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We present a model for representing stationary multivariate time-series input processes with
marginal distributions from the Johnson translation system and an autocorrelation structure
specified through some finite lag. We then describe how to generate data accurately to drive
computer simulations. The central idea is to transform a Gaussian vector autoregressive pro-
cess into the desired multivariate time-series input process that we presume as having a VARTA
(Vector-Autoregressive-To-Anything) distribution. We manipulate the autocorrelation structure of
the Gaussian vector autoregressive process so that we achieve the desired autocorrelation structure
for the simulation input process. We call this the correlation-matching problem and solve it by an
algorithm that incorporates a numerical-search procedure and a numerical-integration technique.
An illustrative example is included.

Categories and Subject Descriptors: G.3 [Probability and Statistics]—time series analysis; I.6.5
[Simulation and Modeling]: Model Development—modeling methodologies

General Terms: Experimentation, Languages
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1. INTRODUCTION

Representing the uncertainty in a simulated system by an input model is one
of the challenging problems in the application of computer simulation. There
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are an abundance of examples, from manufacturing to service applications,
where input modeling is critical, including modeling the processing times of
a workpiece across several workcenters, modeling the medical characteristics
of organ-transplant donors and recipients [Pritsker et al. 1995], or modeling
the arrival streams of packets in ATM telecommunications networks [Livny
et al. 1993]. Building a large-scale discrete-event stochastic simulation model
may require the development of a substantial number of, possibly multivariate,
input models. Development of these models is facilitated by accurate and au-
tomated (or nearly automated) input modeling support. The ability of an input
model to represent the underlying uncertainty is essential because even the
most detailed logical model combined with a sound experimental design and
thorough output analysis cannot compensate for inaccurate or irrelevant input
models.

The interest among researchers and practitioners in modeling and gener-
ating input processes for stochastic simulation has led to commercial devel-
opment of a number of input modeling packages, including ExpertFit (Averill
M. Law and Associates, Inc.), the Arena Input Analyzer (Rockwell Software
Inc.), Stat::Fit (Geer Mountain Software Corporation), and BestFit (Palisade
Corporation). These products are most useful when data on the process of in-
terest are available. The approach that they take is to exhaustively fit and
evaluate the fit of the standard families of distributions (e.g., beta, Erlang, expo-
nential, gamma, lognormal, normal, Poisson, triangular, uniform, or Weibull),
and recommend the one with the best summary measures as the input model.
The major drawback of the input models incorporated in these packages is
that they emphasize independent and identically distributed (i.i.d.) processes
with limited shapes that may not be flexible enough to represent some char-
acteristics of the observed data or some known properties of the process that
generates the data. However, dependent and multivariate time-series input
processes with nonstandard marginal distributions occur naturally in the sim-
ulation of many service, communications, and manufacturing systems (e.g.,
Melamed et al. [1992] and Ware et al. [1998]). Input models that ignore de-
pendence can lead to performance measures that are seriously in error and a
significant distortion of the simulated system. This is illustrated in Livny et al.
[1993], who examined the impact of autocorrelation on queueing systems.

In this article, we provide a model that represents dependencies in time
sequence and with respect to other input processes in the simulation. Our goal
is to match prespecified properties of the input process, rather than to fit the
model to a sample of data. More specifically, we consider the case in which the
first four moments of all of the marginal distributions, and the autocorrelation
structure through some finite lag, are given, and we want to drive our simulation
with vector time series that have these properties. The related problem of fitting
our model to historical data is addressed in Biller and Nelson [2002, 2003a].

Our input-modeling framework is based on the ability to represent and
generate continuous-valued random variates from a stationary k-variate time
series {Xt ; t = 0, 1, 2, . . . }, a model that includes univariate independent
and identically distributed processes, univariate time-series processes, and
finite-dimensional random vectors as special cases. Thus, our philosophy is
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to develop a single, but very general, input model rather than a long list of
more specialized models. Specifically, we let each component time series {X i,t ;
i = 1, 2, . . . , k; t = 0, 1, 2, . . . } have a marginal distribution from the Johnson
translation system [Johnson 1949a] to achieve a wide variety of distributional
shapes; and we reflect the desired dependence structure via Pearson product–
moment correlations, ρX(i, j , h) ≡ Corr[X i,t , X j ,t−h], for h = 0, 1, 2, . . . , p. We
achieve this using a transformation-oriented approach that invokes the theory
behind the standardized Gaussian vector autoregressive process. Therefore, we
refer to Xt as having a VARTA (Vector-Autoregressive-To-Anything) distribu-
tion. For i = 1, 2, . . . , k, we take {Zi,t ; t = 0, 1, 2, . . . } to be the ith component
series of the k-variate Gaussian autoregressive base process of order p, where p
is the maximum lag for which an input correlation is specified. Then, we obtain
the ith time series via the transformation X i,t = F−1

X i
[8(Zi,t)], where 8(·) is the

cumulative distribution function (cdf) of the standard normal distribution and
FX i is the Johnson-type cdf suggested for the ith component series of the input
process. This transformation-oriented approach requires matching the desired
autocorrelation structure of the input process by manipulating the autocorre-
lation structure of the Gaussian vector autoregressive base process. In order to
make this method practically feasible, we propose a numerical scheme to solve
correlation-matching problems accurately for VARTA processes.

The remainder of the article is organized as follows: In Section 2, we re-
view the literature related to modeling and generating multivariate input pro-
cesses for stochastic simulation. The comprehensive framework we employ, to-
gether with background information on vector autoregressive processes and the
Johnson translation system, is presented in Section 3. The numerical-search
and numerical-integration procedures are described in Section 4. Section 5 con-
tains examples and Section 6 provides concluding remarks.

2. MODELING AND GENERATING MULTIVARIATE INPUT PROCESSES

A review of the literature on input modeling reveals a variety of models for rep-
resenting and generating input processes for stochastic simulation. We restrict
our attention to models that account for dependence in the input process, and
refer the reader to Nelson and Yamnitsky [1998] and Law and Kelton [2000]
for detailed surveys of the existing input-modeling tools.

When the problem of interest is to construct a stationary univariate time se-
ries with given marginal distribution and autocorrelation structure, there are
two basic approaches: (i) Construct a time-series process exploiting properties
specific to the marginal distribution of interest; or (ii) construct a series of auto-
correlated uniform random variables, {Ut ; t = 0, 1, 2, . . . }, as a base process and
transform it to the input process via X t = G−1

X (Ut), where GX is an arbitrary
cumulative distribution function. The basic idea is to achieve the target auto-
correlation structure of the input process X t by adjusting the autocorrelation
structure of the base process Ut .

The primary shortcoming of approach (i) is that it is not general: a different
model is required for each marginal distribution of interest and the sample
paths of these processes, while adhering to the desired marginal distribution
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and autocorrelation structure, sometimes have unexpected features. An exam-
ple is given by Lewis et al. [1989], who constructed time series with gamma
marginals. In this paper, we take the latter approach (ii), which is more gen-
eral and has been used previously by various researchers including Melamed
[1991], Melamed et al. [1992], Willemain and Desautels [1993], Song et al.
[1996], and Cario and Nelson [1996, 1998]. Of these, the most general model
is given by Cario and Nelson, who redefined the base process as a Gaussian
autoregressive process from which a series of autocorrelated uniform random
variables is constructed via the probability-integral transformation. Further,
their model controls the autocorrelations at lags of higher order than the others
can handle. Our approach is very similar to the one in that study, but we define
the base process by a vector autoregressive process that allows the modeling
and generation of multivariate time-series processes.

The literature reveals a significant interest in the construction of random
vectors with dependent components, which is a special case of our model. There
are an abundance of models for representing and generating random vectors
with marginal distributions from a common family. Excellent surveys can be
found in Devroye [1986] and Johnson [1987]. However, when the component
random variables have different marginal distributions from different families,
there are few alternatives available. One approach is to transform multivariate
normal vectors into vectors with arbitrary marginal distributions. The first
reference to this idea appears to be Mardia [1970], who studied the bivariate
case. Li and Hammond [1975] discussed the extension to random vectors of any
finite dimension having continuous marginal distributions.

There are numerous other references that take a similar approach. Among
these, we refer the interested reader to Chen [2001] and Cario et al. [2001], who
generated random vectors with arbitrary marginal distributions and correla-
tion matrix by the so-called NORTA (Normal-To-Anything) method, involving a
componentwise transformation of a multivariate normal random vector. Cario
et al. also discussed the extension of their idea to discrete and mixed marginal
distributions. Their results can be considered as broadening the results of Cario
and Nelson [1996] beyond a common marginal distribution. Recently, Lurie and
Goldberg [1998] implemented a variant of the NORTA method for generating
samples of predetermined size, while Clemen and Reilly [1999] described how
to use the NORTA procedure to induce a desired rank correlation in the context
of decision and risk analysis.

The transformation-oriented approach taken in this paper is related to meth-
ods that transform a random vector with uniformly distributed marginals into
a vector with arbitrary marginal distributions; for example, Cook and Johnson
[1981] and Ghosh and Henderson [2002]. However, it is quite different from
techniques that construct joint distributions as mixtures of distributions with
extreme correlations among their components [Hill and Reilly 1994]. While
the mixture method is very effective for random vectors of low dimension (e.g.,
k ≤ 3), the computational requirements quickly become expensive for higher
dimensional random vectors.

The primary contribution of this article is to develop a comprehensive
input-modeling framework that pulls together the theory behind univariate
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time series and random vectors with dependent components and extends it
to the multivariate time series, while also providing a numerical method to
implement it.

3. THE MODEL

In this section, we present the VARTA framework together with the theory that
supports it and the implementation problems that must be solved.

3.1 Background

Our premise is that searching among a list of input models for the “true, correct”
model is neither a theoretically supportable nor practically useful paradigm
upon which to base general-purpose input-modeling tools. Instead, we view
input modeling as customizing a highly flexible model that can capture the
important features of interest, while being easy to use, adjust, and understand.
We achieve flexibility by incorporating vector autoregressive processes and the
Johnson translation system into the model in order to characterize the process
dependence and marginal distributions, respectively. We define the base process
Zt as a standard Gaussian vector autoregressive process whose autocorrelation
structure is adjusted in order to achieve the desired autocorrelation structure
of the input process Xt . Then, we construct a series of autocorrelated uniform
random variables, {Ui,t ; i = 1, 2, . . . , k; t = 0, 1, 2, . . . }, using the probability-
integral transformation Ui,t = 8(Zi,t). Finally, for i = 1, 2, . . . , k, we apply the
transformation X i,t = F−1

X i
[Ui,t], which ensures that the ith component series,

{X i,t ; t = 0, 1, 2, . . . }, has the desired Johnson-type marginal distribution FX i .
Below, we provide a brief review of the features of vector autoregressive

processes and the Johnson translation system that we exploit; we then present
the framework.

3.1.1 The VARk(p) Model. In a k-variate vector autoregressive process of
order p (the VARk(p) model) the presence of each variable is represented by a
linear combination of a finite number of past observations of the variables plus
a random error. This is written in matrix notation as1

Zt = α1Zt−1 +α2Zt−2 + · · · +αpZt−p + ut , t = 0,±1,±2, . . . , (1)

where Zt = (Z1,t , Z2,t , . . . , Zk,t)′ is a (k × 1) random vector of the observations
at time t and the αi, i = 1, 2, . . . , p, are fixed (k × k) autoregressive coefficient
matrices. Finally, ut = (u1,t , u2,t , . . . , uk,t)′ is a k-dimensional white noise vector
representing the part of Zt that is not linearly dependent on past observations;
it has (k × k) covariance matrix 6u such that

E[ut] = 0(k×1) and E[utu′t−h] =
{
6u if h = 0,
0(k×k) otherwise.

The covariance matrix 6u is assumed to be positive definite.

1Although it is sometimes assumed that a process is started in a specified period, we find it more
convenient to assume that it has been started in the infinite past.
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Although the definition of the VARk(p) model does not require the multivari-
ate white noise vector, ut , to be Gaussian, our model makes this assumption.
We also assume stability, meaning that the roots of the reverse characteris-
tic polynomial, |I(k×k) − α1z − α2z2 − · · · − αpz p| = 0, lie outside of the unit
circle in the complex plane (I(k×k) is the (k × k) identity matrix). This further
implies stationarity of the corresponding VARk(p) process [Lütkepohl 1993,
Proposition 2.1].

A first-order vector autoregressive process (the VARk(1) model) can be ex-
pressed in terms of past and present white noise vectors as

Zt =
∞∑

i=0

αi
1ut−i, t = 0,±1,±2, . . . . (2)

[Lütkepohl 1993, page 10]. Since the assumption of stability makes the se-
quence {αi

1; i = 0, 1, 2, . . . } absolutely summable [Lütkepohl 1993; Appendix A,
Section A.9.1], the infinite sum (2) exists in mean square [Lütkepohl 1993;
Appendix C, Proposition C.7]. Therefore, using the representation in (2),
the first and second (time-invariant) moments of the VARk(1) model are
obtained as

E[Zt] = 0(k×1) for all t,

6Z (h) = E[(Zt − E[Zt])(Zt−h − E[Zt−h])′]

= lim
n→∞

n∑
i=0

n∑
j=0

αi
1E[ut−iu′t−h− j ]

(
α

j
1

)′
= lim

n→∞

n∑
i=0

αi+h
1 6u

(
αi

1

)′ = ∞∑
i=0

αi+h
1 6u

(
αi

1

)′
,

because E[utu′s] = 0 for t 6= s and E[utu′t] = 6u for all t [Lütkepohl 1993,
Appendix C.3, Proposition C.8]. We use the covariance matrices 6Z (h), h =
0, 1, . . . , p, to characterize the autocovariance structure of the base process as

6Z =


6Z (0) 6Z (1) . . . 6Z (p− 2) 6Z (p− 1)
6′Z (1) 6Z (0) . . . 6Z (p− 3) 6Z (p− 2)

...
...

. . .
...

...
6′Z (p− 1) 6′Z (p− 2) . . . 6′Z (1) 6Z (0)


(kp×kp)

. (3)

In this article, we assume that the autocovariance matrix, 6Z, is positive
definite.

We can extend the discussion above to VARk(p) processes with p > 1 because
any VARk(p) process can be written in the first-order vector autoregressive
form. More precisely, if Zt is a VARk(p) model defined as in (1), a corresponding
kp-dimensional first-order vector autoregressive process

Z̄t = ᾱ1Z̄t−1 + ūt (4)
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can be defined, where

Z̄t =



Zt

Zt−1

Zt−2

...
Zt−p+1


(kp×1)

ᾱ1 =



α1 α2 . . . αp−1 αp

I(k×k) 0 . . . 0 0
0 I(k×k) . . . 0 0
...

...
. . .

...
...

0 0 . . . I(k×k) 0


(kp×kp)

ūt =



ut

0
0
...
0


(kp×1)

.

This is known as “the state-space model” of the k-variate autoregressive process
of order p [Lütkepohl 1993, page 418]. Following the foregoing discussion, the
first and second moments of Z̄t are

E[Z̄t] = 0(kp×1) for all t and 6Z̄ (h) =
∞∑

i=0

ᾱi+h
1 6ū

(
ᾱi

1

)′
, (5)

where 6ū = E[ūtū′t] for all t. Using the (k × kp) matrix J = (I(k×k) 0 · · ·0), the
process Zt is obtained as Zt = JZ̄t . Since Z̄t is a well-defined stochastic process,
the same is true for Zt . The mean E[Zt] is zero for all t and the (time-invariant)
covariance matrices of the VARk(p) model are given by 6Z (h) = J6Z̄ (h)J′.

We can describe the VARk(p) model using either its autocovariance structure,
6Z (h) for h = 0, 1, . . . , p, or its parameters, α1,α2, . . . ,αp and 6u. In input-
modeling problems, we directly adjust 6Z (h), h = 0, 1, . . . , p, to achieve the de-
sired autocorrelation structure of Xt . To determine α1,α2, . . . ,αp and 6u from
6Z (h), h = 0, 1, . . . , p, we simply solve the multivariate Yule–Walker equations
[Lütkepohl 1993, page 21] given byα = 66−1

Z , whereα = (α1,α2, . . . ,αp)(k×kp)
and 6 = (6Z (1),6Z (2), . . . ,6Z (p))(k×kp). Once α is obtained, 6u can be deter-
mined from

6u = 6Z (0)−α16
′
Z (1)− · · · −αp6

′
Z (p). (6)

Our motivation for defining the base process, Zt , as a standard Gaussian vec-
tor autoregressive process is that it enables us to obtain the desired marginal
distributions while incorporating the process dependence into the generated
values implicitly. Further, it brings significant flexibility to the framework
through its ability to characterize dependencies both in time sequence and
with respect to other component series in the input process. We ensure that
each component series of the input process {X i,t ; i = 1, 2, . . . , k; t = 0, 1, 2, . . . }
has the desired marginal distribution FX i by applying the transformation
X i,t = F−1

X i
[8(Zi,t)]. This works, provided each Zi,t is a standard normal random

variable. The assumption of Gaussian white noise implies that Zt is a Gaussian
process2 with mean 0. This further implies that the random vector (Zi,t , Z j ,t−h)′

has a bivariate normal distribution and, hence, Zi,t is a normal random variable

2This is considered a standard result in the time-series literature and stated without proof in several
books, for example, Lütkepohl [1993, page 12]. However, the reader can find the corresponding proof
together with the distributional properties of Gaussian vector autoregressive base processes in the
online companion [Biller and Nelson 2003c].
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(bivariate normality will be exploited when we solve the correlation-matching
problem).

We force Zi,t to be standard normal by defining 6Z (0) to be a correlation ma-
trix and all entries in 6Z (h), h = 1, 2, . . . , p to be correlations. For this reason,
we will use the terms “autocovariance” and “autocorrelation” interchangeably
in the remainder of the article. We now state more formally the result that
the random vector (Zi,t , Z j ,t−h)′ is bivariate normal; the proof, together with
additional distributional properties, is in Biller and Nelson [2003c].

THEOREM 3.1. Let Zt denote a stable pth-order vector autoregressive process,
VARk(p), as defined in (1) with a positive definite autocorrelation matrix 6Z
given by (3). The random variable Z̃ = (Zi,t , Z j ,t−h)′, for i, j = 1, 2, . . . , k and
h = 0, 1, 2, . . . (except i = j when h = 0) has a nonsingular bivariate normal
distribution with density function given by

f (z̃;62) = 1

2π |62| 12
exp

(
−1

2
z̃ ′6−1

2 z̃
)

, z̃ ∈ <2,

62 =
(

1 ρZ(i, j , h)
ρZ(i, j , h) 1

)
(2×2)

.

PROOF. See Theorem 1 of Biller and Nelson [2003c].

Using the distributional properties provided in this section, we can achieve
the desired autocorrelation structure of the input process by adjusting the au-
tocorrelation structure of the Gaussian vector autoregressive base process as
described in Section 3.2 below.

To generate a multivariate time series with given Johnson-type marginals
and autocorrelation structure specified through lag p, we need to be able to
generate realizations from a k-variate Gaussian vector autoregressive process
of any required length, say T . We now explain how to do this using standard
theory [Lütkepohl 1993, Appendix D.1]:

—First, we obtain the starting values, z−p+1, z−p+2, . . . , z0, using the auto-
correlation structure, 6Z (h), h = 0, 1, . . . , p, and the implied parameters,
α1, . . . ,αp and 6u. We also obtain a series of Gaussian white noise vectors,
u1, u2, . . . , uT . Then, we generate the time series z1, z2, . . . , zT recursively
as zt = α1zt−1 + · · ·+ αpzt−p + ut for t = 1, 2, . . . , T .

—To generate z−p+1, z−p+2, . . . , z0 as realizations of Z−p+1, Z−p+2, . . . , Z0 whose
joint distribution is given by a nonsingular kp-dimensional multivariate nor-
mal distribution (Biller and Nelson [2003c, Remark 1]), we choose a (kp×kp)
matrix Q such that QQ′ = 6Z. Then we obtain the starting-value vector as
(z′0, z′−1, . . . , z′−p+1)′ = Q (v1, . . . , vkp)′, where the vi ’s are independent stan-
dard normal random variates. In this way, we ensure that the process starts
stationary.

—To obtain the series of independent Gaussian white noise vectors,
u1, u2, . . . , uT , we first choose k independent univariate standard normal
variates v1, v2, . . . , vk , and then multiply by a (k × k) matrix P for which
PP′ = 6u; that is, ut = P (v1, v2, . . . , vk)′. We repeat this process T times.
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3.1.2 The Johnson Translation System. In the case of modeling data with
an unknown distribution, an alternative to using a standard family of distri-
butions is to use a more flexible system of distributions. We propose using the
Johnson translation system [Johnson 1949a]. Our motivation for using this
system is practical, rather than theoretical: In many applications, simulation
output performance measures are insensitive to the specific input distribution
chosen provided that enough moments of the distribution are correct, for ex-
ample, Gross and Juttijudata [1997]. The Johnson system can match any feasi-
ble first four moments, while the standard input models incorporated in some
existing software packages and simulation languages match only one or two
moments. Thus, our goal is to represent key features of the process of interest,
as opposed to finding the “true” distribution.

The Johnson translation system for a random variable X is defined by a cdf
of the form

FX (x) = 8
{
γ + δ f

[
x − ξ
λ

]}
, (7)

where γ and δ are shape parameters, ξ is a location parameter, λ is a scale
parameter, and f (·) is one of the following transformations:

f ( y) =


log ( y) for the SL (lognormal) family,

log( y +
√

y2 + 1) for the SU (unbounded) family,

log
(

y
1− y

)
for the SB (bounded) family,

y for the SN (normal) family.

There is a unique family (choice of f ) for each feasible combination of the skew-
ness and the kurtosis that determine the parameters γ and δ. Any mean and
(positive) variance can be attained by any one of the families by the manipula-
tion of the parameters λ and ξ . Within each family, a distribution is completely
specified by the values of the parameters [γ , δ, λ, ξ ] and the range of X depends
on the family of interest.

The Johnson translation system provides good representations for unimodal
distributions and can represent certain bimodal shapes, but not three or more
modes. In spite of this, the Johnson translation system enables us to achieve a
wide variety of distributional shapes. A detailed illustration for the shapes of
the Johnson-type probability density functions can be found in Johnson [1987].

3.2 The Model

In this section we describe a model for a stationary k-variate time-series input
process {Xt ; t = 0, 1, 2, . . . } with the following properties:

(1) Each component time series {X i,t ; t = 0, 1, 2, . . . } has a Johnson-type
marginal distribution that can be defined by FX i . In other words, X i,t ∼ FX i

for t = 0, 1, 2, . . . and i = 1, 2, . . . , k.
(2) The dependence structure is specified via Pearson product—moment cor-

relations ρX(i, j , h) = Corr[X i,t , X j ,t−h], for h = 0, 1, . . . , p and i, j =
1, 2, . . . , k. Equivalently, the lag-h correlation matrices are defined by
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6X (h) = Corr
[
Xt , Xt−h

] = [ρX(i, j , h)](k×k), for h = 0, 1, . . . , p, where
ρX(i, i, 0) = 1. Using the first h = 0, 1, . . . , p−1 of these matrices, we define
6X analogously to 6Z.

Accounting for dependence via Pearson product—moment correlation is a
practical compromise we make in the model. Many other measures of depen-
dence have been defined (e.g., Nelsen [1998]) and they are arguably more in-
formative than the product—moment correlation for some distribution pairs.
However, product—moment correlation is the only measure of dependence that
is widely used and understood in engineering applications. We believe that
making it possible for simulation users to incorporate dependence via product—
moment correlation, while limited, is substantially better than ignoring depen-
dence. Further, our model is flexible enough to incorporate dependence mea-
sures that remain unchanged under strictly increasing transformations of the
random variables, such as Spearman’s rank correlation and Kendall’s τ , should
those measures be desired.

We obtain the ith time series via the transformation X i,t = F−1
X i

[8(Zi,t)],
which ensures that X i,t has distribution FX i by well-known properties of the
inverse cumulative distribution function. Therefore, the central problem is to
select the autocorrelation structure, 6Z (h), h = 0, 1, . . . , p, for the base process
that gives the desired autocorrelation structure, 6X (h), h = 0, 1, . . . , p, for the
input process.

We let ρZ(i, j , h) be the (i, j )th element of the lag-h correlation matrix,6Z (h),
and let ρX(i, j , h) be the (i, j )th element of 6X (h). The correlation matrix of the
base process Zt directly determines the correlation matrix of the input process
Xt , because

ρX(i, j , h) = Corr[X i,t , X j ,t−h] = Corr
[
F−1

X i
[8(Zi,t)], F−1

X j
[8(Z j ,t−h)]

]
for all i, j = 1, 2, . . . , k and h = 0, 1, 2, . . . , p, excluding the case i = j when
h = 0. Further, only E[X i,t X j ,t−h] depends on 6Z , since

Corr[X i,t , X j ,t−h] = E[X i,t X j ,t−h]− E[X i,t]E[X j ,t−h]√
Var[X i,t]Var[X j ,t−h]

and E[X i,t], E[X j ,t−h], Var[X i,t], Var[X j ,t−h] are fixed by FX i and FX j (i.e., µi =
E[X i,t], µ j = E[X j ,t−h], σ 2

i = Var[X i,t] and σ 2
j = Var[X j ,t−h] are properties of

FX i and FX j ). Since (Zi,t , Z j ,t−h)′ has a nonsingular standard bivariate normal
distribution with correlation ρZ(i, j , h) (Theorem 3.1), we have

E[X i,t X j ,t−h]=E
[
F−1

X i
[8(Zi,t)]F−1

X j
[8(Z j ,t−h)]

]
(8)

=
∫ ∞
−∞

∫ ∞
−∞

F−1
X i

[8(zi,t)]F−1
X j

[8(z j ,t−h)]ϑρZ(i, j ,h)(zi,t , z j ,t−h) dzi,t dz j ,t−h,

where ϑρZ(i, j ,h) is the standard bivariate normal probability density function
with correlation ρZ(i, j , h).

This development is valid for any marginal distributions FX i and FX j for
which the expectation (8) exists. However, since Zi,t and Z j ,t−h are standard
normal random variables with a nonsingular bivariate distribution, the joint

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.



Modeling and Generating Multivariate Time-Series Input Processes • 221

distribution of X i,t and X j ,t−h is well-defined and the expectation (8) always ex-
ists in the case of Johnson marginals. Further, the Johnson translation system
is a particularly good choice because

X i,t = F−1
X i

[8(Zi,t)] = ξi + λi f −1
i

[
Zi,t − γi

δi

]
X j ,t−h = F−1

X j
[8(Z j ,t−h)] = ξ j + λ j f −1

j

[
Z j ,t−h − γ j

δ j

]
, (9)

avoiding the need to evaluate 8(·). Notice that the Eq. (9) defines a bivariate
Johnson distribution as in Johnson [1949b].

From (8) we see that the correlation between X i,t and X j ,t−h is a function
only of the correlation between Zi,t and Z j ,t−h, which appears in the expression
for ϑρZ(i, j ,h). We denote the implied correlation Corr[X i,t , X j ,t−h] by the function
ci j h[ρZ(i, j , h)] defined as∫∞
−∞
∫∞
−∞ F−1

X i
[8(zi,t)]F−1

X j
[8(z j ,t−h)]ϑρZ(i, j ,h)(zi,t , z j ,t−h) dzi,t dz j ,t−h − µiµ j

σiσ j
.

Thus, the problem of determining 6Z (h), h = 0, 1, . . . , p, that gives the desired
input correlation matrices 6X (h), h = 0, 1, . . . , p, reduces to pk2 + k(k − 1)/2
individual matching problems in which we try to find the value ρZ(i, j , h) that
makes cijh[ρZ(i, j , h)] = ρX(i, j , h). Unfortunately, it is not possible to find the
ρZ(i, j , h) values analytically except in special cases [Li and Hammond 1975].
Instead, we establish some properties of the function cijh[ρZ(i, j , h)] that en-
able us to perform a numerical search to find the ρZ(i, j , h) values within a
predetermined precision. We primarily extend the results in Cambanis and
Marsy [1978], Cario and Nelson [1996], and Cario et al. [2001]—which apply to
time-series input processes with identical marginal distributions and random
vectors with arbitrary marginal distributions—to the multivariate time-series
input processes with arbitrary marginal distributions. The proofs of all results
can be found in the Appendix.

The first two properties concern the sign and the range of cijh[ρZ(i, j , h)] for
−1 ≤ ρZ(i, j , h) ≤ 1.

PROPOSITION 3.2. For any distributions FX i and FX j , ci j h(0) = 0 and
ρZ(i, j , h) ≥ 0 (≤ 0) implies that cijh[ρZ(i, j , h)] ≥ 0 (≤ 0).

It follows from the proof of Proposition 3.2 that taking ρZ(i, j , h) = 0 results
in a multivariate time series in which X i,t and X j ,t−h are not only uncorrelated,
but are also independent. The following property shows that the minimum and
maximum possible input correlations are attainable.

PROPOSITION 3.3. Let ρ
ij

and ρ̄ij be the minimum and maximum possible
bivariate correlations, respectively, for random variables having marginal dis-
tributions FX i and FX j . Then, cijh[−1] = ρ

ij
and cijh[1] = ρ̄i j .

The next two results shed light on the shape of the function cijh[ρZ(i, j , h)].
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THEOREM 3.4. The function cijh[ρZ(i, j , h)] is nondecreasing for −1 ≤
ρZ(i, j , h) ≤ 1.

THEOREM 3.5. If there exists ε > 0 such that∫ ∞
−∞

∫ ∞
−∞

sup
ρZ(i, j ,h)∈[−1,1]

{∣∣F−1
X i

[8(zi,t)]F−1
X j

[8(z j ,t−h)]
∣∣1+εϑρZ(i, j ,h)(zi,t , z j ,t−h)

}
dzi,t dz j ,t−h <∞,

then the function cijh[ρZ(i, j , h)] is continuous for −1 ≤ ρZ(i, j , h) ≤ 1.

Since cijh[ρZ(i, j , h)] is a continuous, nondecreasing function under the mild
conditions stated in Theorem 3.5, any reasonable search procedure can be used
to find ρZ(i, j , h) such that cijh[ρZ(i, j , h)] ≈ ρX(i, j , h) (although perhaps not
efficiently). Proposition 3.2 provides the initial bounds for such a procedure.
Proposition 3.3 shows that the extremal values of ρX(i, j , h) are attainable un-
der the model. Furthermore, from Proposition 3.3, Theorem 3.5, and the In-
termediate Value Theorem, any possible bivariate correlation for FX i and FX j

is attainable under the model. Theorem 3.4 provides the theoretical basis for
adjusting the values of ρZ(i, j , h) and is the key to developing a computationally
accurate numerical scheme, which we present in the following section.

Throughout the previous discussion, we assumed that there exists a joint
distribution with marginal distributions FX i , for i = 1, 2, . . . , k, and an au-
tocorrelation structure characterized by 6X (h), h = 0, 1, . . . , p. However, not
all combinations of FX i , i = 1, 2, . . . , k, and 6X (h), h = 0, 1, . . . , p, are fea-
sible. Clearly, for the autocorrelation structure to be feasible, we must have
ρ

ij
≤ ρX(i, j , h) ≤ ρ̄ij for each i, j = 1, 2, . . . , k and h = 0, 1, . . . , p. In ad-

dition, 6X must be positive definite and this can be ensured by selecting a
positive definite base autocorrelation matrix 6Z (J. R. Wilson, personal com-
munication). Unfortunately, the converse of this result does not necessarily
hold; that is, there exist sets of marginals with a feasible autocorrelation struc-
ture that are not representable by the VARTA transformation. Both Li and
Hammond [1975] and Lurie and Goldberg [1998] gave examples where this
appears to be the case and recently Ghosh and Henderson [2002] proved the
existence of a joint distribution that is not representable as a transformation of
a multivariate normal random vector. Although these studies primarily focus
on the NORTA procedure, they can be extended to the VARTA case. However,
Ghosh and Henderson’s computational experience suggests that the failure of
the NORTA method is rare. Further, inspection of the input correlation matri-
ces for which the NORTA method does not work shows that the correlations lie
either on the boundary or in close proximity to the set of achievable correlations
specified by the marginals of the input process. We have observed that using
the Johnson translation system tends to mitigate this problem because it pro-
vides a relatively comprehensive set of achievable correlations. If, after solving
the bivariate correlation-matching problems, the base correlation matrix is not
positive definite, then Ghosh and Henderson [2002] suggest the application of
semidefinite programming on the base matrix, which is completed to be positive
semidefinite. Motivated by this idea, we incorporate a modification step to the
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data generation routine, which we present in more detail in our technical report
[Biller and Nelson 2003b].

Our next result indicates that the input process Xt is stationary if the base
VARk(p) process Zt is, and it follows immediately from the definition of strict
stationarity.

PROPOSITION 3.6. If Zt is strictly stationary, then Xt is strictly stationary.3

4. IMPLEMENTATION

In this section, we consider the problem of solving the correlation-matching
problem for a fully specified VARTA process. Our objective is to find ρ̂Z(i, j , h)
such that cijh[ρ̂Z(i, j , h)] ≈ ρX(i, j , h) for i, j = 1, 2, . . . , k and h = 0, 1, . . . , p
(excluding the case i = j when h = 0). The idea is to take some initial base
correlations, transform them into the implied correlations for the specified pair
of marginals (using a numerical integration technique), and then employ a
search method until we find a base correlation that approximates the desired
input correlation within a prespecified level of accuracy.

This problem was previously studied by Cario and Nelson [1998], Chen
[2001], and Cario et al. [2001]. Since the only term in (8) that is a function
of ρ is ϑρ , Cario and Nelson suggest the use of a numerical integration pro-
cedure in which points (zi, z j ) at which the integrand is evaluated do not de-
pend on ρ and a grid of values are evaluated simultaneously by reweighting
the F−1

X i
[8(zi)]F−1

X j
[8(z j )] terms by different ϑρ values. They refine the grid

until one of the grid points ρ̂Z(i, j , h) satisfies cijh[ρ̂Z(i, j , h)] ≈ ρX(i, j , h), for
h = 0, 1, . . . , p. This approach makes particularly good sense in their case be-
cause all of their matching problems share a common marginal distribution, so
many of the grid points will be useful. Chen and Cario et al. evaluate (8) using
sampling techniques and apply stochastic root-finding algorithms to search for
the correlation of interest within a predetermined precision. This approach is
very general and makes good sense when the dimension of the problem is small
and a diverse collection of marginal distributions might be considered.

Contrary to the situations presented in these papers, evaluating the func-
tion F−1

X i
[8(zi)]F−1

X j
[8(z j )] is not computationally expensive for us because the

Johnson translation system is based on transforming standard normal random
variates. Thus, we avoid evaluating 8(zi) and 8(z j ). However, we may face a
very large number of matching problems, specifically pk2+k(k−1)/2 such prob-
lems. Our approach is to take advantage of the superior accuracy of a numerical
integration technique that supports a numerical-search procedure without suf-
fering a substantial computational burden. We will address the efficiency of
this technique in detail in our technical report [Biller and Nelson 2003b].

4.1 Numerical Integration Technique

This section briefly summarizes how we numerically evaluate E[X i,t X j ,t−h]
given the marginals, FX i and FX j , and the associated correlation, ρZ(i, j , h).

3Note that for a Gaussian process, strict stationarity and weak stationarity are equivalent
properties.
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Since we characterize the input process using the Johnson translation system,
evaluation of the composite function F−1

X [8(z)] is significantly simplified be-
cause F−1

X [8(z)] = ξ + λ f −1[(z − γ )/δ], where

f −1(a) =



exp(a) for the SL (lognormal) family,
exp(a)− exp(−a)

2
for the SU (unbounded) family,

1
1+ exp(−a)

for the SB (bounded) family,

a for the SN (normal) family.

Letting i = 1, j = 2, and ρZ(i, j , h) = ρ for convenience, the integral we need
to evaluate can be written as∫ ∞
−∞

∫ ∞
−∞

(
ξ1 + λ1 f −1

1 [(z1 − γ1)/δ1]
)

×(ξ2 + λ2 f −1
2 [(z2 − γ2)/δ2]

)exp(−(z2
1 − 2ρz1z2 + z2

2)/2(1− ρ2))

2π
√

1− ρ2
dz1 dz2. (10)

The expansion of the formula (10), based on the families to which f −1
1 and

f −1
2 might belong, takes us to a number of different subformulas, but all with

a similar form of ∫ ∞
−∞

∫ ∞
−∞

w[z1, z2] g [z1, z2, ρ] dz1 dz2,

where w[z1, z2] = exp(−(z2
1 + z2

2)), but the definition of g [·] changes from one
subproblem to another. Notice that the integral (8) exists only if |ρ| < 1, but we
can solve the problem for |ρ| = 1 using the discussion in the proof of Proposition
3.3 (see the Appendix).

Our problem falls under the broad class of numerical integration problems
for which there exists an extensive literature. Despite the wide-ranging and
detailed discussion of its theoretical and practical aspects, computing a numer-
ical approximation of a definite double integral with infinite support (called a
cubature problem) reliably and efficiently is often a highly complex task. As far
as we are aware, there are only two published softwares, “Ditamo” [Robinson
and Doncker 1981] and “Cubpack” [Cools et al. 1997], which were specifically
designed for solving cubature problems. While preparing the numerical inte-
gration routine for our software, we primarily benefited from the work accom-
plished in the latter reference.

As suggested by the numerical integration literature (e.g., Krommer and
Ueberhuber [1994]), we use a global adaptive integration algorithm, based
on transformations and subdivisions of regions, for an accurate and efficient
solution of our cubature problem. The key to a good solution is the choice
of an appropriate transformation from the infinite integration region of the
original problem to a suitable finite region for the adaptive algorithm. There-
fore, we transform the point (z1, z2) from the infinite region [−∞,∞]2 to the
finite region [−1, 1]2 by using a doubly infinite hypercube transformation
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zi = ψi(z∗i ) = tan(πz∗i /2) for − 1 < z∗i < 1 and i = 1, 2. Because dψi(z∗i )/dz∗i =
(π/2)[1+ tan2(πz∗i /2)], the integral (10) is transformed into one of the following
forms:∫ 1

−1

∫ 1

−1

w[tan(πz∗1/2), tan(πz∗2/2)]g [tan(πz∗1/2), tan(πz∗2/2), ρ]

4/π2
[
1+ tan2(πz∗1/2)

]−1[1+ tan2(πz∗2/2)
]−1 dz∗1 dz∗2, |ρ| < 1

∫ 1

−1

∫ 1

−1

∏2
i=1

(
ξi + λi f −1

i [(tan(πz∗i /2)− γi)/δi]
)

4
√

2/πexp
[

1
2 tan2(πz∗1/2)

][
1+ tan2(πz∗1/2)

]−1
dz∗1 dz∗2, ρ = 1 (11)

∫ 1

−1

∫ 1

−1

(
ξ1 + λ1 f −1

1 [(tan(πz∗1/2)− γ1)/δ1]
)(
ξ2 + λ2 f −1

2 [(tan(πz∗1/2)− γ2)/δ2]
)

4
√

2/πexp
[

1
2 tan2(πz∗1/2)

][
1+ tan2(πz∗1/2)

]−1

×dz∗1 dz∗2, ρ = −1.

Although the ρ = ±1 cases could be expressed as a single integral, we express
them as double integrals in order to take advantage of the accurate and reliable
error estimation strategy developed specifically for cubature problems.

As a check on consistency and efficiency of the transformation ψ(z∗) =
tan(πz∗/2), we compared its performance with other doubly infinite hypercube
transformations including ψ(z∗) = z∗/(1 − |z∗|), ψ(z∗) = sign(z∗)(−ν ln(|z∗|)) 1

2 ,
and ψ(z∗) = sign(z∗)(−ν ln(1 − |z∗|)) 1

2 for some ν > 0, as suggested by Genz
[1992]. While dψ(z∗)/dz∗ is generally singular at the points z∗ for which
ψ(z∗) = ±∞, and this entails singularities of the transformed integrand in the
case of the doubly infinite hypercube transformations listed above, we do not
need to deal with this problem when we useψ(z∗) = tan(πz∗/2) for−1 < z∗ < 1.
Further, we empirically observed that the transformation ψ(z∗) = tan(πz∗/2)
leads to relatively smooth shapes to be integrated, increasing the effective-
ness of the global adaptive integration algorithm for solving the correlation-
matching problem.

Since the integration regions in the formulas (11) correspond to squares
defined over [−1, 1]2, we can use a variety of cubature formulas developed for
integration in a unit-square region and accommodate any rectangular region
using the standard affine transformations (scaling and translation). Therefore,
our numerical integration routine requires the central data structure to be a
collection of rectangles. This allows us to take full advantage of polymorphism of
C++ when we incorporate this routine in the software. Figure 1 provides a high-
level view of how the algorithm works. In the figure, we use C(`; B) and E(`; B)
to denote the cubature formula and the error estimation strategy, respectively,
applied to the integrand ` over the region B. Further, I(`; B) corresponds to the
true value of the integral.

As the criterion for success, we define the maximum allowable error level as

max(εabs, εrel × C(|`|; B)),

where εabs corresponds to the requested absolute error and εrel is the re-
quested relative error. This definition is a combination of a pure test for con-
vergence with respect the absolute error (εrel = 0 and |E(`; B)| < εabs) and
a pure test for convergence with respect to the relative error (εabs = 0 and
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Fig. 1. Meta algorithm for the numerical integration routine.

|E(`; B)|/C(|`|; B) < εabs). The constants εabs and εrel are defined in our software
[see Section 5], in which we can also force one or the other of these criteria
to be satisfied by specifying the error for the other to be zero. Notice that we
define the maximum allowable error level using C(|`|; B) instead of |C(`; B)|.
This avoids heavy cancelation that might occur during the calculation of the
approximate value C(`; B) ≈ 0, although the function values in the integration
problems might not be small. For the full motivation behind this convergence
test, we refer the reader to Krommer and Ueberhuber [1994]. The additional
calculation of C(|`|; B) causes only a minor increase in the overall computational
effort as no additional function evaluations are needed.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.



Modeling and Generating Multivariate Time-Series Input Processes • 227

After we select the rectangular region with the largest error estimate, we
dissect it into two or four smaller subregions, which are affinely similar to the
original one, by lines running parallel to the sides [Cools 1994]. Adopting the
“C2rule13” routine of the Cubpack software, we approximate the integral and
the error associated with each subregion using a fully symmetric cubature for-
mula of degree 13 with 37 points [Rabinowitz and Richter 1969; Stroud 1971]
and a sequence of null rules with different degrees of accuracy. If the subdivi-
sion decreases the total error estimate, then the descendants (subregions) of the
selected region are added to the collection of rectangular regions over which the
function ` is integrated, the total approximate integral and error estimates are
updated, and finally the selected rectangle is removed from the collection. Oth-
erwise, the selected rectangle is considered to be hopeless, which means that
the current error estimate for that region cannot be reduced further. When ei-
ther the total error estimate falls below the maximum error level, or all regions
are marked as hopeless, we stop the integration routine and report the result.

Due to the importance of the error estimation strategy in solving the
correlation-matching problem accurately, we next give a brief description of
null rules and the motivation for using them, and explain how we calculate an
error estimate from null rules. Readers who are not interested in the specifics of
the numerical integration technique may skip the remainder of this subsection.

Krommer and Ueberhuber [1994] define an n-point d -degree null rule as the
sum Nd (`) =∑n

i=1 ui `(xi) with at least one non-zero weight and the condition
that

∑n
i=1 ui = 0, where xi, i = 1, 2, . . . , n and ui, i = 1, 2, . . . , n correspond to

the abscissas and the weights of the null rule, respectively, and `(xi) is the value
the integrand ` takes at the abscissa xi. The null rule Nd (`) is furthermore said
to have degree d if it assigns zero to all polynomials of degree not more than
d , but not all polynomials of degree d + 1. When two null rules of the same
degree exist, say Nd ,1(`) and Nd ,2(`), the number Nd (`) =

√
N2

d ,1(`)+N2
d ,2(`) is

computed and called a combined rule. We use the tuple (·,·) to refer to such a
combined null rule and (·) to refer to a single null rule.

For any given set of n distinct points, there is a manifold of null rules, but
we restrict ourselves to the “equally strong” null rules whose weights have the
same norm as the coefficients of the cubature formula. The advantage of using
the equally strong null rules is that if we consider the error estimate coming
from a sequence of null rules and the true error of the numerical integration as
random variables, then they can be shown to have the same mean and standard
deviation [Krommer and Ueberhuber 1994, page 171]. This fact is exploited to
provide an error estimate.

Next, we explain the motivation for using null rules: A common error estima-
tion procedure is based on using two polynomial integration formulas, Cn1 (`; B)
and Cn2 (`; B), with different degrees of accuracy,4 n1 and n2 such that n1 < n2,
that is, Cn2 (`; B) is expected to give more accurate results than Cn1 (`; B). The
integration formula with the higher degree is taken as the approximation of the

4The degree of accuracy of a cubature formula CD(`; B) is D if CD(`; B) is exact for all polynomials
of degree d ≤ D, but not exact for all polynomials of degree d = D+1. In our notation, the subscript
on C indicates the degree.
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true integral and |Cn1 (`; B)−Cn2 (`; B)| is taken as the error estimate. Although
reasonably good estimates can be obtained if the integrand ` is sufficiently
smooth and the region B is small, this approach is in general problematic.
Since error estimation depends on the underlying formulas, we can acciden-
tally find values of |Cn1 (`; B) − Cn2 (`; B)| that are too small when compared to
|Cn2 (`; B)−In2 (`; B)|, resulting in a significant underestimation of the true error.
At the same time, it is possible that as the degree of the polynomial approxi-
mating the true integral increases, the error terms do not decrease. Therefore,
extensive experiments are often needed for each pair of integration formulas to
ensure satisfactory reliability and accuracy of the estimates. Using sequences
of null rules is an approach designed to overcome these difficulties with the
following features: (i) The abscissas and weights of a null rule are independent
of the integrand `. (ii) Extensive function evaluations are avoided by using the
same integrand evaluations used for approximating the integral. (iii) The pro-
cedure identifies the type of the asymptotic behavior that the sequences of null
rules, {Nd (`), d = 0, . . . , n− 2}, follows and, accordingly, it calculates an error
estimate for |C(`; B)− I(`; B)|.

The major difficulty in the application of the null rules is to decide how to
extract an error estimate from the numbers produced by the null rules with
different degrees of accuracy. The approach is to heuristically distinguish the
behavior of the sequence {Nd (`), d = 0, . . . , n− 2} among three possible types
of behavior, which are nonasymptotic, weakly asymptotic, and strongly asymp-
totic. Following Cools et al. [1997], we use seven independent fully symmetric
null rules of degrees (1), (3, 3), (5, 5), and (7, 7) to obtain N1(`), N3(`), N5(`),
and N7(`), which are used to conduct a test for observable asymptotic behav-
ior: The test for strong asymptotic behavior requires r to be less than a cer-
tain critical value, rcrit, where r is taken to be the maximum of the quantities√

N7(`)/N5(`),
√

N5(`)/N3(`), and
√

N3(`)/N1(`). This leads to the error esti-
mate |C(`; B) − I(`; B)| ≈ K rs−q+2

crit rq−sNs(`), where K is a safety factor, s is
the highest value among the possible degrees attained by a null rule, and q
is the degree of the corresponding cubature formula. If r > 1, then there is
assumed to be no asymptotic behavior at all and the error estimate is K Ns(`).
The condition rcrit ≤ r ≤ 1 denotes the weak asymptotic behavior and we use
the error estimate K r2Ns(`). For the derivation of the formulas suggested for
error estimates with different types of asymptotic behavior, we refer the reader
to Berntsen and Espelid [1991] and Laurie [1994]. In order to attain optimal
(or nearly optimal) computational efficiency, the free parameters, rcrit and K ,
need to be tuned on a battery of test integrals to get the best trade-off between
reliability and efficiency. In our software, we make full use of the test results
provided by Cools et al. [1997].

4.2 Numerical Search Procedure

The numerical integration scheme allows us to accurately determine the in-
put correlation implied by any base correlation. To search for the base cor-
relation that provides a match to the desired input correlation, we use the
secant method (also called regula falsi), which is basically a modified version
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of Newton’s method. We use ϒ to denote the function to which the search pro-
cedure is applied and define it as the difference between the function cijh [ρZ]
evaluated at the unknown base correlation ρZ and the given input correlation
ρX, that is, ϒ(ρZ) = cijh [ρZ] − ρX. Since the objective is to find ρ̂Z for which
cijh [ρ̂Z] = ρX holds, we reduce the matching problem to finding zeroes of the
function ϒ .

In the secant method, the first derivative of the function ϒ(ρZ,m) evaluated
at point ρZ,m of iteration m, dϒ(ρZ,m)/dρZ,m, is approximated by the difference
quotient, [ϒ(ρZ,m)− ϒ(ρZ,m−1)]/(ρZ,m − ρZ,m−1) [Blum 1972]. The iterative pro-
cedure is given by

ρZ,m+1 = ρZ,m −ϒ(ρZ,m)
(

ρZ,m − ρZ,m−1

ϒ(ρZ,m)−ϒ(ρZ,m−1)

)
(12)

and it is stopped when the values obtained in consecutive iterations (ρZ,m and
ρZ,m+1) are close enough, for instance |ρZ,m − ρZ,m+1| < 10−8. Clearly, the pro-
cedure (12) amounts to approximating the curve ym = ϒ(ρZ,m) by the secant
(or chord) joining the points (ρZ,m,ϒ(ρZ,m)) and (ρZ,m−1,ϒ(ρZ,m−1)). Since the
problem of interest is to find ρ̂Z = ϒ−1(0), we can regard (12) as a linear inter-
polation formula for ϒ−1; that is, we wish to find the unknown value ϒ−1(0) by
interpolating the known values ϒ−1( ym) and ϒ−1( ym−1).

In the one-dimensional case, the secant method can be modified in a way that
ensures convergence for any continuous functionϒ [Blum 1972]: Following from
Proposition 3.2, we choose ρZ,0 = 0 and ρZ,1 = 1, or ρZ,0 = 0 and ρZ,1 = −1,
depending on whether ρX > 0 or ρX < 0, respectively. Therefore, the functions
ϒ(ρZ,0) andϒ(ρZ,1) have opposite signs. Then there exists a ρ̂Z between ρZ,0 and
ρZ,1, which satisfies cijh(ρ̂Z)− ρX = 0. Next, we determine ρZ,2 by formula (12).
Before proceeding with the next iteration, we determine which of the two points
ρZ,0, ρZ,1 is such that the value of ϒ has the opposite sign to ϒ(ρZ,2). We relabel
that point as ρ ′Z,1 and proceed to find ρZ,3 using ρZ,2 and ρ ′Z,1. This ensures that ρ̂Z
is enclosed in a sequence of intervals [am, bm] such that am ≤ am+1 ≤ bm+1 ≤ bm
for all m and bm − am → 0 for some m. Since the corresponding function is
strictly increasing (J. R. Wilson, personal communication) and quite smooth in
the case of the Johnson translation system, the application of this method gives
accurate and reliable results converging in a small amount of time, reducing
the effort required to solve a large number of matching problems.

5. EXAMPLE

In this section, we present an example that gives an explicit illustration of
the framework described in Sections 3 and 4. We select a problem that will
be difficult for our technique: The true marginal distribution, which we know,
is not Johnson and therefore must be approximated as Johnson by matching
the first four moments. Further, for the true marginal (which is uniform), the
correlation-matching problem can be solved exactly. However, for our Johnson
approximation, we solve the correlation-matching problem using our numer-
ical technique. This allows us to compare a perfectly specified VARTA repre-
sentation (correct marginals, correct correlations) to our approximation (closest
Johnson marginal, numerically matched correlations). However, in both cases,
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we achieve the desired autocorrelation structure for the input process by ma-
nipulating the autocorrelation structure of the Gaussian vector autoregressive
process as suggested in Section 3.

Suppose that we require a trivariate (k = 3) random variable with (0, 1)
uniform marginal distributions. The correlation matrices are specified at lags
0 and 1 (i.e., p = 1) as

6X (0) =
 1.00000 0.36459 0.40851

0.36459 1.00000 0.25707
0.40851 0.25707 1.00000


and

6X (1) =
 0.28741 0.23215 0.10367

0.12960 0.28062 0.28992
0.11742 0.25951 0.16939

 ,

respectively.
First, we need to select an autocorrelation structure for the underlying base

process, VAR3(1), by solving the correlation-matching problem. This is equiva-
lent to solving 12 individual matching problems, each of which can be solved in
two different ways.

Case 1. Since the marginals are (0, 1) uniform distributions, it is possible
to find the unknown base correlation, ρZ, by using the relationship

ρZ = 2 sin(πρX/6),

where ρX is the desired input correlation [Kruskal 1958].

Case 2. The individual matching problems are solved through the use of
the numerical schema suggested in Section 4.

The (0, 1) uniform distribution is approximated by a Johnson-bounded dis-
tribution (γi = 0.000, δi = 0.646, λi = 1.048, ξi = −0.024 for i = 1, 2, 3), whose
first four moments are identical to the first four moments of the uniform distri-
bution, using the AS99 algorithm of Hill et al. [1976]. The probability density
functions for the uniform and the approximating Johnson-type distribution are
given in Figure 2. The uniform distribution is not a member of the Johnson sys-
tem, as can be easily seen from the figure: The approximating Johnson bounded
distribution has two modes, one antimode, and a range of [−0.024, 1.024]. More
visually pleasing approximations are possible, but they do not match the mo-
ments of the uniform distribution exactly, which is our goal. However, we could
solve the correlation matching problem for any approximating distribution that
is chosen.

Having solved the correlation-matching problem in two different ways, we
solve the multivariate Yule–Walker equations for the autoregressive coefficient
matrices and the covariance matrices of the white noise. In each case, the vector
autoregressive base process is stationary with a positive definite autocorrela-
tion matrix. Finally, we generate realizations from the underlying vector au-
toregressive processes and transform the standard normal random variates zi,t
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Fig. 2. Probability density functions for uniform and approximating Johnson bounded
distributions.

Table I. Kolmogorov-Smirnov Test
Statistics for each Component Series

KSX Case 1 Case 2
X1 0.964 0.929
X2 1.709 1.875
X3 1.055 1.092

into xi,t using the transformations 8(zi,t) and ξi + λi(1 + exp(−(zi,t − γi)/δi))−1

for Cases 1 and 2, respectively, for i = 1, 2, 3 and t = 0, 1, . . . , 10000.
Next, we evaluate how well the desired marginals and autocorrelation struc-

ture of the input process are represented in 10000 generated data points.
In Table I, we report the adjusted Kolmogorov-Smirnov (KSX) test statistics
[Stephens 1974] indicating the maximum absolute differences between the cdfs
of the empirical distribution and the (0, 1) uniform marginal distribution for
each component series. As noted by Moore [1982] and Gleser and Moore [1983]
in the context of short-memory processes, the critical values and the corre-
sponding nominal levels of significance of goodness-of-fit tests for independent
and identically distributed data can be grossly incorrect when observations
are dependent. Thus, we use the 5% critical value of 1.358 as a rough guide
for judging the adequacy of the fit and provide the quantile—quantile (Q −Q)
plots comparing the ith quantile of the empirical distribution function, X (i),
with the ith quantile of the uniform distribution function, (i − 0.5)/10000, and
the Johnson bounded distribution function, ξ +λ f −1[((i−0.5)/10000−γ )/δ] for
i = 1, 2 . . . , 10000, in Figures 3, 4, and 5. It is visually obvious that the genera-
tion schema reproduced the desired time series reasonably well. Notice that the
second component series represents the desired marginal and autocorrelation
structure as successfully as the first and third component series even though
the test statistics for the second component series are larger than the ones of
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Fig. 3. (Left) Q-Q Plot Comparing the Empirical and Uniform Distribution Functions of the First
Component Series (Right) Q-Q Plot Comparing the Empirical and Approximating Johnson Bounded
Distribution Functions of the First Component Series

Fig. 4. (Left) Q-Q Plot Comparing the Empirical and Uniform Distribution Functions of the Second
Component Series (Right) Q-Q Plot Comparing the Empirical and Approximating Johnson Bounded
Distribution Functions of the Second Component Series

Fig. 5. (Left) Q-Q Plot Comparing the Empirical and Uniform Distribution Functions of the Third
Component Series (Right) Q-Q Plot Comparing the Empirical and Approximating Johnson Bounded
Distribution Functions of the Third Component Series

the first and third component series. Although the range of the corresponding
Johnson-bounded distribution is (−0.024, 1.024) as opposed to (0, 1), we find
the Johnson translation system is successful in representing the key features
of the desired marginal distributions.
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Table II. Absolute Difference (E1) and Relative Percent Difference (E2)
between the Estimates and the True Parameters for the Input

Autocorrelation Structure under Case 1 and Case 2

E1 E2
ρX(i, j , h) Case 1 Case 2 Case 1 Case 2
ρX(1, 2, 0) 0.004 0.004 0.972 0.983
ρX(1, 3, 0) 0.001 0.011 0.185 2.617
ρX(2, 3, 0) 0.002 0.002 0.779 0.784
ρX(1, 1, 1) 0.008 0.008 2.953 2.946
ρX(1, 2, 1) 0.003 0.003 1.242 1.237
ρX(1, 3, 1) 0.006 0.006 5.951 5.951
ρX(2, 1, 1) 0.009 0.009 7.569 7.568
ρX(2, 2, 1) 0.008 0.002 2.939 0.617
ρX(2, 3, 1) 0.009 0.001 3.057 0.386
ρX(3, 1, 1) 0.002 0.002 2.036 2.038
ρX(3, 2, 1) 0.010 0.010 3.992 3.987
ρX(3, 3, 1) 0.000 0.000 0.124 0.127

Finally, in Table II, we report the absolute difference (E1) and the relative
percent difference (E2) for statistically significant digits between the estimated
input autocorrelation structure and the desired input autocorrelation structure
used to generate the data. For example, when ρX(2, 1, 1) is of interest, we observe
an absolute difference of 0.009 and a relative difference of 7.568% between
the estimated and true autocorrelation structures under Case 2. We find that
Case 2—the VARTA approach—performs as well as Case 1 in incorporating the
desired autocorrelation structure into the generated data.

We have developed a stand-alone, PC-based program that implements
the VARTA framework with the suggested search and numerical-integration
procedures for simulating input processes. The key computational compo-
nents of the software are written in portable C++ code and it is available at
<www.andrew.cmu.edu/billerb/>.

6. CONCLUSION AND FUTURE RESEARCH

In this article, we provide a general-purpose tool for modeling and generat-
ing dependent and multivariate input processes. We reduce the setup time for
generating each VARTA variate by solving the correlation-matching problem
with a numerical method that exploits the features of the Johnson translation
system. The evaluation of the composite function F−1

X [8(·)] could be slow and
memory intensive in the case of the standard families of distributions, but not
Johnson.

However, the framework requires the full characterization of the Johnson-
type marginal distribution through parameters [γ , δ, λ, ξ ] and function f (·) cor-
responding to the Johnson family of interest. Swain et al. [1988] fit Johnson-
type marginals to independent and identically distributed univariate data, but
dependent, multivariate data sets are of interest in this paper. Therefore, it
would be quite useful to estimate the underlying VARTA model from a given
historical data set. This requires the determination of the type of Johnson fam-
ily and the parameters of the corresponding distribution in such a way that the

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.



234 • B. Biller and B. L. Nelson

dependence structure in the multivariate input data is captured. These issues
are the subject of Biller and Nelson [2002, 2003a].

APPENDIX

PROOF OF PROPOSITION 3.2. If ρZ(i, j , h) = 0, then

E[X i,t X j ,t−h] = E
{

F−1
X i

[8(Zi,t)]F−1
X j

[8(Z j ,t−h)]
}

= E
{

F−1
X i

[8(Zi,t)]
}

E
{

F−1
X j

[8(Z j ,t−h)]
}

= E[X i,t]E[X j ,t−h],

because ρZ(i, j , h) = 0 implies that Zi,t and Z j ,t−h are independent. If
ρZ(i, j , h) ≥ 0 (≤ 0), then, from the association property [Tong 1990],

Cov[g1(Zi,t , Z j ,t−h), g2(Zi,t , Z j ,t−h)] ≥ 0(≤ 0)

holds for all nondecreasing functions g1 and g2 such that the covariance
exists. Selection of g1(Zi,t , Z j ,t−h) ≡ F−1

X i
[8(Zi,t)] and g2(Zi,t , Z j ,t−h) ≡

F−1
X j

[8(Z j ,t−h)] together with the association property implies the result be-
cause F−1

X ν
[8(·)] for ν ∈ {i, j } is a nondecreasing function from the definition of

a cumulative distribution function.

PROOF OF PROPOSITION 3.3. A correlation of 1 is the maximum possible for bi-
variate normal random variables. Therefore, taking ρZ(i, j , h) = 1 is equivalent
(in distribution) to setting Zi,t ← 8−1(U ) and Z j ,t−h ← 8−1(U ), where U is
a U (0, 1) random variable [Whitt 1976]. This definition of Zi,t and Z j ,t−h im-
plies that X i,t ← F−1

X i
[U ] and X j ,t−h ← F−1

X j
[U ], from which it follows that

cijh(1) = ρ̄ij by the same reasoning. Similarly, taking ρZ(i, j , h) = −1 is equiva-
lent to setting X i,t ← F−1

X i
[U ] and X j ,t−h ← F−1

X j
[1−U ], from which it follows

that cijh(−1) = ρ
ij
.

LEMMA A.1. Let g (zi,t , z j ,t−h) ≡ F−1
X i

[8[zi,t]]F−1
X j

[8[z j ,t−h]] for given cumu-
lative distribution functions FX i and FX j . Then the function g is superadditive.

PROOF. The result follows immediately from Lemma 1 of Cario et al. [2001]
with z1 = zi,t , z2 = z j ,t−h, X 1 = X i, and X 2 = X j .

PROOF OF THEOREM 3.4. It is sufficient to show that, if ρ∗Z ≥ ρZ then cijh[ρ∗Z] ≥
cijh[ρZ], where for brevity we let ρZ = ρZ(i, j , h) and ρ∗Z = ρ∗Z(i, j , h). Following
the definition of the function cijh, this is equivalent to saying that, if ρ∗Z ≥ ρZ,
then Eρ∗Z [X i,t X j ,t−h] ≥ EρZ [X i,t X j ,t−h].

Let 8ρZ [zi,t , z j ,t−h] be the joint cdf of Zi,t and Z j ,t−h, which is the standard
bivariate normal distribution with correlation ρZ. From Slepian’s inequality
[Tong 1990], it follows that

8ρ∗Z [zi,t , z j ,t−h] ≥ 8ρZ [zi,t , z j ,t−h]

for all zi,t and z j ,t−h if ρ∗Z ≥ ρZ.
Let g (zi,t , z j ,t−h) ≡ F−1

X i
[8[zi,t]]F−1

X j
[8[z j ,t−h]]. The result we need is a conse-

quence of Corollary 2.1 of Tchen [1980]. Specializing Corollary 2.1 to the case
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n = 2 and continuous joint distribution function 8ρZ , Tchen [1980] shows that

Eρ∗Z [X i,t X j ,t−h]− EρZ [X i,t X j ,t−h]

=
∫ ∞
−∞

∫ ∞
−∞

g (zi,t , z j ,t−h) d8ρ∗Z (zi,t , z j ,t−h)−
∫ ∞
−∞

∫ ∞
−∞

g (zi,t , z j ,t−h) d8ρZ (zi,t , z j ,t−h)

=
∫ ∞
−∞

∫ ∞
−∞

[8ρ∗Z (zi,t , z j ,t−h)−8ρZ (zi,t , z j ,t−h)] dK(zi,t , z j ,t−h)

for some positive measure K , provided that g (zi,t , z j ,t−h) is “2-positive” (which
is implied by superadditivity, see Lemma A.1), and a bounding condition on
g (zi,t , z j ,t−h) holds (the condition is trivially satisfied here). But, as a conse-
quence of Slepian’s inequality,∫ ∞

−∞

∫ ∞
−∞

[8ρ∗Z (zi,t , z j ,t−h)−8ρZ (zi,t , z j ,t−h)] dK(zi,t , z j ,t−h) ≥ 0

establishing the result.

PROOF OF THEOREM 3.5. Theorem 3.5 follows immediately from Lemma 2 of
Cario et al. [2001] with Z1 ≡ Zi,t , Z2 ≡ Z j ,t−h, X 1 ≡ X i,t , X 2 ≡ X j ,t−h, and
ρ = ρZ(i, j , h).
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LAW, A. M. AND KELTON, W. D. 2000. Simulation Modeling and Analysis. McGraw-Hill, New York.
LEWIS, P. A. W., MCKENZIE, E., AND HUGUS, D. K. 1989. Gamma processes. Commun. Stat. Stoch.

Models 5, 1–30.
LI, S. T. AND HAMMOND, J. L. 1975. Generation of pseudorandom numbers with specified univariate

distributions and correlation coefficients. IEEE Trans. Syst., Man, and Cybernet. 5, 557–561.
LIVNY, M., MELAMED, B., AND TSIOLIS, A. K. 1993. The impact of autocorrelation on queueing sys-

tems. Manage. Sci. 39, 322–339.
LURIE, P. M. AND GOLDBERG, M. S. 1998. An approximate method for sampling correlated random

variables from partially-specified distributions. Manage. Sci. 44, 203–218.
LUTKEPOHL, H. 1993. Introduction to Multiple Time Series Analysis. Springer-Verlag, New York.
MARDIA, K. V. 1970. A translation family of bivariate distributions and Frèchet’s bounds. Sankhya
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