = 0.67) to 9.8 wafers per minute (TH = 
0.98).    
 Before determining the design points and specifications for the final experiment, 
we fit the data generated by our preliminary runs to the simplest model to which we 
would eventually fit our final data.   
 

Cycle Time = C0/(1-TH)^p 
 
 This model is derived from a family of models suggested by Cheng and Kleijnen 
(1999) where the expected cycle time can be approximated by a function of the system 
throughput divided by the term (1-TH)^p.  Cheng and Kleijnen contend that the best 
model for the mean CT/TH curve is one where the value of p is fixed at one and the 
numerator contains a polynomial function of the throughput.  Consistent with theoretical 
findings for the M/M/1 queue, Cheng and Kleijnen also suggest fixing the value of the 
exponent in the denominator for the variance and 2nd moment CT/TH curves (i.e. in the 
theoretical M/M/1 2nd moment model, the exponent p2 in the denominator is fixed at 2).  
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Our first model contains only a constant term in the numerator C0 that is not a function of 
throughput as well as the parameter p in the denominator.  It is our contention that there 
exist topologies where the best model will consist of a low-order polynomial in the 
numerator and an exponent in the denominator that is not fixed.  Hence, we set out to find 
topologies that exhibit varying values for p in the mean CT/TH curve and exponents in 
the higher moment curves that are contrary to known M/M/1 results.  Intuitively, the 
parameter p in the mean curve gives an indication of the steepness of the graph where the 
cycle time �explodes.�  Fitting our trial data from our first Arena model to our cycle time 
equation showed that there�s good reason to believe p might change under our re-entrant 
flow topology and more data needed to be gathered.    Increases in the parameter C0 
result in a vertical translation of the cycle time graph on the y-axis but have no effect on 
the actual shape of the curve.   

Figure 5 below shows a plot of our trial run mean cycle times with three queues in 
series for all other values of Seg and K.  It is evident from this plot that C0 increases with 
Seg*K, but it is not clear whether or not there is a trend in the values of p.  Upon close 
inspection, it appears that there may be a spread in the graphs and not just a vertical 
translation, which would indicate changes in p.  The same trend in C0 appears with the 
plots of the 10 and 20 queues data, but a regression analysis was needed to see the effect 
on p.   
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Figure 5:  Trial Raw Data Plot 
 

Regression analysis of p versus the parameters K, Seg, and Q reveals that p tends 
to decrease as the number of queues increases and may slightly increase with increases in 
K and the segment length.  Figures 6 and 7 on the next page show the main effects of 
segment length and number of queues as the segment length is increased from one to 
three and the number of queues from 3 to 10 and then to 20.   
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Figure 6:  Effect of Seg on p 
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Figure 7:  Effect of Queues on p 

 
The regression analysis confirms that there could indeed be a marked effect on p 

with changes in the parameters Seg and Q.  Increasing the length of the repeated segment 
appears to have a strong positive effect on p while increasing the number of queues in 
series seems to have a strong negative effect.  The low values of R^2 shown above the 
charts is due to the fact that there are few data points; however, each point was generated 
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by a fit of tens of thousands of data points and precise to R^2 values of > 99%.  K is 
shown to have only a marginal positive effect on p (see Appendix B Figure B1).   (Some 
error in our initial experiment may have been due to limitations in Microsoft Excel 
forcing us to compute our across replication statistics for only the first ~70,000 entities or 
the first seven reps.)  Also, our system of multiple queues in series has a considerable 
�warm-up� period, or a length of time that must elapse once entities start flowing into the 
system before the system can achieve a steady state.  This initial-condition bias at the 
beginning of runs will generally have the effect of reducing the mean cycle time for the 
run and can encompass a large amount of data, particularly when the traffic intensity of 
the system is high.   
 
Determination of Design Points, Run Length, and Number of Replicates 

We set nine throughput levels as our experimental design points: [0.70, 0.76, 0.82, 
0.88, 0.92, 0.95, 0.96, 0.97, 0.98].  We chose these points because they represent a 
consentration of throughput levels at the knee and the explosive part of the CT/TH curve 
while still covering a large range of throughputs.  Whitt and others� work with the M/M/1 
queue was generally concerned with throughputs only in the extreme high range whereas 
our fits include a lower range.   

At each design point, a scenario with 20 M/M/1 queues in series and no re-entrant 
flow was exhaustively run for one replication of 100,000 entities.  Plots of the raw data 
for the one replication were analyzed to estimate a warm-up period for the system to 
reach a steady state at each throughput design point.   The arena model was then changed 
such that a set number of entities at the beginning of each run would be disposed of 
before their data was written to file.  This, in effect, deleted their data before it could be 
included in the statistics for each replication.  Figure 8 shows the number of data that we 
deleted in each replication for each of the nine design points, as well as the number of 
total data points that would be generated.  According to Nelson, a good rule of thumb is 
to run enough data such that you run ten times the amount of data that is deleted.  Since 
we only ran 10,000 entities in our trial replications, at the high throughputs, the vast 
majority of our data points were likely data that should have been deleted.   

 
Design Point Number Deleted Number per Replication 

0.7 300 3000
0.76 400 4000
0.82 500 5000
0.88 800 8000
0.92 3000 30000
0.95 4000 40000
0.96 6500 65000
0.97 7500 75000
0.98 8500 85000

Figure 8:  Design Points and Data Deletion 
 
 Using our previous methods, we wouldn�t have been able to see all the data for 
even the first replication (Excel will only show about 70,000 rows), so we revised our 
data gathering methods in our Arena model.  Previously, we had printed each individual 
entity�s time through the system and then averaged these in Excel across the replications.  
For our final experiment, however, we modified our Arena model to print out the intra-
replication average and standard deviation rather than all the raw data points.  (See 
Appendix A, Figure A1) From this small data sample, we were able to extract the across 
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replication averages as well as the variance of the means across all replications, which are 
useful in higher moment calculations.   
 The next task was to determine the number of replications to run at each design 
point in order to estimate the expected cycle times to a pre-specified precision.  Since we 
had no idea before data was gathered how many replications would be required and how 
long the experiments would take to run, we did our calculations for the number of reps 
based on three levels of precision or percent relative error.  We defined percent relative 
error as a percentage of the mean that the upper and lower bounds of a 95% confidence 
interval were allowed to vary from the across-replication mean.  An initial mean and 
standard deviation were calculated to make this confidence interval and were taken from 
a run of R0 = 10 replications using the number of entities and warm-up periods that were 
noted previously.  The relative error that we calculated from the largest data set (TH = 
0.98) was used to calculate the necessary number of replications for all the other design 
points so that the final data points would have a uniform precision throughout.  Figure 10 
on the next page shows a sample for three design points of the spreadsheet used to 
calculate the number of replications (R1) that were used in the final experiment.  The 
across replication mean for design point 0.98 was 90.83 minutes which resulted in 
acceptable relative errors of 9.08, 4.54, and 0.91 minutes for precisions of 10%, 5%, and 
1%, respectively.  From each of these values, we used the formula below to calculate the 
number of replications needed.  
 

Number of Reps >= ((t(0.025,9)*StdDev(R0))/ε)^2 
 

 In the formula, ε is the relative error.  Even at 1% relative error, the number of 
replications required at the 0.98 throughput point was a manageable 1113, still a much 
larger data sample than our trial runs (1113 reps * 85,000 points = 94,605,000 data 
points).  Plugging the relative error of 0.91 into the same formula for the other design 
points gave us the final number of replications, which decreased as the level of 
throughput decreased down to a point where the four design points with the lowest 
throughput (0.70, 0.76, 0.82, 0.88) required less than 10 replications to achieve precisions 
of 0.9.  We never computed statistics across less than 10 replications, however.   
 
 

Throughput 0.96 0.97 0.98 
R0 Mean 44.920901 65.1083629 90.8398878 
R0 Standard Deviation 5.493600527 8.008385938 13.58713299 

% Relative Error 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
R0 Epsilon 4.49209 2.246045 0.449209 6.510836 3.255418 0.651084 9.083989 4.541994 0.9083989
Number of Reps (Min) 8 31 764 8 31 773 12 46 1113
R1 Mean   48.21532     64.32671     90.16123   
R1 Std Dev.   5.10013     8.255812     13.2081   
Number of Reps (Exp)     182     387     1113
h.l.     0.748533     0.83094     0.7799359
95% CI LB     47.46679     63.49577     89.381297
95% CI UB     48.96385     65.15765     90.941168

Figure 10:  Determination of Number of Reps 
 



 11

Lastly, a run was performed at each design point with the same model using the 
calculated number of replications R1 and 95% confidence intervals calculated to 
determine if the relative error was indeed at most 0.91 in all cases.  Three of those half 
widths are shown in the bottom row of Figure 10.  For all the design points, the relative 
error proved to meet the 0.91 requirement.  Because of the extraordinary size of the data 
being generated in Arena, running all nine of these experiments took several days, even 
on a 550 MHz Pentium processor machine with 512 MB of RAM.  The duration of the 
final experiment, running all 12 scenarios varying K, Seg, and Queues over all the design 
points ended up being more than two weeks.  The bulk of the time was spent running all 
12 runs of 1113 replications at the 0.98 design point.   
 Once the design points, run length, and number of replications were determined, 
they became a model for future experiments that encompassed other relevant behaviors of 
semiconductor manufacturing systems, including batching, machine failures, part classes 
and priorities, and different queueing disciplines (other than FIFO). 
 After all the data was gathered, it was fit to three models using S-Plus, a statistical 
analysis software program.  In addition to the model we used in our trial experiment, two 
other models were fit, one containing a linear term in the numerator and one containing 
both a linear and quadratic term in the numerator.  Using higher order functions of the 
throughput in the numerator can account for variability as well as different shaped curves 
such as the �U� shaped curve produced when a system uses batching.  Our objective, 
however, is to keep the numerator as simple as possible and allow the exponent in the 
denominator to vary.  The three models are shown below. 
 

Model 1 (Quad):  Cycle Time = (C0 + C1*TH + C2*TH^2)/(1-TH)^p 
 

Model 2 (Lin):  Cycle Time = (C0 + C1*TH)/(1-TH)^p 
 

Model 3 (Const):  Cycle Time = C0/(1-TH)^p 
 
Re-Entrant Flow Data and Analysis 
 For each design point and each combination of K, Seg, and Q, we ran simulations 
and gathered the mean cycle times across all replications.  Figure 11 shows a data sample 
for all scenarios with Q = 3.   
 

TH 3Q_Seg1_K3 3Q_Seg1_K5 3Q_Seg3_K3 3Q_Seg3_K5 

0.7 1.2472687 1.9061372 2.9988242 5.1131135
0.76 1.5043755 2.2739812 3.7337735 6.2660813
0.82 1.8905167 2.8780871 5.1687669 8.3027753
0.88 3.0007819 4.3552233 7.4174158 12.9282456
0.92 3.968445727 6.712389848 11.67160461 18.35836967
0.95 6.331076013 10.18506754 18.21118925 29.72959501
0.96 7.921448934 12.70238566 22.67479368 37.74253442
0.97 10.28420829 17.17452563 29.43059203 50.08778979
0.98 15.21267733 25.05895314 44.53989092 74.59431674

Figure 11: Data Sample 
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A CT/TH plot of the simulated mean data (Figure 12) shows groupings of curves 
by K*Seg as we had seen in preliminary trials.  In this graph, however, there doesn�t 
appear to be much difference in the curve shape. 
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Figure 12:  Final Simulated Data CT/TH curves 
 
 When fit to our three models, the mean data for each of the 12 scenarios fit with 
R^2 values exceeding 99% in almost every case.  R^2 is an indicator of the percentage of 
the variation in the data that�s accounted for by the model.  Likely due to the exhaustive 
run length and number of replications in our simulations, these precise fits mean that the 
p values given for each model in Figure 13 are extremely accurate.  Contrary to our initial 
hopes, however, it seems that in very few cases does p actually stray far from one, 
especially with Model 2 (linear term in the numerator).  Model 1 (quadratic numerator) 
has a few values that are significantly higher than one and Model 3 (constant numerator) 
shows a few values that are significantly low.   
 

K Seg Q p (Model 1-Quad) p (Model 2-Lin) p (Model 3-Const) 
3 1 3 0.982673 0.967076 0.942171
5 1 3 0.944810 0.971543 0.969974
3 3 3 0.997261 0.972476 0.982402
5 3 3 0.983012 0.995747 0.995573
3 1 10 1.060690 0.97643 0.812517
5 1 10 1.042790 1.00702 0.896176
3 3 10 0.998455 0.985962 0.947549
5 3 10 0.955875 0.985099 0.969298
3 1 20 1.179300 0.977417 0.664548
5 1 20 1.113160 1.03111 0.803138
3 3 20 0.925523 0.946443 0.86654
5 3 20 0.975076 0.975218 0.924118

Figure 13:  Final fitted values of p 
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Factorial analysis of effects of K, Seg, and Q on p from Model 3 show main 

effects that are not as strong as we had found in early data (See Figure 14).  With Model 
2 and 3, these effects became less strong as p hovered more closely around one and were 
completely reversed in some cases with Q actually showing a positive effect on p in 
Model 1 (Figure 15 and 16).  
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Figure 14:  Main effects plot for p using Model 3 
 

queuessegk

2010 33153

0.994

0.988

0.982

0.976

0.970

p 
m

2

Main Effects Plot - Data Means for p m2

 
Figure 15: Main effects plot for p using Model 2 
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Figure 16:  Main effects plot for p using Model 1 
 
 With Models 2 and 3, it appears that there is a slight interaction between Q and 
Seg, but the scale is too small for it to be significant.  Even in the cases where the main 
effects look significant on the plots, the range of p values is closely centered around one.  
See Appendix B for the interaction plots for all three models.   
   Plotting the values of p for all three models across all the scenarios confirms that 
Model 1 tends to generate values for p that are slightly higher than one, Model 3 
generates p values below one, and Model 2 stays consistently in the middle (Figure 17).  
Although the R^2 values for Model 1 are slightly better than the other two models, it is 
clear that with Model 2, we were able to accurately fit a CT/TH curve with p not straying 
far from one.  The R^2 values we achieve with Model 2 are, in fact, better than R^2 
values generated if the value of p is fixed at one in the model (see Appendix C), but the 
fitted values of p are close enough for one to make the assumption that this class of 
topologies need not require values of p different from one if the proper function of 
throughput is present in the numerator.  Fixing p at one causes the model with the linear 
numerator to fit best.  Further analysis needs to be done to examine some of the trends in 
p evident in models 1 and 3 seen in Figure 17 and also to delve into residual patterns 
evident in our data (Appendix C), but that is left for another study.   
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Figure 17:  Plot of p by Model over all scenarios 
 
 Although we show here that it is possible to adequately fit a model to the mean 
curve where the exponent p is equal to one, there still remain questions as to the nature of 
the variance and higher moment curves for these topologies.  We examined higher 
moments only for the two extreme cases in our re-entrant flow models:  [Q = 3, Seg = 1, 
K = 3] and [Q = 20, Seg = 3, K = 5].   
 We fit models for the variance of the mean cycle time (multiplied by the number 
of replications at each design point, since they are all different), raw and centered 2nd 
moment of the cycle time, and the variance of the 2nd moment.  Once the data was run, 
and only the replication mean and standard deviation recorded, these were the most 
measures we could extrapolate.  Known results at high throughputs with the M/M/1 
queue provide the following models: 
 

1st Moment Variance = 1/(1-TH)^4 [exponent = q] 
 

Raw and Centered 2nd Moment  = 1/(1-TH)^2 [exponent = p2 (raw), p2� (centered)] 
 

2nd Moment Variance = 1/(1-TH)^6 [exponent = q2] 
 

 Very little work has been done analyzing CT/TH higher moment curves, 
especially fit to such low throughputs as 0.7.  We speculate that just as with the mean 
curves, there will be topologies and situations for which the value of the exponents 
should not be fixed as in the M/M/1 case.  We also fit each data set to models with 
numerators of varying complexity, ranging from only a constant term to a quadratic 
function of throughput.  As was stated earlier, the exponent p in the mean CT/TH model 
can intuitively be thought of as representing the �steepness� of the incline at the knee of 
the curve.  Although their effect is not quite as direct, the exponents q1, q2, p2, p2� can 
also be thought of as effecting this �steepness." 
 Figure 18 below shows a data sample from the 0.7 throughput design point of the 
3QSeg1K3 re-entrant flow model.  The columns labeled Rep #, Mean, and Std Dev are 
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printed to the output files after each run of the simulation.  The Variance column is 
calculated by squaring the standard deviations from each rep.  The 2nd Moment column is 
generated by multiplying the variance from each replication times the ratio (m-1)/m, 
where m is the number of data points for that particular replication.  This product is then 
added to the square of the mean of the replication to get the 2nd moment.  Each 
throughput design point is then associated with the variance of its replication means 
multiplied by the number of points per replication (Var of Means*(rep length) or 1st 
Moment Variance), the average variance across all replications (Mean Variance or the 
Centered 2nd Moment), the mean of each replication�s 2nd moment (Mean 2nd Moment or 
Raw 2nd Moment), and the variance of those 2nd moment measures (2nd Moment 
Variance).   
 
Throughput 0.7 
Mean 1.2472687 
SD of Means 0.076735482 
Rep Length (post delete) 2700 
Var of Means*(rep length) 15.89850219 
Mean Variance 0.775427679 
Mean 2nd Moment 2.336119194 
2nd Moment Variance 0.165536449 
 Rep # Mean Std Dev Variance 2nd Moment  
 1 1.223589 0.792845 0.628603 2.125540419
 2 1.318832 0.980681 0.961735 2.70069687
 3 1.334216 0.996883 0.993776 2.773539985
 4 1.157382 0.745361 0.555563 1.89489035
 5 1.202565 0.884719 0.782728 2.228600389
 6 1.175991 0.795883 0.63343 2.016149978
 7 1.208202 0.838797 0.70358 2.163071895
 8 1.396589 1.106963 1.225367 3.175374079
 9 1.226463 0.821194 0.67436 2.178321313
 10 1.228858 0.77145 0.595135 2.105006666
Figure 18:  Sample Higher Moment Data Sample from 3QSeg1K3 scenario 
  

The variance of the means curve was fit only to the model with a constant in the 
numerator.  As shown in Figure 19, our data fit with an exponent q of very near four, 
which is the predicted value for a single M/M/1 queue.  The next six columns on the 
graph represent the p2 and p2� fits or the Raw and Centered 2nd moment exponents.  
There appear to be slight differences in the value of the exponent depending on the 
degree of the numerator, but all are very close to the predicted value of two, especially 
those exponents fit to the constant numerator model.  With the fits for the 2nd moment 
variance (the last three columns in the graph), there are marked differences in the values 
of the exponent q2.  It seems that as the numerator becomes less complex, the value of q2 
gets closer to its predicted M/M/1 value of six.  None of the three models� results come as 
close to the M/M/1 prediction as the previous measures had; they are all, in fact, well 
short.  This difference could be the result of many factors, the number of queues in series, 
re-entrant flow, fitting data associated with relatively low throughputs, or simply lack of 
data for a measurement that is highly variable.   
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Figure 19:  Higher moment exponent fits for 3Q Seg1 K3 re-entrant flow model 
 
 We did the same calculations and fits for the 20QSeg3K5 scenario and found 
some similar results (Figure 20).  The exponent q in the 1st moment variance model fits 
almost perfectly to the predicted value of four, and the values of p2 and p2� show much 
the same pattern as the 3QSeg1K3 model, getting closer to two as the order of the 
numerator decreases.  The quadratic and linear numerator models fit to the raw 2nd 
moment data exhibit a value of p2 closer to three, but again there exists at least one case 
(model with a constant numerator) where it�s possible to get a good fit with a value of 
two as in the M/M/1 case.  (Incidentally, all the exponent fits for the higher moment 
models in the 3Q and 20Q case achieved R^2 values well over 99%.)   

S-Plus couldn�t fit a quadratic or linear numerator model to the 2nd moment 
variance data for the 20Q case, but the fit of the constant model reveals a q2 value much 
greater than six and clearly greater than the values generated with the 3Q case.  This 
indicates that the true values of q2 for these topologies could indeed be different than the 
ideal M/M/1 case and are a function of either the number of queues in series or re-entrant 
flow.     
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Figure 20:  Higher moment exponent fits for 20Q Seg3 K5 re-entrant flow model 
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Figure 21:  Higher moment exponent fits for a single M/M/1 case. 
  

To see how a single M/M/1 queue will behave farther down the CT/TH curve 
where we were running our models, we generated the same amount of data at the same 
design points as we had previously, but with a single M/M/1 queue.  Using the same 
procedures, we fit this data to our set of metamodels.  Figure 21 above shows the results 
of those fits.  The values of q, p2, and p2� look exactly as we suspected they would based 
on our results with the re-entrant flow models.  The values of q2, however, do not quite 
reach the value of six that is predicted for a single M/M/1 queue at high throughputs.  The 
last fit with the constant numerator model comes pretty close, but there is evidence 
enough in this plot to suggest that higher moment curves can posses exponent values 
different than what has been widely accepted when one looks only as far down the 
throughput curve as 0.7; this is true even in the simplest case of the single M/M/1 queue.  
All of our higher moment CT/TH curves can be found in Appendix E. 
 
Batching and the Location of the Bottleneck Queue 
 In addition to the re-entrant flow model with K, Seg, and Q as parameters, we 
experimented with several other topologies to see if they might have a more drastic effect 
on the exponent p in the mean CT/TH curve in our family of models.   
 One other topology we tried back when we were first experimenting with re-
entrant flow was batching.  Batching involves waiting for groups of entities to 
accumulate up to a certain batch size before starting a process or group of processes.  The 
group of entities, or batch, then goes through one or more processes before being broken 
down again into individual entities.  We learned that batching was a common occurrence 
in the world of silicon wafer fabrication and wafers might be put into batches, un-
batched, and re-batched several times during the course of manufacturing.   
 Using 20 processes in series as before, we produced a model where entities could 
be grouped into batches, run through a process as a batch, and then be separated at three 
locations in the series.  In all cases, a string of 5 generic processes without batching were 
run through first followed by a batch process, a regular process, another batch process, 
another regular process, and finally a third batch process.  This left 10 out of 20 total 
queues in series at the end that were either all on (the entities passed through them) or all 
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off (their processing time was set to zero).  This factor was to see if having standard 
M/M/1 queues after batching would act as sort of a buffer, limiting the batching effect.  
Finally, we tested the system with batch sizes of 10, 50, and 100 entities.  The Arena 
model we used for batching as well as the experimental design matrix can be found in 
Appendix D.   
 An additional experiment was run using our same batching model but we added a 
bottleneck queue at to different places within the system.  The bottleneck queue was set 
at a fixed throughput level even as we varied the overall system throughput.  We know 
from Whitt�s work that if one queue in a system is a bottleneck, or is congested, then the 
overall system CT/TH behavior will be due to the congestion in that single queue.  Just to 
verify that this principle isn�t broken when the system employs batching, bottleneck 
queues were placed in three locations throughout our model: before the batch processes, 
in between two batch processes, and after the batch processes.  In all these cases, the 
batch size was fixed at 100 and there were two batching processes turned on.  That design 
matrix can also be seen in Appendix D. 

With batching in a system, CT/TH curves will be �U� shaped due to long cycle 
times at low throughputs where entities wait long periods of time for batches to build up.  
This curve shape was evident for data from runs of our Batching and Batching/Bottleneck 
models (Figure 22).  The curves shown below were created from runs of 10,000 entities 
over 10 replications.  As was articulated in our NSF proposal, we know that the family of 
models to which we�re fitting data with a first order denominator can account for the �U� 
shaped curves due to batching by adjusting the functional form of the numerator.  At 
higher throughputs where estimation of the cycle time is most critical, however, this 
downward slope is not a factor so our models don�t even necessarily have to account for 
them.  Furthermore, we were unable to see any unexpected behaviors due to the presence 
or location of the bottleneck queue.  Because of these facts, we decided not to expend any 
further experimental effort on the Batching/Bottleneck models, as we were not likely to 
need to adjust the exponent p to get good fits at high throughputs.  More data has to be 
run in order to fit any higher moment models to the batching and bottleneck data, as well.   
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Figure 22:  Data from Batching and Batching/Bottleneck Models 
 

Alternate Queueing Disciplines and Failures 
 After drawing conclusions from our re-entrant flow model, we experimented with 
two queueing disciplines that are proven to fit values of p significantly different than one 
in the case of a single M/M/1 queue using a First-In-First-Out discipline:  LIFO and 
SPTF.  In Arena, these disciplines can be easily implemented as properties settings for 
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each process module�s queues.  SPTF is achieved by assigning the random processing 
time to each entity as an attribute before it arrives at each process.  Each queue is then set 
to give priority to entities whose processing time attribute is the smallest.    

To examine the effect of these different queueing disciplines on the CT/TH 
curves, we set a baseline scenario of 20 queues in series (as we did to determine the 
warm-up period and run length previously) and compared those results to scenarios 
where different queues within the series utilized the new disciplines.  We collected data 
for the following scenarios:  one queue in the middle using LIFO or SPTF (we used the 
10th queue), five queues in the middle (8th, 9th, 10th, 11th, and 12th queues), five queues 
spread out evenly (1st, 5th, 10th, 15th, and 20th queues), and all 20 queues using LIFO or 
SPTF as their queueing discipline.  In the interest of time, 10 replications were run with 
our standard set of run lengths.  The mean data from these runs is shown in Figure 23. 
 

TH 0.70 0.76 0.82 0.88 0.92 0.95 0.96 0.97 0.98 
None 6.72 8.19 10.99 17.66 24.17 41.48 44.92 65.11 90.84 

LIFO.one 6.72 8.20 10.99 17.65 24.08 41.50 46.04 59.46 90.79 
LIFO.fivemid 6.73 8.20 10.99 17.59 24.06 41.48 46.04 59.28 90.36 

LIFO.fivespread 6.72 8.20 10.99 17.60 24.09 41.30 46.04 59.38 90.61 
LIFO.all 6.73 8.19 11.02 17.53 24.04 40.98 45.82 59.08 88.28 

SPTF.one 6.55 7.79 10.89 16.50 24.38 38.01 46.52 56.62 85.50 
SPTF.fivemid 6.18 7.53 10.15 13.78 20.60 33.14 39.59 53.49 70.40 

SPTF.fivespread 6.03 7.57 9.64 14.16 20.83 32.52 39.47 51.30 69.18 
SPTF.all 4.47 4.97 5.69 6.86 8.32 10.69 11.96 14.04 17.71 

Figure 23:  LIFO and SPTF across replication mean data 
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Figure 24:  LIFO and SPTF CT/TH curves 
 
 One cannot tell much about the effect of LIFO by simply looking at the numbers, 
but it is clear from the SPTF data that SPTF drastically reduces the mean cycle time as 
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more of the queues in series utilize that priority system (see the SPTF.all CT/TH curve in 
Figure 24).   In both cases, there also doesn�t appear to be much evidence that using a 
group of queues in the middle or spread out over the whole series makes a difference.   
 From previous work with a single M/M/1 queue, we know that using LIFO will 
create CT/TH curves with values of p greater than one, and SPTF CT/TH curves will 
have values of p significantly lower than one.  Our objective is to see if this effect is still 
achieved with 20 queues in series, and how the value of p changes depending on the 
functional form of the numerator in the model.  In addition to the three models we fit in 
previous experiments, for LIFO and SPTF we tested a fourth model with a cubic 
throughput term in the numerator.  That model is as follows: 
 

Cycle Time = (C0 + C1*TH + C2*TH^2 + C3*TH^3)/(1-TH)^p 
 
 When our data is fit to the four models, it is evident that the values of p can be 
drastically different depending on the terms in the numerator.  We figured to find values 
of p in the LIFO case that were much greater than one, but we only find that to be the 
case when the LIFO data was fit to the fourth model with the cubic term in the numerator.  
For all the models, it appears to not make a difference how many queues use LIFO, and 
in the case of the model with only a constant term in the numerator, p stays relatively 
constant even when comparing the case with all queues using FIFO.  Figure 25 shows the 
values of p for all four models across all five scenarios.  To verify that all the points in 
the plot below were relevant, we look at the R^2 values for all the model fits (See Figure 
26). 
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Figure 25:  LIFO p-fits 
 
 Although the value of R^2 increases as more terms are added to the model (an 
indication of a higher percentage of the data�s variability being explained by the model), 
the increase is small relative to the average magnitude of the measure.  Even in the case 
of the model with only a constant in the numerator, the model accounts for over 99.76% 
of the data�s variability.   In this case, we shown once again that it�s possible to fit a 
model to our data extremely well without changing the value of p far from one.  It�s also 
possible, however, to do this without overcomplicating the numerator.  
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Figure 26:  LIFO R^2 values 

 
 In the plot of our fits for the SPTF scenarios, there is less of a dependence on the 
model being used as to the value of p.  For the scenarios tested with one and five of the 
queues using SPTF p fits are shown that vary inversely with the number of terms in the 
numerator.  As before, however, for all points the fits are so precise that there isn�t a clear 
best fit in these cases.  It is evident from Figure 27, however, that the value of p in the 
model will be significantly less than one (approximately 0.6) when all 20 queues in the 
series employ SPTF as a queueing discipline no matter which model we fit.   
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Figure 27:  SPTF p-fits 

 
 LIFO and SPTF are both examples of queueing disciplines that are common in all 
applications of queueing, across industries.  Even so, in industry it is not likely that either 
of these disciplines is executed in their purest forms.  It is likely, however, that someone 
out there uses a similar sort of priority system based on the order of part arrivals or the 
expected processing time for a particular class of parts.  Oftentimes, methods of 
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prioritizing within queues will have nothing to do with when an item arrives or how long 
it will take to process.  Priority is often given based on approaching deadlines for a 
product, reducing machine setup time between part classes, or systems as arbitrary as 
personal preference.  To account for the most complicated prioritization process possible 
in a queue, we decided to examine �Service in Random Order� or SIRO as a sort of 
queueing discipline.  This is a discipline that we contrived where the next item to be 
processed is randomly selected from the current items residing in the queue.  We tried 
two methods of implementing these phenomena in our Arena models, generated data for 
both, and fit the data to our four models.   Both methods depend on the use of an Arena 
module called �Remove� that�s capable of extracting an entity from any queue referenced 
by its rank or its position in the queue.  To randomly pick an entity from a queue, an 
assign module generates a random number between zero and the number of entities 
currently in the queue then sends that value on to the remove module telling it which rank 
to pull.  The methods differ in how entities are placed back into the queue from which 
they are removed and whether the prompt to remove an entity from a queue comes before 
an entity gets to that queue or after an entity finishes the process.  Method number one is 
shown in Figure 28. 

 

 
Figure 28:  First SIRO model 

 
 In the first method, a decide module (labeled �Check 10�) checks to see if there 
are currently any entities in the queue for Process 10.  If there are no entities currently in 
the queue, the entity moves ahead into the queue.  If there are entities in the Process 10 
queue, the entity goes through an assign module (�Assign 55�) where it is assigned 
randomly a rank of one of the entities already in the Process 10 queue.  As is proceeds 
through the remove module, an entity is removed from Process 10�s queue.  The original 
entity proceeds to the rear of the Process 10 queue while the entity that was removed goes 
through another assign module (�Set High 10�).  This final assignment module 
increments a global variable and assigns it as an attribute X to the entity passing through.  
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The queueing discipline in each process is set to sort by highest X value and since time 
the global variable is incremented each time an entity is removed, there is no other entity 
in the system with a higher X value at that moment.  The randomly removed entity, 
therefore, is processed next.   
 Even more so than in the case of LIFO, the values of p that we fit for this first 
SIRO method show great dependency on the number of terms in the numerator of the 
model.  Across all scenarios for SIRO, increasing the number of terms results in a lower 
value of p.  The scenarios with five queues using SIRO showed a spread of nearly 0.3 in 
the value of p from the model with a constant numerator to the model with a cubic 
throughput term.  All four models fit with R^2 values over 99%, and the constant 
numerator model kept its p value very near one across all scenarios (See Figure 29). 
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Figure 29:  SIRO (Method 1) p-fits 

 

 
Figure 30:  Second SIRO model 
 
 Figure 30 shows our second attempt at creating true SIRO behavior (developed by 
Dr. Nelson).  In this method, a decide module (�Decide 41�) checks the Work In Process 
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(WIP) of the upcoming process module (�Process 10�) to see if there is an entity actually 
being processed (not just one residing in the queue as before).  If it is determined that the 
process is currently busy, instead of being put in the queue, the entity goes to a hold 
module (�Hold 10�) that basically acts as a free-standing queue independent of the 
process it�s holding entities for.  If the process WIP is zero, the entity goes into the 
process where it will enter without having seen any time in a queue.  When an entity 
finishes going through the process, it goes through another decide module (�Decide 42�) 
that counts to see if there are entities waiting in the hold module (equivalently Process 
10�s surrogate queue).  If there are none, the entity proceeds to the next process in the 
series.  As in the previous method, if there are entities waiting, a random rank is assigned 
and an entity of that rank is removed from the queue.  The removed entity then goes 
directly into the process (there is no queue) and the entity that had passed through the 
remove module to trigger the event continues on through.   
 

TH 0.70 0.76 0.82 0.88 0.92 0.95 0.96 0.97 0.98 
SIRO.one 6.61 8.57 11.48 15.93 25.25 39.10 48.86 64.64 90.37 

SIRO.fivemid 6.61 8.56 11.46 15.80 25.13 38.83 48.63 62.95 87.46 
SIRO.fivespread 6.61 8.57 11.49 15.89 25.22 38.95 48.54 64.03 88.31 

SIRO.all 6.61 8.57 11.49 15.93 25.25 39.15 48.87 64.78 91.07 
SIRO(2).one 6.96 8.74 11.57 16.54 25.03 40.67 50.07 64.79 93.33 

SIRO(2).fivemid 7.86 9.68 12.84 19.23 28.22 44.50 56.57 77.33 100.55 
SIRO(2).fivespread 7.79 9.69 13.04 18.03 29.07 44.74 54.47 73.62 101.69 

SIRO(2).all 11.04 14.00 18.28 25.63 38.30 59.03 72.26 99.49 134.40 
Figure 31:  SIRO raw data (both Methods 1 and 2) 
 
 As compared to the first SIRO method, the second attempt shows more of an 
increase in the mean cycle time values as we would expect due to the random priorities 
given to the entities.  When fit to our four models, however, the data from the second 
SIRO method produces values of p that are similar to those generated by the first method.  
The values are fairly close across all the models, and once again we saw a trend in the 
values of p decreasing as the number of terms in the numerator increased.  Also, as in the 
case of the first SIRO method, the model with only a constant in the numerator produces 
a value of p that stays close to one even as more and more processes in the series use 
SIRO.  
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Figure 32:  SIRO (Method 2) p-fits 
 
 One phenomenon that can be explored in conjunction with those previously tested 
and likely one of the most common issues dealt with in all of manufacturing is machine 
failure.  When machines fail and need to be repaired, production is brought to a halt and 
parts can stockpile in idle queues.  If this machine failure and/or maintenance occurs 
often in a system, not modeling some kind of mean time until machine failure and mean 
repair time can lead to representations of the CT/TH curve that are drastically different 
than the real behavior of the system and can have costly results.  We modeled one 
scenario where failures occurred periodically and randomly at each of the 20 processes in 
the series.  The time between failures was modeled as exponentially distributed with a 
mean of 10 minutes.  Once down, the time to bring a process back up was exponentially 
distributed with a mean of 1 minute.  In our Arena model, the arrival rates were adjusted 
by a factor so that the introduction of failures won�t push the system beyond capacity.  
The formula for stability in a system with failures is: 
 

ρ (stability condition) ! λ/µ*(1 + δ/γ) < 1 
 

 In the formula, δ/γ is the ratio of the �arrival rate� of failures to the �repair rate,� 
or 1/10 in our case.  Hence, to achieve our desired throughputs in the failure models, our 
arrival rates were multiplied by 1 + 1/10 or 11/10.   For example, a throughput of 0.98 in 
the model with failures would be a throughput of 0.89 with no failures taken into account.   
 

TH 0.70 0.76 0.82 0.88 0.92 0.95 0.96 0.97 0.98 
Failures 16.94 22.23 28.45 41.58 61.41 90.01 106.44 129.98 163.68 

Figure 33:  Failures raw data 
 
 The mean data shown in Figure 33 was generated from �full� runs of our model 
where we ran the number of replications calculated for our 20 M/M/1 queues such that 
the relative error at each point in the mean curve would be sufficiently small.  Even when 
we add this seemingly small percentage of failure time to each process, it is evident that 
the effect on the mean cycle time is large.  In terms of the value of the parameter p, 
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introducing failures into the system proves to show a large contrast in p depending on the 
model to which the data is fit.  This contrast is markedly large compared to results we 
experience in the other experiments (p ranging from near 0.9 down to below 0.5), but 
R^2 values still show that all the fits are good.  Figure 34 below shows a plot of the 
different p values for each model and Figure 35 shows the R^2 values.   All fits show 
R^2 values over 99%; 80% is generally considered a good fit.  In this case, there is no 
way to further simplify the numerator in the model in order to achieve p values closer to 
one.   
 Interestingly enough, in the models currently used by our research counterparts in 
Arizona, machine failure is one of the most common features and also happens to be the 
only real stochastic factor in those models.  This makes it all the more encouraging that 
even in the mean curve we find instances where p cannot be one.   
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Figure 34:  Failures p-fits 
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Figure 35:  Failures R^2 values 
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 The fits of the 1st moment variance, 2nd moment, and 2nd moment variance curves 
for the model incorporating failure show drastically different exponent fits than what is 
predicted for an M/M/1 queue without stochastic resource failure.  While the value of q in 
the 1st moment variance model is about half of what is predicted (slightly greater than 
two), the raw and centered 2nd moments� p2 values range from half to about 75% of their 
predicted value of two.  The centered 2nd moment�s fits are consistent no matter the order 
of the model�s numerator while the raw second moment�s exponent value is inversely 
correlated with the level of complexity in the numerator.  This is also the case for the 2nd 
moment variance q2 fits, none of which come close to six, as is the case for a standard 
M/M/1.   
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Figure 36:  Higher moment exponent fits for a single M/M/1 case. 
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Figure 37:  Plot of Failures mean data vs. a model with p fixed at 1 
 
 To illustrate the drastic effect changing the exponent can have on the CT/TH 
curve, Figure 37 shows a plot of the mean failure data along with a model with the same 
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numerator value as was fit to the experimental data, but with p constrained to one.  The 
steepness of the knee is evidently curtailed when p is allowed to be less than one.  If 
using a curve with a fixed p to estimate cycle time, one would surely overestimate the 
time needed to produce a certain number of units (or wafers) and understate their true 
production capabilities.  It is harder to see such drastic differences in the plots of the 
higher moment curves, but the differences there lie in the precision to which one believes 
the cycle time can be predicted.  If confidence intervals were drawn over each point in 
the above plot, smaller exponents at the high moments would translate to smaller 
intervals and thus more confidence in the estimator. 
 
 
 
Conclusions 
  
 For a manufacturer of silicon wafers, or a manufacturer in any field, accurate 
estimation of the cycle time � throughput curve is critical to avoid costly errors in 
production.  Examples are overproduction when the true cycle time is low leading to 
excess inventory or waste, or underproduction when the actual cycle time is greater than 
predicted.  Costly errors in estimation are often overlooked simply because the tools and 
resources are not there to generate more accurate models using present methods.  Our 
research strove to find models that robustly fit any manufacturing scenario and reduced 
instances of error.  The simulation models we built do not come close to the vast array of 
topological possibilities that exist in the world of silicon wafer fabrication; they merely 
touch the surface of the methods and associated permutations that are used.  With only a 
small sampling of topologies and other stochastic factors in our simulation models, 
however, we were able to find instances where the accepted theoretical models of Whitt 
and Cheng and Kleijnen fall short.   
 The first set of simulations we tried did not show exactly what we wanted in 
terms of varying values of p nor in the values of the exponents in the higher moment 
models.  The factors we looked at were re-entrant flow and a number of queues in series.  
Specifically, we hoped that the re-entrant flow aspect would cause a significant 
adjustment in p.  The aspect of queues in series was thought to maybe have a buffering 
effect on the traffic induced by the re-entrant flow.  We found that a model with a linear 
throughput term in the numerator could more than adequately fit any combination of re-
entrant flow and series topologies with an exponent p fixed at one.  After running a small 
number of models using batching and bottleneck queues at different locations in the 
network, we came to a similar conclusion; p was not affected.  Despite these discouraging 
realizations, we were able to infer that other such common nuances in topology would 
likely reveal the same and were thus not worth further exploration.   
 Some of the most common phenomena found in wafer fabrication networks and in 
the models currently used to simulate them are queueing prioritization and machine 
failure.  We simulated prioritization situations via variations in queueing disciplines in 
our queues in series.  We tried LIFO, SPTF, as well as SIRO (service in random order) as 
variations from FIFO, which we used in all other simulations. These pretty well covered 
the spectrum from simple prioritization based on arrivals or processing time, to the most 
complicated possible prioritization scheme: random selection from the queue.   Our LIFO 
and SIRO results showed an interesting dependency on the value of p depending on the 
order of the numerator in our formula.  We found cases (depending on how many of the 
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queues in the series utilized the experimental discipline) where p varied proportionally 
and inversely with the order of the numerator.  Even so, neither LIFO nor SIRO 
definitively showed any consistent variation in p.  For both, there was at least one model 
where p = 1 was a good fit.  It also happened to be that it was possible in these cases to 
keep a small order numerator.  This was a surprising result for LIFO, which has been 
shown to have values of p higher than one in the instance of a single M/M/1 queue.  Only 
when fit to the cubic model was the LIFO mean data consistent with previous findings.  
We knew from previous work that SPTF has the opposite effect on p for a single M/M/1 
queue; it tends to fit values of p significantly less than one.  We confirmed this fact with 
our simulation model of 20 queues in series utilizing SPTF.  Furthermore, the SPTF 
model showed almost no dependency on the degree of the function in the numerator.   
 Arguably, our most important finding comes from the model exhibiting machine 
failure.  Surely, failures are unavoidable and will occur in all manufacturing systems no 
matter what the layout.  A stochastic model of machine failures is as near as one can get 
to the unpredictable nature of real life.  Even measures like preventative maintenance 
might help alleviate randomness in failure occurrence, but it still causes machine 
downtime, which can wreak havoc on a seemingly well-balanced queueing system at 
high throughputs.  Our mean CT/TH curve generated by the failures model fit to vastly 
different values of p (all less than one) that were, as in previous cases, strongly dependent 
on the order of the functional model�s numerator.  Here, however, there were no cases 
where fixing p close to one would be a good fit.  The model with a constant numerator 
came closest (p = 0.75), and adding more throughput terms to the numerator of the model 
(as suggested by Cheng and Kleijnen) only decreased p further.  There is no way to fit a 
model with this type of machine failure without adjusting p.  The 1st moment variance, 
2nd moment, and 2nd moment variance fits to the failure model data showed similarly 
convincing results.  Traditional theoretical models for a single M/M/1 queue cannot 
account for the higher moment behavior exhibited by our network.   
 There likely exist more network topologies and manufacturing phenomena that 
exhibit just the type of behavior we sought to show here.  Only by continuing to try more 
can we come up with the most generalized formula possible that remains simple enough 
to be practical.  It was this team�s objective to minimize experimental effort and 
unnecessary loss of revenue for the wafer fabrication community as well as the 
manufacturing world as a whole.  Through this small sampling of scenarios, we show that 
better models do indeed exist and finding them is possible via low-cost simulation and 
minimal experimental effort.   
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Appendix A 
 
 
 
 

 
Figure A1:  Final model (High Level View) with data deletion 
 
 
 
 
 

 
Figure A2:  PAN setup for re-entrant flow model 
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Supplemental Data 
Throughput 0.7 0.76 
R0 Mean 6.7189391 8.1910763 
R0 Standard Deviation 0.292162791 0.64925465 
% Relative Error 0.1 0.05 0.01 0.1 0.05 0.01
R0 Epsilon 0.671894 0.335947 0.067189 0.8191076 0.409554 0.081911
Number of Reps (Min) 1 4 97 4 13 321
R1 Mean   6.378985     7.913759   
R1 Std Dev.   0     0.579683   
Number of Reps (Exp)     1     3
h.l.     0.20603     0.457847
95% CI LB     6.512909     7.73323
95% CI UB     6.924969     8.648923 

0.82 0.88 0.92 
10.9925381 17.6572315 24.1713063 
1.001890599 1.14683403 2.317766977 

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
1.099254 0.549627 0.109925 1.765723 0.882862 0.176572 2.417131 1.208565 0.241713

5 17 425 3 9 216 5 19 470
  10.85281     17.45046     25.02591   
  1.142187     0.999312     2.484577   
    7     8     33
    0.706521     0.808734     0.880156
    10.28602     16.8485     24.14575
    11.69906     18.46597     25.90607 

0.95 0.96 0.97 
41.4817842 44.920901 65.1083629 
5.060012524 5.493600527 8.008385938 

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
4.148178 2.074089 0.414818 4.49209 2.246045 0.449209 6.510836 3.255418 0.651084

8 31 760 8 31 764 8 31 773
  40.11617     48.21532     64.32671   
  5.063782     5.10013     8.255812   
    155     182     387
    0.805331     0.748533     0.83094
    39.31084     47.46679     63.49577
    40.9215     48.96385     65.15765 

0.98 
90.8398878 
13.58713299 

0.1 0.05 0.01
9.083989 4.541994 0.9083989

12 46 1113
  90.16123   
  13.2081   
    1113
    0.7799359
    89.381297
    90.941168 

Figure A3:  Final Replication Determination 
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Model k seg queues p c0 c1 c2 R^2 

1 3 1 3 0.982673 0.1960660.577393 -0.454297 0.999667

1 5 1 3 0.944810 1.609440
-

2.503250 1.527160 0.999745
1 3 3 3 0.997261 -0.5910073.565990 -2.088210 0.999777

1 5 3 3 0.983012 2.819820
-

3.123200 1.912740 0.999883
1 3 1 10 1.060690 0.4197091.283660 -1.477980 0.999908
1 5 1 10 1.042790 0.7347920.911653 -1.234970 0.999915
1 3 3 10 0.998455 0.9702470.948553 -1.017690 0.999974

1 5 3 10 0.955875 5.299700
-

8.231040 4.749080 0.999961

1 3 1 20 1.179300 1.806160
-

0.673020 -1.010090 0.999888
1 5 1 20 1.113160 1.4609800.530137 -1.694810 0.999913

1 3 3 20 0.925523 4.326460
-

5.210040 2.118440 0.999916

1 5 3 20 0.975076 3.294660
-

1.668310 0.020454 0.999945

2 3 1 3 0.967076 0.504422
-

0.161744 0.000000 0.99966

2 5 1 3 0.971543 0.577819
-

0.016536 0.000000 0.999722
2 3 3 3 0.972476 0.8094980.182893 0.000000 0.999762

2 5 3 3 0.995747 1.52408
-

0.005024 0.000000 0.999878
2 3 1 10 0.97643 1.50046 -1.16536 0.000000 0.999788
2 5 1 10 1.00702 1.60519 -1.1195 0.000000 0.99989

2 3 3 10 0.985962 1.66537
-

0.711336 0.000000 0.99997

2 5 3 10 0.985099 2.07458
-

0.482151 0.000000 0.999934
2 3 1 20 0.977417 2.93599 -2.59967 0.000000 0.999536
2 5 1 20 1.03111 2.78723 -2.34845 0.000000 0.99982
2 3 3 20 0.946443 2.86704 -1.74459 0.000000 0.999902
2 5 3 20 0.975218 3.28063 -1.63488 0.000000 0.999945
3 3 1 3 0.942171 0.3802450.000000 0.000000 0.999571
3 5 1 3 0.969974 0.5649760.000000 0.000000 0.999721
3 3 3 3 0.982402 0.9521090.000000 0.000000 0.999748
3 5 3 3 0.995573 1.520160.000000 0.000000 0.999878
3 3 1 10 0.812517 0.6672320.000000 0.000000 0.996231
3 5 1 10 0.896176 0.7743320.000000 0.000000 0.998349
3 3 3 10 0.947549 1.120540.000000 0.000000 0.999769
3 5 3 10 0.969298 1.701340.000000 0.000000 0.999899
3 3 1 20 0.664548 1.26870.000000 0.000000 0.987563
3 5 1 20 0.803138 1.154980.000000 0.000000 0.994002
3 3 3 20 0.86654 1.566920.000000 0.000000 0.998927
3 5 3 20 0.924118 2.038110.000000 0.000000 0.999578 

Figure A4:  Final Q, Seg, and K data, p-fits, and R^2 calculations 
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Appendix B 
 
Remaining Factorial Analysis of Q, Seg, and K’s Effect on p 
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Figure B1:  Main Effect of K on p (Trial Data) 
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Figure B2:  Model 1 Interactions 
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Figure B3:  Model 2 Interactions 
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Figure B4:  Model 3 Interactions 
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Appendix C 
 
 

R-Sqared - Model 2 (fixed P vs non-fixed P)
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Figure C1:  Justification for not fixing p at one.  (Able to achieve better fits by adjusting p) 
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Figure C2:  Residual patterns for four of the models. 
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Appendix D 
 

Batch/Bottleneck Experiment 
 

 
Figure D1:  Batch/Bottlenect submodel. 
 
 
 

Buffer Queues? (Y/N) # of Batch Processes Batch Size 
Y 1 10 
N 1 10 
Y 2 10 
N 2 10 
Y 3 10 
N 3 10 
Y 1 50 
N 1 50 
Y 2 50 
N 2 50 
Y 3 50 
N 3 50 
Y 1 100 
N 1 100 
Y 2 100 
N 2 100 
Y 3 100 
N 3 100 

Figure D2:  Batch experimental design. 
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Figure D3:  Bottleneck experimental design. 
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Figure D4:  Batch/Bottleneck sample CT/TH curves. 
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Appendix E 
 
Additional Higher Moment Plots, Data 
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Figure E1:  3Qseg1K3 Higher moment CT/TH curves 
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Figure E2:  20Qseg3K5 Higher moment CT/TH curves 
 

Failures
Variance of Replication Means

0
5000000

10000000
15000000
20000000
25000000
30000000

0.7 0.8 0.9 1

Failures
Mean Variance

0

200

400

600

800

0.7 0.8 0.9 1

 
Failures

2nd Moment Mean

0
5000

10000
15000
20000
25000
30000

0.7 0.8 0.9 1

Failures
2nd Moment Variance

0

10000000

20000000

30000000

40000000

50000000

0.7 0.75 0.8 0.85 0.9 0.95 1

Figure E3:  Failures Higher moment CT/TH curves 
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Figure E4:  MM1 Higher moment CT/TH curves 
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  Model  Exponent A B C R^2 
Variance of Means Const q 3.81428 0.466684  0.999925

Quad 1.67943 2.12849 -5.26786 3.449245 0.999366
Linear 1.751078 -0.39177 0.614741 0.999332Mean Variance 
Const

p2?
1.851661 0.142415  0.999139

Quad 1.89801 0.246157 -0.12078 0.14531 0.999728
Linear 1.901242 0.136402 0.130199 0.9997282nd Moment Mean 
Const

p2 
1.917205 0.248076  0.999725

Quad 2.406776 247.4186 -573.458 330.5777 0.998789
Linear 2.642008 -19.3259 20.90684 0.998592

3QSeg1K3 

2nd Moment Variance 
Const

q2 
3.220357 0.121186  0.997772

Variance of Means Const q 3.989933 3.094546  0.999927
Quad 1.744132 9.975301 -24.6122 16.5132 0.999917
Linear 1.798769 -2.17471 3.632629 0.999902Mean Variance 
Const

p2?
1.887591 0.980161  0.999773

Quad 2.793876 5.577347 -5.44876 -0.10512 0.999954
Linear 2.795825 5.64937 -5.62633 0.9999542nd Moment Mean 
Const

p2 
1.919834 4.168475  0.999918

Quad      
Linear      

20QSeg3K5 

2nd Moment Variance 
Const

q2 
8.120907 3.26E-07  0.99977

Variance of Means Const q 2.101601 7024.175  0.990037
Quad 1.438089 6.575685 -8.28429 4.315811 0.998995
Linear 1.45214 3.478392 -1.03577 0.998994Mean Variance 
Const

p2?
1.43597 2.622434  0.998983
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Figure E5:  Higher Moment Model fit data 
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