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In this article, we focus on ranking and selection procedures that sequentially allocate replications to

systems by applying some acquisition function. We propose an acquisition function, called gCEI, which

exploits the gradient of the complete expected improvement with respect to the number of replications.

We prove that the gCEI procedure, which adopts gCEI as the acquisition function in a serial computing

environment, achieves the asymptotically optimal static replication allocation of Glynn and Juneja in the

limit under a normality assumption. We also propose two procedures, called caching and credit, that extend

any acquisition-function-based procedure in a serial environment into both synchronous and asynchronous

parallel environments. While allocating replications to systems, both procedures use persistence forecasts

for the unavailable outputs of the currently running replications, but differ in usage of the available outputs.

We prove that, under certain assumptions, the caching procedure achieves the same asymptotic allocation

as in the serial environment. A similar result holds for the credit procedure using gCEI as the acquisition

function. In terms of efficiency and effectiveness, the credit procedure empirically performs as well as the

caching procedure, despite not carefully controlling the output history as the caching procedure does, and is

faster than the serial version without any number-of-replications penalty due to using persistence forecasts.

Both procedures are designed to solve small-to-medium-sized problems on computers with a modest number

of processors, such as laptops and desktops as opposed to high-performance clusters, and are superior to

state-of-the-art parallel procedures in this setting.
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1 INTRODUCTION

The ranking and selection (R&S) problem is one of the classical stochastic simulation optimiza-
tion problems. The goal is to identify the system with the largest (or smallest) mean performance
among a finite number of systems, where the mean performance of each system can only be esti-
mated using simulation output. In the past several decades, many procedures have been developed
to tackle R&S simulation optimization problems. Desirable features for these procedures include
delivering statistical guarantees on solution quality, being scalable to any finite number of systems,
effectively controlling the number of simulation replications, being adaptive to different computa-
tional environments, and, most importantly, doing all of these in a computationally and statistically
efficient way. See Hong et al. [2021] for an introduction to, and overview of, R&S procedures.

The aim of many R&S procedures is to return the best system or a good system given the
decision-maker’s tolerance. The latter is defined as a system whose mean is within the tolerance
from the best. Since the performance of each system can only be estimated from simulation out-
puts, the procedures may fail to achieve this aim. This makes the probability of returning the best
system (i.e., probability of correct selection, PCS) or a good system (i.e., probability of good

selection, PGS) less than one in general. Therefore, most procedures are designed to control or
minimize this error. In this article, we focus on good selection.

Depending on the statistical guarantee, Hunter and Nelson [2017] classify R&S procedures as
fixed precision and fixed budget. Fixed-precision procedures attempt to allocate simulation effort
as efficiently as possible until a certain termination criterion is met. These procedures are (ideally)
guaranteed to return one of the good systems with a prespecified frequentist PGS. However,
fixed-budget procedures allocate a limited simulation budget to maximize PGS. These procedures
are typically Bayesian or Bayesian-inspired and include versions of optimal computing

budget allocation (OCBA) [Chen et al. 2000], expected improvement (EI) [Chen and Ryzhov
2019], knowledge gradient (KG) [Frazier et al. 2008], and best-arm identification [Jamieson
and Nowak 2014]. They tend to use an acquisition function, which returns a single system to
simulate at each iteration. In this article, we propose a Bayesian fixed-budget R&S procedure,
called the gCEI procedure, that can also provide fixed-precision stopping. The procedure adopts
the gradient-based complete expected improvement (gCEI) acquisition function introduced
in Avci et al. [2021], which is closely related to EI.

The EI criterion, initially created by Jones et al. [1998] for Bayesian optimization of a determin-
istic computer model, does not directly account for the uncertainty in the output from a stochas-
tic simulation. To incorporate this uncertainty, Salemi et al. [2019] propose complete expected

improvement (CEI) in a Gaussian Markov random field framework for discrete simulation op-
timization. For R&S problems under a normality assumption, Chen and Ryzhov [2019] propose
an adjustment called modified CEI (mCEI). To obtain optimal asymptotic performance (defined
below), mCEI enforces the necessary balance between simulating the best system and the rest in
the limit. The gCEI acquisition function exploits the gradient of CEI with respect to the number of
replications, treating the number of replications as continuous [Avci et al. 2021]. Unlike CEI, gCEI
reflects the benefit of additional replications, which plays an important role when the procedure
is parallelized.

Typically, fixed-budget R&S procedures choose to simulate systems sequentially and adapt as
more output data are obtained. We define an allocation as the fraction of a fixed budget of repli-
cations that is assigned to each system. Using large-deviation theory, Glynn and Juneja [2004]
provide an expression for the asymptotically optimal static allocation under a fairly general dis-
tributional assumption. Their allocation is optimal in the sense that PCS converges to one at the
fastest possible rates as the simulation budget increases. Unfortunately, this rate-optimal alloca-
tion cannot be computed in practice, because it depends on parameters of the underlying output
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distributions. Therefore, several procedures have been designed to be adaptive and achieve a rate-
optimal allocation asymptotically while aggressively pursuing the best system in small samples.
Recently, many such procedures have been shown to converge to various asymptotically optimal
allocations; see, for example, the asymptotically optimal myopic allocation policy (AOMAP)

of Peng and Fu [2017], mCEI of Chen and Ryzhov [2019], and the top-two Thompson sampling

(TTTS) of Russo [2020]. In this article, we prove that the gCEI procedure achieves the rate-optimal
allocation of Glynn and Juneja [2004] in the limit. The procedure closest to gCEI in the literature
is mCEI, which attains the same limit, but is empirically outperformed by gCEI in finite samples
[Avci et al. 2021].

While the procedures mentioned above are designed for a serial computing environment, R&S
benefits from the power of parallel computing, leading to the literature on parallel R&S that now
spans two decades. In one of the earliest papers that combines the statistical efficiency of R&S
with the effectiveness of parallel algorithms, Yücesan et al. [2001] (and its conference proceedings
version: [Luo et al. 2000]) introduce a fixed-budget Bayesian OCBA framework for a web-based
parallel environment. Similarly, Yoo et al. [2009] implement a modified OCBA that enhances both
search and sampling efficiencies. Kamiński and Szufel [2018] propose asynchronous extensions of
OCBA and KG as well as a synchronous extension of KG and compare them for small- and large-
scale problems. Each of these papers extends the OCBA or KG acquisition function to the parallel
setting. More recently, the EI and CEI acquisition functions have been extended to selecting the
best set of q solutions to simulate in parallel; see Ginsbourger et al. [2007] and Semelhago et al.
[2022], respectively. Unfortunately, the computational overhead of these extensions is prohibitive.

In addition to the above-mentioned parallel R&S procedures that are designed for a fixed-budget
setting, there are several others designed for a fixed-precision setting. Using a simple divide-
and-conquer approach in an indifference-zone formulation, Chen [2005] applies a multistage
procedure on a local network with a small number of processors. Substantially extending the
divide-and-conquer approach, the good selection procedure (GSP) of Ni et al. [2017] delivers
a PGS guarantee under the assumption of normally distributed output. In a fixed-precision,
frequentist setting, Luo et al. [2015] extend KN [Kim and Nelson 2001] to two parallel versions:
synchronized vector-filling KN (VKN) and asynchronous asymptotic parallel selection

(APS). VKN exactly imitates KN in terms of conducting comparisons and making elimination
decisions, while APS makes elimination decisions only when specific simulations complete and
uses all of the available outputs at that time. Pei et al. [2018] propose a frequentist parallel R&S
procedure, called bisection parallel adaptive survivor selection (bi-PASS), which has a sta-
tistical advantage for a large number of systems. In another study, the same authors evaluate the
performance of bi-PASS by comparing it to GSP and a subset selection procedure for large-scale
problems [Pei et al. 2020, 2022]. Zhong and Hong [2022] propose the knockout tournament proce-
dure in which the unknown best does not have to be compared to all other systems to be declared
as the winner. See Hunter and Nelson [2017] and Hong et al. [2021] for surveys of parallel R&S.

Compared to the serial environment, making decisions in a synchronous or asynchronous par-
allel environment is more challenging. In the synchronous environment, where systems are sim-
ulated in batches, one needs to choose which system(s) to simulate and decide how many replica-
tions to allocate to each chosen system in the batch. In the asynchronous environment, where a
single system is chosen to simulate whenever a processor becomes idle, one needs to take into ac-
count the currently running replications on the busy processors to benefit from additional partial
information. This article contributes to the parallel R&S literature with two different procedures that

can address these challenges in both synchronous and asynchronous environments.

Under both of the parallel procedures, a single system is chosen to simulate for each idle pro-
cessor by repeatedly calling any user-specified sequential acquisition function, including, but not
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limited to, gCEI. Accounting for the currently running replications, whose outputs are yet to be
available, is important, as more than one replication can be running at the same time in a parallel
environment. For the unavailable outputs of these replications, both procedures use the sample
means of the corresponding systems as persistence forecasts until the outputs become available.
However, the two procedures differ in how they utilize the available outputs. In particular, the
first one, called “caching,” uses some desired portion of the available outputs and caches the rest
until they are needed. This “desired portion” is constructed as if the procedure was implemented
in a serial environment without the persistence forecast. However, the second procedure, called
“credit,” uses all of the available outputs. The caching procedure imitates the corresponding serial
procedure, while the credit procedure follows a greedy approach. We prove that, under certain
assumptions, the caching procedure using any acquisition function achieves the same allocation
limit in the parallel environments as in the serial one. We also prove a similar result for the credit
procedure when gCEI is adopted as the acquisition function. Empirically, we show that these par-
allel versions are not only faster than the serial version in terms of wall-clock time, as one would
hope, but also that using persistence forecasts leads to no significant increase in the number of
replications consumed relative to the serial version that employs only actual outputs. Stated dif-
ferently, our parallel procedures using gCEI inherit the replication-efficiency of serial gCEI while
executing much faster.

The caching and credit procedures are the most competitive in parallel computing environments
with a relatively small number of processors such as one would find in personal computers and
for small-to-medium-sized problems. They do not eliminate any system. Elimination offers com-
putational benefits when the number of systems is very large. Also, a large number of processors
provides much quicker elimination. Therefore, very large-scale problems, in terms of the numbers
of systems and processors, tend to favor elimination-based procedures. In the numerical experi-
ments, we consider problems with up to 100 systems and 64 processors, representing the most
common R&S problems in practice. The caching and credit procedures do not require any special-
ized computing platforms, such as clusters of computers or distributed computing using message
passing. They are suitable for the most commonly used multi-processor computing platforms, such
as desktops and laptops, and operating systems.

Our preliminary work is published in Avci et al. [2021], where the gCEI acquisition function is
introduced and adopted to create the gCEI procedure in a serial environment and demonstrate its
finite-sample efficiency; only a sketch of the proof of its convergence to the rate-optimal allocation
is provided under the known variance assumption. In this work, we provide the complete proof of
the convergence of the gCEI procedure in a more general case with unknown variances. Moreover,
the extension to parallel environments is completely new.

The remainder of this article is organized as follows: We formulate the R&S problem along with
a stopping condition in Section 2. We state the gCEI acquisition function and the gCEI procedure in
a serial environment and show the convergence results in Section 3. We introduce the caching and
credit procedures for a synchronous environment in Section 4 and an asynchronous environment
in Section 5, respectively. Empirical performance evaluations are in Section 6. Conclusions are
provided in Section 7.

2 PRELIMINARIES

Let S = {1, 2, . . . ,k } be the set of systems. Each system i ∈ S has an unknown mean μi and bigger is
better. We assume that μ1 ≤ μ2 ≤ . . . ≤ μk−1 ≤ μk unknown to us; however, we prove asymptotic
properties of the algorithms for μ1 ≤ μ2 ≤ . . . ≤ μk−1 < μk ; i.e., no ties for the best system.

From a Bayesian perspective, the unknown mean of each system i , μi , has a prior distribution
N(μ̄i (0), 1/θ̄i (0)) where μ̄i (0) and θ̄i (0) are the prior mean and precision, respectively. The prior
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mean represents the initial belief about the true value of μi , whereas the prior precision quantifies
the confidence in this belief. We employ a non-informative prior (i.e., θ̄i (0) = 0) and assume that
the prior distributions of μi ’s are independent of each other. This assumption is common in the
R&S literature and enables us to show the theoretical convergence of the gCEI procedure. Notice
that we use μi ’s to denote the true, fixed means of the systems.

At each iteration t = 0, 1, . . . , a single system x (t ) is chosen to simulate. We emphasize that
iteration t is defined by the t th simulation decision. Let Y (t ) be the simulation output of the corre-
sponding replication of x (t ); we consider (x (t ),Y (t )) as the system-output pair of iteration t . When
x (t ) starts to be simulated and whenY (t ) is obtained depend on the environment. In the serial envi-
ronment of Section 3, Y (t ) is obtained by simulating x (t ) at iteration t . In the synchronous parallel
environment of Section 4, more than one system is simulated in parallel and the corresponding out-
puts are obtained in batches periodically. In the asynchronous parallel environment of Section 5,
x (t ) starts to be simulated at the beginning of iteration t but Y (t ) may be obtained at another it-
eration. We assume that the simulation execution times are finite almost surely, so each output is
obtained in finite time with probability one.

Additionally, we assume that the outputs obtained by simulating system i are independent and
identically distributed N(μi ,σ

2
i ) random variables, where 0 < σ 2

i < ∞ is the variance inherent to

the stochastic simulation output of system i . In this article, we initially assume that σ 2
i ’s are known,

but later allow estimates. We also assume that each system is simulated independently of the others
(no common random numbers). The use of common random numbers can be counterproductive,
since different systems most likely have different numbers of replications under our procedures
[Nelson and Staum 2006].

Let Ht be the “history” consisting of system-output pairs up to, but not including, iteration t . In
the remainder of this section, whenever notation is introduced as a function of t , it is conditional on
Ht . Also, let ri (t ) denote the total number of replications performed for system i through iteration
t . Since we employ the non-informative prior, for each system i the posterior mean is μ̄i (t ) = Ȳi (t )
for ri (t ) > 0, where Ȳi (t ) is the sample mean, and the posterior precision is θ̄i (t ) = ri (t )/σ 2

i . Notice
that μ̄i (t ) is a random variable that represents the updated belief about unknown μi .

Let k (t ) be the sample-best system at iteration t , i.e.,

k (t ) = arg max
i ∈S : ri (t )>0

{μ̄i (t )} = arg max
i ∈S : ri (t )>0

{Ȳi (t )}.

To ease notation, we use Sj to represent S\{j}, e.g., Sk (t ) = S\{k (t )}. For any i ∈ Sk (t ) , the posterior

distribution of μi − μk (t ) given Ht is N(μ̄i (t ) − μ̄k (t ) (t ), λi (t )), where λi (t ) = 1/θ̄i (t ) + 1/θ̄k (t ) (t ).
Thus, the complete expected improvement (CEI) for system i ∈ Sk (t ) is

CEIi (t ) = E
[
max{μi − μk (t ), 0} | Ht

]
=

√
λi (t ) f ��

μ̄i (t ) − μ̄k (t ) (t )√
λi (t )

�
� ,

where f (z) = zΦ(z) + ϕ (z) with ϕ and Φ being the standard normal probability density and cu-
mulative distribution functions, respectively [Chen and Ryzhov 2019; Salemi et al. 2019]. The role
of CEI is to indicate which system to simulate next to quickly identify the best. To facilitate com-
parison with fixed-precision procedures in our numerical experiments, we introduce a CEI-based
stopping condition, thereby obtaining a fixed-precision Bayesian procedure.

We first define the posterior probability of good selection (pPGS) of the sample-best system
as

pPGS(t ) = P
{
μk (t ) > μi − δ , ∀i ∈ Sk (t ) | Ht

}
,
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12:6 H. Avci et al.

where δ > 0 quantifies the tolerance of the decision-maker for suboptimality. In our problem,
pPGS(t ) can be computed as

pPGS(t ) = E

⎡⎢⎢⎢⎢⎢⎣
∏

i ∈Sk (t )

P

{
μk (t ) > μi − δ | μk (t ),H

t
} 




 Ht

⎤⎥⎥⎥⎥⎥⎦
. (1)

Since evaluating Equation (1) can be computationally expensive for a large number of systems, we
use Slepian’s inequality [Slepian 1962] to get a cheap lower bound on pPGS(t ):

pPGS(t ) ≥
∏

i ∈Sk (t )

P

{
μk (t ) > μi − δ | Ht

}
. (2)

This lower bound can be computed as

pPGSSlep (t ) =
∏

i ∈Sk (t )

Φ �
�
δ − μ̄i (t ) + μ̄k (t ) (t )√

λi (t )
�
� .

Our procedures stop when pPGSSlep (t ) ≥ P∗, where P∗ ∈ (1/k, 1) is the confidence level of
the decision-maker. This stopping criterion is also adopted in Branke et al. [2005, 2007]. Let
T = min{t : pPGSSlep (t ) ≥ P∗} denote the random stopping time. Notice that if all systems are
simulated infinitely often in the limit, then pPGSSlep (t ) converges to 1 as t → ∞.

We note that pPGSSlep (t ) can be computed because we initially assume that the variances are
known. When the variances are unknown, as in the numerical experiments, we can approximate
pPGSSlep (t ) by applying the Welch approximation to the posterior distribution of μi −μk (t ) for each
i ∈ Sk (t ) . Thus, for the unknown-variance case,

pPGSSlep (t ) ≈
∏

i ∈Sk (t )

Ψνi (t )
���
�
δ − μ̄i (t ) + μ̄k (t ) (t )√

λ̂i (t )

���
�
,

where Ψν is the cumulative distribution function of the Student’s t-distribution with ν degrees of

freedom, λ̂i (t ) = σ̂ 2
i (t )/ri (t ) + σ̂ 2

k (t )
(t )/rk (t ) (t ),

νi (t ) =

[
σ̂ 2

i (t )/ri (t ) + σ̂ 2
k (t )

(t )/rk (t ) (t )
]2

[
σ̂ 2

i (t )/ri (t )
]2
/(ri (t ) − 1) +

[
σ̂ 2

k (t )
(t )/rk (t ) (t )

]2
/(rk (t ) (t ) − 1)

,

σ̂ 2
i (t ) =

1

ri (t ) − 1

t−1∑
τ=0

I (x (τ ) = i )
(
Y (τ ) − Ȳi (t )

)2

and I (·) is the indicator function [Branke et al. 2007]. Notice that σ̂ 2
i (t ) is the sample variance,

an estimator of σ 2
i . Of course, pPGSSlep (t ) is a posterior statement of belief based on the simula-

tion evidence, not a frequentist PGS characterizing a procedure’s performance over repeated trials.
However, posterior statements are often used as an approximation of corresponding frequentist
statements, especially when employing non-informative priors. For fixed-precision stopping, we
will approximate frequentist PGS by pPGSSlep (t ) in the empirical studies, but one should not expect
them to match perfectly.
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ALGORITHM 1: Generic Adaptive Procedure in a Serial Environment

1: Let x (0) ← i for some i ∈ S. Obtain Y (0). Also, let H1 ← {(x (0),Y (0))} and t ← 1.
2: repeat

3: x (t ) ← AF (Ht ).
4: Obtain Y (t ) by simulating x (t ), update Ht+1 ← Ht ∪ {(x (t ),Y (t ))} and t ← t + 1.
5: until Stopping condition satisfied.
6: Return k (T ) = arg maxi ∈S{μ̄i (T )} as the selected best system.

3 SERIAL COMPUTING ENVIRONMENT

As a first step toward defining the parallel procedures, we consider the R&S problem in a serial
computing environment. At each iteration t = 0, 1, . . . , a single output Y (t ) is obtained by simu-
lating x (t ). Thus, Ht = {(x (τ ),Y (τ ))}t−1

τ=0. Notice that given Ht ,

ri (t ) =
t−1∑
τ=0

I (x (τ ) = i ) and Ȳi (t ) =
1

ri (t )

t−1∑
τ=0

I (x (τ ) = i ) Y (τ ) when ri (t ) > 0.

We define a generic acquisition function AF (·) that takes the history Ht as input and returns
a single system to simulate as output. Using AF (·), Algorithm 1 presents a generic adaptive pro-
cedure. In the following subsections, we describe the gCEI acquisition function [Avci et al. 2021]
and the mCEI acquisition function [Chen and Ryzhov 2019] in detail. We refer to a procedure that
adopts a specific acquisition function as in Algorithm 1 by the name of its acquisition function,
e.g., gCEI procedure.

3.1 gCEI Acquisition Function

Treating ri (t ) for i ∈ S as continuous-valued, Avci et al. [2021] show that

∂CEIi (t )

∂ri (t )
= −

σ 2
i

(ri (t ))2

1

2
√

λi (t )
ϕ �
�

μ̄i (t ) − μ̄k (t ) (t )√
λi (t )

�
� and

∂CEIi (t )

∂rk (t ) (t )
= −

σ 2
k (t )

(rk (t ) (t ))2

1

2
√

λi (t )
ϕ �
�

μ̄i (t ) − μ̄k (t ) (t )√
λi (t )

�
�

for i ∈ Sk (t ) , whereas ∂CEIi (t )/∂r j (t ) = 0 for j ∈ S\{i,k (t )}. Notice that ∂CEIi (t )/∂r j (t ) < 0 for
j ∈ {i,k (t )}, reflecting that additional replications at either i or k (t ) are expected to reduce the CEI
of system i . Which system to simulate next is chosen based on the following condition:∑

i ∈Sk (t )

∂CEIi (t )

∂rk (t ) (t )

?
≤ min

i ∈Sk (t )

∂CEIi (t )

∂ri (t )
=
∂CEIд (t ) (t )

∂rд (t ) (t )
, (3)

where

д(t ) = arg min
i ∈Sk (t )

∂CEIi (t )

∂ri (t )

with ties broken arbitrarily. If Equation (3) holds, then the total impact of simulating k (t ) is poten-
tially greater than simulating д(t ), and thus simulating k (t ) is preferred to д(t ), i.e., x (t ) = k (t ).
However, if Equation (3) does not hold, then simulatingд(t ) is preferred, i.e., x (t ) = д(t ). Therefore,
the gCEI acquisition function is

AF gCEI (H
t ) =

⎧⎪⎨⎪⎩
k (t ), if

∑
i ∈Sk (t )

∂CEIi (t )/∂rk (t ) (t ) ≤ ∂CEIд (t ) (t )/∂rд (t ) (t ),

д(t ), otherwise.

Since the corresponding derivatives do not exist when a system has not yet been simulated, we
initially set those derivatives to −∞, which makes the gCEI procedure simulate each system once
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12:8 H. Avci et al.

in the firstk iterations. When the variances are unknown the derivatives are set to−∞ until at least
two outputs are obtained for the corresponding system to be able to compute the sample variances.

Note that R&S treats the systems as categorical, implying no spatial structure to exploit. In
discrete-decision-variable simulation optimization problems that do exhibit spatial structure, this
relationship is often modeled via spatial correlation among feasible solutions. The gradient of CEI
can be computed and is still relevant when there is such correlation.

Let α (t ) = (α1 (t ), . . . ,αk (t )) denote the empirical allocation at iteration t , where αi (t ) = ri (t )/t
for all i ∈ S. Also, let α ∗ = (α∗1 , . . . ,α

∗
k

) denote the unique rate-optimal allocation in Glynn and
Juneja [2004] such that α∗i > 0,

∑
i ∈S α

∗
i = 1,

(μi − μk )2

σ 2
i /α

∗
i + σ

2
k
/α∗

k

=
(μ j − μk )2

σ 2
j /α

∗
j + σ

2
k
/α∗

k

, ∀i, j ∈ Sk , (4)

and ∑
j ∈Sk

(
α∗j

σj

)2

=

(
α∗

k

σk

)2

. (5)

Assuming that the best system is unique, i.e., μk−1 < μk , and the variances are known, Avci et al.
[2021] provide a sketch of the proof that α (t ) converges to α ∗ almost surely under the gCEI pro-
cedure. In this article, we provide the complete proof for a more general result that includes The-
orem 1 below as a special case. All proofs are in the appendices. Theorem 1 states that the gCEI
procedure asymptotically achieves α ∗ when the variances are known, or when the variances are
unknown but continually updated via plug-in estimators σ̂ 2

i (t ).

Theorem 1. If the best system is unique, then the gCEI procedure obtainsα (t ) → α ∗ almost surely

as t → ∞. This result still holds when σ 2
i is replaced with σ̂ 2

i (t ) for all i ∈ S at each iteration t .

3.2 mCEI Acquisition Function

Chen and Ryzhov [2019] present the mCEI acquisition function:

AFmCEI (H
t ) =

⎧⎪⎨⎪⎩
k (t ), if

(
rk (t ) (t )/σk (t )

)2
<

∑
i ∈Sk (t )

(ri (t )/σi )2 ,

c (t ), otherwise,

where c (t ) = arg maxi ∈Sk (t )
CEIi (t ) and prove that the mCEI procedure asymptotically achieves

the rate-optimal allocation,α ∗, when the variances are known, or when the variances are unknown
but continually updated via plug-in estimators.

3.3 Insights on gCEI

We briefly summarize what Avci et al. [2021] observe empirically by running the gCEI procedure
in several numerical experiments under the fixed-budget framework. In all of those experiments,
the outputs are assumed to be independent and normally distributed with known variances.

The first observation is that under the gCEI procedure, the frequentist PCS, estimated by aver-
aging the correct selection across the macro-replications, converges to one as expected. Moreover,
the gCEI procedure converges to the rate-optimal allocation of Glynn and Juneja [2004] as expected
in the long run.

When the performance of the gCEI procedure is compared with three procedures from the
literature—the mCEI procedure of Chen and Ryzhov [2019], AOMAP of Peng and Fu [2017], and
TTTS of Russo [2020]—it appears that the gCEI procedure performs as well or better than these
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ALGORITHM 2: Generic Adaptive Procedure in a Synchronous Environment

1: Use the first b0 batch iterations to simulate each system at least twice.

2: Let t ← b0p and initialize the history.

3: repeat

4: Choose to simulate x (t ), . . . ,x (t + p − 1) by calling a BAF.

5: Obtain Y (t ), . . . ,Y (t + p − 1) by simulating x (t ), . . . ,x (t + p − 1) in parallel.

6: Update the history by calling a HUF and t ← t + p.

7: until Stopping condition satisfied.

8: Return k (T ) = arg maxi ∈S{μ̄i (T )} as the selected best system.

other procedures based on how fast PCS converges to one. Even though both gCEI and mCEI pro-
cedures are proven to converge to the rate-optimal allocation of Glynn and Juneja [2004], the gCEI
procedure tends to allocate less to the best system than the mCEI procedure for finite samples.

Another observation in experiments is that in the “slippage configuration,” where all inferior
systems have the same mean, the PCS converges to one faster for the gCEI procedure than an
unrealistic procedure that employs the (assumed-to-be-known) rate-optimal allocation from the
beginning. This observation emphasizes that the rate-optimal allocations address large-sample,
not small-sample, behavior. Therefore, there are advantages to employing a procedure like gCEI,
which aggressively improves PGS initially but converges to the rate-optimal allocation in the limit.

4 SYNCHRONOUS PARALLEL ENVIRONMENT

In this section, we extend acquisition-function-based procedures into a synchronous parallel envi-
ronment with p processors. Let W = {0, 1, . . . ,p − 1} denote the set of processors. In the syn-
chronous environment, systems are simulated and the corresponding outputs are obtained in
batches of size p. In particular, at the beginning of each batch iteration b = 0, 1, . . . , the systems
{x (bp+w ), w ∈ W} are chosen to simulate next and each system x (bp+w ) is assigned to processor
w . The systems x (bp), . . . ,x (bp +p − 1) need not all be different. Then, the corresponding outputs
{Y (bp + w ), w ∈ W} are accumulated before the beginning of the next batch iteration. In other
words, the outputs are collected only at iterations t = p, 2p, . . . . Therefore, the history is updated

only at those iterations, and thus Ht = Hbp = {(x (τ ),Y (τ ))}bp−1
τ=0 for t = bp, . . . ,bp + p − 1.

Using the same stopping and selection rules as in Section 3, Algorithm 2 presents a generic
adaptive procedure for the synchronous environment. Each system is initially simulated at least
twice in the first b0 batch iterations so the sample means and variances can be computed, where
b0 ≥ 2k/p. Then, at each batch iteration b = b0,b0+1, . . . , the systems to simulate next are chosen
by calling a batch acquisition function (BAF), and the history is updated with the obtained
outputs by calling a history update function (HUF). In the following subsections, we introduce
two procedures that adopt different BAFs and HUFs: caching and credit.

To facilitate the discussion, we first slightly modify the definition of AF (·) as a function that
takes a list of system-output pairs, not necessarily Ht , as the input and returns a single system
to simulate as the output. The statistics used by AF (·) are conditional on and computed from the
input. For example, slightly abusing notation, AF (H) may require computing

ri (H) =
∑

(x,Y)∈H
I (x = i ), Ȳi (H) =

1

ri (H)

∑
(x,Y)∈H

I (x = i ) Y

and

σ̂ 2
i (H) =

1

ri (H) − 1

∑
(x,Y)∈H

I (x = i )
(
Y − Ȳi (H)

)2
,

where (x,Y) are generic elements of H.
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Both caching and credit procedures callAF (·) sequentially to choose systems {x (bp+w ), w ∈ W}
at batch iteration b; the performance of the procedures depends on the choice of AF (·). Since the
corresponding outputs {Y (bp+w ), w ∈ W} are not available until the current batch iteration ends,
the procedures use the corresponding sample means as persistence forecasts to stand in for those
outputs. This is equivalent to assuming that an output with value of Ȳi (Hbp ) will be obtained
if system i is simulated. Once system i is chosen to simulate, ri (t ) is incremented by one while
Ȳi (t ) remains the same, and hence k (t ) remains unchanged as well. We define Ft as a “forecast”
at iteration t , which includes system-output pairs to use as persistence forecasts; namely, Fbp = ∅
and Ft = {(x (τ ), Ȳx (τ ) (H

bp ))}t−1
τ=bp

for t = bp + 1, . . . ,bp + p − 1.

Persistence forecasts are a simple, fast way to predict the impact of simulating more than one
system in parallel. However, to benefit from persistence forecasts, the AF (·) must account for the
benefit of increasing the number of replications within the batch, because the sample means will
not change. Since gCEI is the gradient with respect to the number of replications, AF gCEI (·) is a
good candidate. Notice that with gCEI a system can be chosen to be simulated more than once
within the batch, which would not be the case if, say, the AF (·) selected the p solutions with the
largest CEIs. Choosing solutions and allocating replications is typically a challenge for acquisition-
function-based procedures in a parallel environment; gCEI naturally makes both decisions in con-
cert. The details of the caching and credit procedures are presented in Section 4.1 and Section 4.2,
respectively.

4.1 Caching Procedure

If simulations were instantaneous, the serial procedures such as gCEI would be desirable because
of their good finite-sample performances and asymptotic consistencies. We consider the sample
path generated by the serial procedure, i.e., when p = 1, as the “desired path.” Motivated to build
the desired path independent of p, we propose the caching procedure that keeps obtained-but-
not-yet-needed outputs in a “cache” until they can be used to construct the desired path. While
choosing systems to simulate, this procedure uses only a subset of the history, called the “desired
history.”

Let Ct and Dt denote the cache and desired history, respectively, at iteration t . Together, they
partition the history, i.e., Ct ∩Dt = ∅ and Ct ∪Dt = Ht . Since the outputs are accumulated only
at iterations t = p, 2p, . . . , the cache and desired history are updated only at those iterations, and
thus Ct = Cbp and Dt = Dbp for t = bp, . . . ,bp + p − 1 at each batch iteration b. To initialize
the sample means and variances at the beginning of batch iteration b = b0, we set Cb0p = ∅ and

Db0p = {(x (τ ),Y (τ ))}b0p−1
τ=0 . Then, at the end of each batch iteration b = b0,b0 + 1, . . . , we update

the cache and desired history after obtaining the outputs. Using temporary cache C and desired
history D to choose systems to include in the desired history, Algorithm 3 presents the HUF for
the caching procedure.

Algorithm 4 presents the BAF for the caching procedure in which the outputs in the cache are pri-
oritized while choosing the systems to simulate. In particular, for any chosen system, the caching
procedure first utilizes the outputs in the cache, if there are any, and then uses the corresponding
sample means as the persistence forecasts. Meanwhile, the cache Cbp and desired history Dbp are
not updated, leaving the task to the HUF (Algorithm 3), which is called in Step 6 of Algorithm 2.
Notice that Cbp does not include any outputs of the chosen system x (bp) to simulate for w = 0.
They instead would have been included already in Dbp by the HUF because Fbp = ∅.

When p = 1, the caching procedure with AF (·) reduces to the procedure adopting AF (·) in the
serial environment, since x (t ) = AF (Ht ) as Dt = Ht and Ft = ∅ for all t = 0, 1, . . . . For exam-
ple, the caching procedure with AF gCEI (·) is gCEI itself when p = 1. Suppose that the procedure
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ALGORITHM 3: HUF for the Caching Procedure in a Synchronous Environment

Input: Cbp , Dbp and {(x (τ ),Y (τ ))}bp+p−1

τ=bp

Output: C(b+1)p and D(b+1)p

1: Let C← Cbp ∪ {(x (τ ),Y (τ ))}bp+p−1

τ=bp
and D← Dbp .

2: i ← AF (D).
3: while Ci � ∅ do � Ci = {(x (s ),Y (s )) ∈ C : x (s ) = i}
4: Let τ ← min{s : (x (s ),Y (s )) ∈ Ci }.
5: Update C← C\{(x (τ ),Y (τ ))} and D← D ∪ {(x (τ ),Y (τ ))}. � x (τ ) = i
6: i ← AF (D).
7: end while

8: Let C(b+1)p ← C and D(b+1)p ← D.

ALGORITHM 4: BAF for the Caching Procedure in a Synchronous Environment

Input: Cbp and Dbp

Output: x (bp), . . . ,x (bp + p − 1)
1: Let t ← bp, C← Cbp , D← Dbp and Ft ← ∅.
2: for w ∈ W do

3: i ← AF (D ∪ Ft ).
4: while Ci � ∅ do � Ci = {(x (s ),Y (s )) ∈ C : x (s ) = i}
5: Let τ ← min{s : (x (s ),Y (s )) ∈ Ci }.
6: Update C← C\{(x (τ ),Y (τ ))} and D← D ∪ {(x (τ ),Y (τ ))}. � x (τ ) = i
7: i ← AF (D ∪ Ft ).
8: end while

9: x (t ) ← i .
10: Update Ft+1 ← Ft ∪ {(x (t ), Ȳx (t ) (D))} and t ← t + 1.
11: end for

adopting AF (·) in the serial environment converges to some allocation α̃ = (α̃1, . . . , α̃k ), with
α̃i > 0 and

∑
i ∈S α̃i = 1. Assume that the sequence of simulation outputs for each system is not

affected by the procedure. In other words, the output of a replication of a system depends only on
the corresponding system and how many times the system has been simulated so far. Under this
assumption, we prove that the caching procedure withAF (·) also converges to the same allocation
α̃ if the cache size is finite almost surely. This result holds when the variances are known, or when
the variances are unknown but continually updated via plug-in estimators, i.e., σ 2

i is replaced with

σ̂ 2
i (Dbp ) when ri (Dbp ) ≥ 2 for t = bp, . . . ,bp + p − 1.

Theorem 2. If the sequence of simulation outputs for each system is not affected by the procedure,

|Ct | < ∞ almost surely for all t and α (t ) → α̃ almost surely as t → ∞ when p = 1, then the

synchronous caching procedure obtains α (t ) → α̃ almost surely as t → ∞ when p > 1.

Remark. As a practical matter, the “not affected” condition will be satisfied if each system is as-
signed a distinct random generator seed or stream, effectively assigning a distinct block of (pseudo)
random numbers to the simulation of each system.

The proof of Theorem 2 is straightforward from the definition of the desired history and the
assumption of unaffected simulation output sequences. In particular, the desired history consists
only of the outputs of the systems that would have been chosen to simulate if the procedure was
implemented in the serial environment, i.e., if we had p = 1. Therefore, the allocation on the
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ALGORITHM 5: BAF for the Credit Procedure in a Synchronous Environment

Input: Hbp

Output: x (bp), . . . ,x (bp + p − 1)
1: Let t ← bp and Ft ← ∅.
2: for w ∈ W do

3: x (t ) ← AF (Hbp ∪ Ft ).
4: Update Ft+1 ← Ft ∪ {(x (t ), Ȳx (t ) (H

bp ))} and t ← t + 1.
5: end for

desired history Dt converges to α̃ almost surely as t → ∞. Since the cache size is assumed to be
finite almost surely, it does not have any impact on the asymptotic allocation. Thus, α (t ) → α̃
almost surely as t → ∞.

The cache size can be bounded explicitly for each system by slightly modifying the BAF in
Algorithm 4. In particular, Steps 9 and 10 could be performed only if the output of the corre-
sponding replication of system i can be cached (once it is accumulated at the end of the batch
iteration) without violating a fixed cache size limit. Otherwise, only the forecast is updated Ft ←
Ft ∪ {(i, Ȳi (D))} without assigning system i to a processor and increasing the iteration counter t .
The version of BAF for the caching procedure with limited cache size is presented in Appendix A.

Since the caching procedure with AF gCEI (·) reduces to gCEI when p = 1, it is immediate from
Theorems 1 and 2 that it converges to rate-optimal allocation α ∗ for any p ≥ 1.

Corollary 1. If the sequence of simulation outputs for each system is not affected by the procedure,

|Ct | < ∞ almost surely for all t and the best system is unique, then the synchronous caching procedure

with AF gCEI (·) obtains α (t ) → α ∗ almost surely as t → ∞.

4.2 Credit Procedure

Unlike the caching procedure, the credit procedure uses all information currently available when-
ever it makes a simulation decision by fully utilizing the obtained outputs and persistence forecasts.

As the history includes all of the obtained outputs, it is initialized as Hb0p = {(x (τ ),Y (τ ))}b0p−1
τ=0 at

batch iteration b = b0 and then updated at the end of each batch iteration by calling the following
HUF:

H(b+1)p ← Hbp ∪ {(x (τ ),Y (τ ))}bp+p−1

τ=bp
.

Presented in Algorithm 5, the BAF for the credit procedure passes both history and forecast to
AF (·) to choose a single system to simulate at each iteration t within the batch, that is, x (t ) =
AF (Hbp ∪ Ft ) for t = bp, . . . ,bp + p − 1.

Under the uniqueness assumption of the best system, we prove that the credit procedure with
AF gCEI (·) converges to the rate-optimal allocation α ∗ for any p ≥ 1.

Theorem 3. If the variances are known and the best system is unique, then the synchronous credit

procedure with AF gCEI (·) obtains α (t ) → α ∗ almost surely as t → ∞.

Theorem 3 is shown under the assumption that the variances are known. To extend this con-
vergence result to the unknown-variance case, for each system i , we first replace σ 2

i with σ̂ 2
i (Ht )

when ri (t ) ≥ 2. Next, we show that the limiting allocation remains the same when the variances
are unknown but continually updated via the sample variances.

Corollary 2. If the best system is unique, then the synchronous credit procedure with AF gCEI (·)
that replaces σ 2

i with σ̂ 2
i (Ht ) for all i ∈ S at each iteration t obtains α (t ) → α ∗ almost surely as

t → ∞.
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Similar to the caching procedure, when p = 1, the credit procedure with a given acquisition
function AF (·) reduces to the procedure adopting AF (·) in the serial environment, since x (t ) =
AF (Ht ) as Ft = ∅ for all t = 0, 1, . . . . For example, the credit procedure with AF gCEI (·) is gCEI
itself when p = 1. Therefore, following Corollary 2, the gCEI procedure in the serial environment
with estimated variances converges to the rate-optimal allocation α ∗; see Theorem 1.

Recall that the persistence forecasts assume that the next output of the to-be-simulated system
will have the value of the corresponding sample mean. Clearly, this assumption is false and may
make the credit procedure deviate from the sample path of system-output pairs generated by the
serial procedure, especially, when p is large. Nevertheless, the credit procedure using gCEI as the
acquisition function still achieves the rate-optimal allocation α ∗ in the limit.

5 ASYNCHRONOUS PARALLEL ENVIRONMENT

In this section, we study the R&S problem in an asynchronous parallel environment with p iden-
tical processors. Recall that W = {0, 1, . . . ,p − 1} denotes the set of processors. Different from the
synchronous environment, we avoid idling a processor in this environment to obtain a speedup
in terms of wall-clock time. Instead of waiting for all the currently running replications to com-
plete, whenever a running replication on some processor completes, the corresponding output is
obtained and a new system is assigned to the processor to simulate.

At the beginning of each iteration t = 0, 1, . . . , a single system x (t ) is chosen and assigned to
an idle processor to simulate next. If there is another idle processor, then we move to the next
iteration without waiting to obtain the corresponding output Y (t ). Otherwise, we wait for a run-
ning replication on some processor to complete, making the processor idle, then move to the next
iteration. This newly idle processor is not necessarily the processor that was tasked to simulate
x (t ). In other words, even though x (t ) is chosen to simulate at the beginning of iteration t , its
corresponding output Y (t ) may be obtained at iteration t ′ � t . Since the simulation times may
vary across systems and replications, the order in which the systems are chosen to simulate may
be different from the order in which the outputs are obtained.

To keep track of the currently running replications at iteration t , whose outputs are yet to be
available, let tw (t ) denote the iteration when the currently running replication on processor w
started, i.e., when x (tw (t )) was chosen to simulate. At the beginning of each iteration t , for all
w ∈ W, we set tw (t ) to t if a new system is assigned to processor w and to tw (t − 1) otherwise;
consequently tw (t ) ≤ t . For notational simplicity, we suppress the dependence of tw on t . There-
fore, tw is updated only when a new system is assigned to processor w .

Using the same stopping and selection rules in Sections 3 and 4, Algorithm 6 presents a generic
adaptive procedure for the asynchronous environment. Each system is initially simulated at least
twice in the first t0 iterations to be able to compute the sample means and variances, where t0 ≥ 2k .
Then, for each w ∈ W, x (t0 + w ) is chosen and assigned to processor w to simulate. Here, tw is
initialized as t0+w . Once the replication of x (t0+p−1) starts on the last processor at the beginning
of iteration t = t0 + p − 1, all processors become busy, and we wait for some running replication
to complete.

At iteration t = t0 + p − 1, suppose that the currently running replication on processor w
completes. In other words, the corresponding outputY (tw ) of systemx (tw ) is obtained. The history
is updated with (x (tw ),Y (tw )) by calling a HUF, and we move to the next iteration t + 1 = t0 + p.
As processorw becomes idle, updating tw to t0 +p, a new system x (tw ) is chosen to simulate next
and assigned to processor w . The same steps are repeated for t = t0 + p, t0 + p + 1, . . . until the
procedure terminates.

We modify the caching and credit procedures for the asynchronous environment in Sections 5.1
and 5.2, respectively. Similar to the synchronous versions, the procedures utilize the information
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ALGORITHM 6: Generic Adaptive Procedure in an Asynchronous Environment

1: Use the first t0 iterations to simulate each system at least twice.
2: Initialize the history.
3: for w ∈ W do

4: Let tw ← t0 + w . Choose to simulate x (tw ) via an acquisition function and assign it to
processor w .

5: end for

6: Let t ← t0 + p − 1.
7: repeat

8: Wait until some processor w ∈ W obtains Y (tw ).
9: Update the history with (x (tw ),Y (tw )) by calling a HUF and t ← t + 1.

10: Update tw ← t . Choose to simulate x (t ) via an acquisition function and assign it to pro-
cessor w .

11: until Stopping condition satisfied.
12: Return k (T ) = arg maxi ∈S{μ̄i (T )} as the selected best system.

ALGORITHM 7: Choosing a Single System to Simulate under the Caching Procedure in an Asyn-
chronous Environment

Input: Ct , Dt and Ft

Output: x (t )
1: Let C← Ct and D← Dt .
2: i ← AF (D ∪ Ft ).
3: while Ci � ∅ do � Ci = {(x (s ),Y (s )) ∈ C : x (s ) = i}
4: Let τ ← min{s : (x (s ),Y (s )) ∈ Ci }.
5: Update C← C\{(x (τ ),Y (τ ))} and D← D ∪ {(x (τ ),Y (τ ))}. � x (τ ) = i
6: i ← AF (D ∪ Ft ).
7: end while

8: x (t ) ← i .

about the currently running replications in the asynchronous environment by using the corre-
sponding sample means as persistence forecasts to stand in for the unavailable outputs of those
replications. Therefore, supposing that x (t ) is chosen for processorw at iteration t , we modify the
forecast as

Ft =
⎧⎪⎨⎪⎩
{(x (τ ), Ȳx (τ ) (H

t ))}t−1
τ=t0
, if t0 ≤ t ≤ t0 + p − 1 (in Step 4 of Algorithm 6),

{(x (t ρ ), Ȳx (t ρ ) (H
t ))}ρ ∈W\{w }, if t ≥ t0 + p (in Step 10 of Algorithm 6),

which includes all currently running replications on the other processors. Notice that Ft is a func-
tion of w , but we suppress w in the notation for simplicity.

5.1 Caching Procedure

The caching procedure in Section 4.1 can be modified for the asynchronous environment. Simi-
lar to the synchronous version, aiming to build the sample path as in the serial environment, the
asynchronous caching procedure utilizes the cache and desired history as well as the persistent
forecasts while choosing a single system to simulate next. Algorithm 7 presents the steps of choos-
ing x (t ) at iteration t .
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ALGORITHM 8: HUF for the Caching Procedure in an Asynchronous Environment

Input: Ct , Dt and (x (tw ),Y (tw ))
Output: Ct+1 and Dt+1

1: Let C← Ct ∪ {(x (tw ),Y (tw ))} and D← Dt .
2: i ← AF (D).
3: while Ci � ∅ do � Ci = {(x (s ),Y (s )) ∈ C : x (s ) = i}
4: Let τ ← min{s : (x (s ),Y (s )) ∈ Ci }.
5: Update C← C\{(x (τ ),Y (τ ))} and D← D ∪ {(x (τ ),Y (τ ))}. � x (τ ) = i
6: i ← AF (D).
7: end while

8: Let Ct+1 ← C and Dt+1 ← D.

The cache and desired history are initialized asCt0 = ∅ andDt0 = {(x (τ ),Y (τ ))}t0−1
τ=0 , respectively,

at iteration t = t0. Then, letting Ct = Ct0 and Dt = Dt0 for t = t0, . . . , t0 + p − 2, they are updated
at each iteration t = t0 + p − 1, t0 + p, . . . by calling the HUF presented in Algorithm 8. In fact,
Algorithm 8 is a special case of Algorithm 3 when p = 1, as the history is updated with a single
output at each iteration.

We can extend the convergence results in the synchronous environment, i.e., Theorem 2, to the
asynchronous environment.

Corollary 3. If the sequence of simulation outputs for each system is not affected by the procedure,

|Ct | < ∞ almost surely for all t and α (t ) → α̃ almost surely as t → ∞ when p = 1, then the

asynchronous caching procedure obtains α (t ) → α̃ almost surely as t → ∞ when p > 1.

As with the proof of Theorem 2, the proof of Corollary 3 is straightforward from the assumption
that the simulation output sequence is unaffected for each solution.

5.2 Credit Procedure

The credit procedure in Section 4.2 can be modified for the asynchronous environment. Similar to
the synchronous version, the asynchronous credit procedure utilizes the entire history as well as
the persistence forecasts. That is, at each iteration t ,

x (t ) = AF (Ht ∪ Ft ).

The history is initialized as Ht0 = {(x (τ ),Y (τ ))}t0−1
τ=0 at iteration t = t0 and remains the same for

t = t0, . . . , t0 + p − 2. Then, it is updated with (x (tw ),Y (tw )) for some w ∈ W at each iteration
t = t0 + p − 1, t0 + p, . . . by calling the following HUF:

Ht+1 ← Ht ∪ {(x (tw ),Y (tw ))}.
Similar to the caching procedure, the convergence results of the synchronous credit procedure,

i.e., Corollary 2, can be extended to the asynchronous version.

Corollary 4. If the best system is unique, then the asynchronous credit procedure with AF gCEI (·)
that replaces σ 2

i with σ̂ 2
i (Ht ) for all i ∈ S at each iteration t obtains α (t ) → α ∗ almost surely as

t → ∞.

Again, the proof of Corollary 4 is omitted, as it is straightforward.

6 NUMERICAL EXPERIMENTS

Avci et al. [2021] compare the finite-sample behavior of serial gCEI to three well-established acqui-
sition functions: mCEI, TTTS, and AOMAP; both gCEI and mCEI converge to the rate-optimal allo-
cation in the limit, while TTTS and AOMAP converge to other limiting allocations. gCEI performs
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as well as any of these and often significantly better in terms of probability of correct selection.
These results led to our focus on gCEI for the parallel implementation. See also the discussion in
Section 3.3 and Appendix C.1.

For the numerical experiments here, we consider three different problems: the airline-
reservation example [Goldsman et al. 1991], an M/M/1 queue example (from an online Masterclass
at http://users.iems.northwestern.edu/~nelsonb/RSMasterclass.html), and a stylized example with
normally distributed simulation outputs. For these problems, the objective function can be evalu-
ated analytically, enabling us to identify the good systems. Also, simulation execution times can be
adjusted by the choice of problem parameters. Clearly the stylized example conforms perfectly to
our output-distribution assumptions for gCEI. The more-realistic airline-reservation and M/M/1
queue examples do not have normally distributed outputs, but normal-theory R&S procedures
have been shown to be robust when either a very large number of replications will be needed be-
fore termination (airline reservation) or the replication output is the average of a large number of
more basic non-normal outputs (M/M/1 queue). In all experiments, we assume that the variances
are unknown but continually updated via plug-in estimators.

In the airline-reservation example, there are k = 4 systems, which differ in the parameters of
the time-to-failure and time-to-repair distributions and thus the expected time to failure, E[TTF].
Each system is modeled by a continuous-time Markov chain with three states, where each state
represents a number of functional components. Setting the parameters accordingly, the E[TTF]’s
are 828.3, 902.0, 910.9, and 1,002.0 days. Aiming to find the system with the maximum E[TTF], we
set the tolerance δ = (1,002.0 − 910.9)/2 so only the best system is considered “good.”

In the M/M/1 queue example, system i ∈ S has an arrival rate of 1 and a service rate of 20i/k +
1. Given service cost of 1 and waiting cost of 36, the expected cost of a system is estimated by
averaging the waiting time of 1,000 customers in each replication. Aiming to find the system with
the minimum cost (or maximum negative cost) among k = 40 systems, we set the tolerance δ =
0.192 so only the best system is considered “good.”

For these two problems, we first evaluate the performances of the caching and credit procedures
in terms of efficiency (e.g., the total number of outputs obtained and the computation time) and
effectiveness (i.e., the good selection). Varying the number of processors, we perform the perfor-
mance evaluation in both synchronous and asynchronous environments. Then, we compare the
caching and credit procedures to APS of Luo et al. [2015], which is an extension of KN [Kim and
Nelson 2001] to the asynchronous environment by making elimination decisions only when spe-
cific simulations complete. We also compare the performance of caching and credit procedures
when they are combined with mCEI instead of gCEI in Appendix C.1; for both procedures, gCEI
achieves a higher empirical PGS with earlier stopping.

In all experiments, we initially allocate 100 and 30 replications to each system before applying
any procedure on the airline-reservation and M/M/1 queue examples, respectively. The procedures
stop when the stopping criterion introduced in Section 2 is met for the confidence level P∗ = 0.95.
We set the number of macro-replications M = 5,000 to be able to estimate PGS to two decimal
places over a range of values. Letting Tm be the total number of outputs obtained (i.e., iterations)
and k (Tm ) be the selected system, in themth macro-replication, we introduce

P̂GS1 =
1

M

M∑
m=1

I (μk (Tm ) > μk − δ ) =
1

M

M∑
m=1

I (k (Tm ) = k ),

which is an estimate of the frequentist PGS, by averaging the good selection across the macro-

replications. We also introduce T̂mean , T̂se , T̂median , and T̂max to report the mean, standard
error, median, and maximum of the total number of outputs obtained across macro-replications,
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Table 1. Caching (Cache) vs. Credit (Crdt) Procedure on the Airline-reservation Example in Terms of the
Total Number of Outputs Obtained and the Good Selection

synchronous environment asynchronous environment

p = 1 p = 2 p = 4 p = 8 p = 2 p = 4 p = 8

gCEI Cache Crdt Cache Crdt Cache Crdt Cache Crdt Cache Crdt Cache Crdt

T̂mean 1,039.2 1,040.4 1,078.2 1,058.7 1,077.5 1,100.5 1,084.2 1,070.4 1,053.9 1,084.2 1,049.6 1,085.6 1,102.1

T̂se 9.4 9.6 9.8 9.6 9.7 9.9 9.9 9.6 9.7 10.0 9.4 9.5 9.7

T̂median 847.0 832.0 871.0 852.0 876.0 896.0 872.0 869.0 850.5 877.0 845.0 883.0 908.0

T̂max 5,187 5,394 5,748 5,820 7,152 5,328 5,024 4,985 6,071 5,845 4,439 5,471 5,617

P̂GS1 0.928 0.923 0.928 0.927 0.921 0.927 0.936 0.928 0.924 0.923 0.920 0.928 0.931

Table 2. Caching (Cache) vs. Credit (Crdt) Procedure on the M/M/1 Queue Example in Terms of the Total
Number of Outputs Obtained and the Good Selection

synchronous environment asynchronous environment

p = 1 p = 2 p = 4 p = 8 p = 2 p = 4 p = 8

gCEI Cache Crdt Cache Crdt Cache Crdt Cache Crdt Cache Crdt Cache Crdt

T̂mean 1,433.9 1,436.0 1,440.6 1,446.9 1,440.4 1,459.6 1,454.6 1,431.6 1,431.5 1,485.7 1,431.4 1,463.7 1,437.8

T̂se 3.5 3.6 3.6 3.7 3.6 3.7 3.7 3.6 3.5 4.2 3.6 4.3 3.6

T̂median 1,354.0 1,350.0 1,364.0 1,372.0 1,360.0 1,376.0 1,372.0 1,349.0 1,355.0 1,403.0 1,349.0 1,363.0 1,357.0

T̂max 2,951 3,268 3,130 2,980 3,176 2,984 3,288 2,938 3,069 3,621 3,273 3,724 3,194

P̂GS1 0.911 0.920 0.921 0.921 0.924 0.924 0.923 0.910 0.915 0.911 0.913 0.914 0.918

respectively; for example, T̂mean =
∑M

m=1Tm/M . All computations are executed on a desktop
with a Windows 10 operating system, a 2.9 GHz Intel Core i7 CPU, 32 GB of RAM, 8 cores and
16 logical processors. The procedures are implemented in Python using the “concurrent.futures”
package for parallel computing.

Tables 1 and 2 exhibit results for the airline-reservation and M/M/1 queue examples, respec-
tively, in terms of the total number of outputs obtained and the PGS for the caching and credit
procedures with different number of processors p ∈ {1, 2, 4, 8} in both synchronous and asynchro-
nous environments. Recall that both procedures reduce to the gCEI procedure when p = 1. The
purpose of this analysis is to see if there is any degradation in number-of-replications efficiency
or achieved PGS from parallelizing with persistence forecasts. Based on T and PGS, the perfor-
mances of the two procedures do not differ significantly. This observation indicates that the credit
procedure performs as well as the caching procedure despite not carefully controlling the history
as the caching procedure does. Also, neither the environment nor the number of processors have
significant impact on the procedures’ performances. A possible explanation is that the persistence
forecast is effective at predicting the desired path so the procedures tend to adhere closely to the
desired path. See Appendix C.2 for a more detailed comparison of the procedures.

The caching and credit procedures (as well as the gCEI procedure in the serial environment) us-
ing pPGS stopping does not quite achieve the frequentist PGS P∗ = 0.95 on PGS; it is slightly but
consistently lower in these examples. Recall that a pPGSSlep ≥ 0.95 does not imply a frequentist
PGS of 0.95, and it is also the case that the pPGSSlep is computed assuming normally distributed
output, which is not the case in these examples. Despite all of this the underachievement of fre-
quentist PGS is remarkably slight and not a concern in practice. We also note that any stopping
criterion can be adopted for our procedures to improve their performances.

Next, we compare the caching and credit procedures to APS in terms of the speedup relative to
APS, and then relative to their serial versions, for different number of processors p ∈ {1, 2, 4, 8}
in the asynchronous environment; APS becomes KN when p = 1. Different from the caching
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Table 3. Wall-clock Execution Time Speedup of Caching (Cache)
and Credit (Crdt) Procedures Relative to APS with the Same

Number of Processors in the Asynchronous Environment

M/M/1 queue example airline-reservation example

p Cache Crdt APS Cache Crdt APS

1 3.7 3.7 1 3.9 3.9 1
2 3.4 3.5 1 3.3 3.6 1
4 2.8 2.9 1 3.3 3.1 1
8 3.3 3.5 1 3.9 3.9 1

Table 4. Wall-clock Execution Time Speedup of Caching (Cache),
Credit (Crdt), and APS Relative to Their Respective Serial

Versions in the Asynchronous Environment

M/M/1 queue example airline-reservation example

p Cache Crdt APS Cache Crdt APS

1 1 1 1 1 1 1
2 1.8 1.9 2.0 1.6 1.7 1.9
4 2.8 2.8 3.6 3.0 2.8 3.5
8 4.8 5.1 5.4 5.1 5.1 5.1

and credit procedures, APS does not make strategic decisions about which system to simulate
next; instead it simulates all “surviving” systems in round-robin fashion and makes elimination
decisions after performing all-pairwise comparisons when specific simulations complete. In these
experiments, APS uses its natural frequentist stopping condition for 95% PCS, while for the caching
and credit procedures, we use the pPGSSlep stopping condition; however, we target 97% pPGSSlep

rather than 95%. By setting our pPGSSlep target to 97%, we achieve at least 95% frequentist PGS. This
provides a fair comparison for timing, because it forces our procedures to take more replications
than they would with a 95% pPGSSlep to achieve the same inference provided by APS.

Table 3 shows the speedup relative to APS with common numbers of processors; we define
“speedup” as the ratio of wall-clock time for APS divided by wall-clock time for our procedures.
When p = 1 they are all serial procedures, so the speedup for the caching and credit procedures
comes from requiring about one-third the number of replications as APS to achieve 95% PCS. No-
tice that these speedups hold as we increase the number of processors, and that the speedups are
slightly better for the airline-reservation example whose computational cost of simulation relative
to the algorithmic overhead is higher than the M/M/1 queue example.

Table 4 shows the speedup of caching, credit, and APS relative to their serial versions as the
number of processors increases. Notice again that the speedups are slightly better for the airline-
reservation example, which has relatively higher simulation overhead vs. algorithm overhead.

Table 5 shows the estimated frequentist PGS, P̂GS1, for caching, credit, and APS. Notice that the
desired frequentist PGS, P∗ ≥ 0.95, is achieved in nearly all experiments.

To better compare our procedures to each other and to investigate the impact of a synchronous
vs. asynchronous computing environment in terms of the wall-clock time speedup, we increase the
simulation execution times. To do this, we simply make the processors simulate 100 replications
of each assigned system and record only the simulation outputs of the last replications. We set
the number of macro-replications M = 100 in these experiments. Also, we fix T to a reasonable
deterministic constant (using Tables 1 and 2) for a fair comparison, i.e., the procedures terminate
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Table 5. Estimated PGS for Caching (Cache), Credit (Crdt), and
APS in the Asynchronous Environment

M/M/1 queue example airline-reservation example

p Cache Crdt APS Cache Crdt APS

1 0.95 0.95 1 0.98 0.98 1
2 0.94 0.95 1 0.99 0.96 1
4 0.94 0.91 1 0.93 0.95 1
8 0.96 0.96 1 0.96 0.98 1

Fig. 1. The credit procedure in the synchronous vs. asynchronous environment in terms of the computation
time relative to the serial environment. (The results are similar for the caching procedure.)

after obtaining a certain number of outputs. Figure 1 illustrates the computational benefit of using
parallel environments (compared to the serial one) for the credit procedure; we do not exhibit the
results for the caching procedure, because it shows a similar performance, nor for APS, because it
simply takes too long to run. In particular, the figure reports how much faster the credit procedure
is than the gCEI procedure (in the serial environment) for different values of p ∈ {2, 4, 8}.

The marginal computational benefit of using a parallel environment decreases as the number
of processors increases, because the computational overhead increases as well. In other words,
the benefit does not increase linearly in p. When p is larger, the asynchronous version performs
better, because the processors in the synchronous environment wait potentially longer for the
slowest replication to complete in each batch. Nevertheless, neither of the parallel environments
has a substantial advantage over the other, because the simulation execution times do not vary
much. Next, we compare the synchronous and asynchronous environment for a case where the
simulation execution times vary substantially.

For this comparison, we consider a stylized example with normally distributed simulation out-
puts. (We explain this stylized example in detail and also use it to provide comprehensive sensitivity
analyses in Appendix C.) To control the simulation times in the experiments, we artificially delay
obtaining the simulation output. In particular, the simulation execution time for each replication of
a system is assumed to follow a bimodal distribution, defined as a mixture of two lognormal distri-
butions with equal weights. The lognormal distributions have means 0.136 and 0.417 and variances
0.0142 and 0.2222, respectively. We specify the unit time of simulation execution as the amount of
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Fig. 2. The caching and credit procedures on the slippage configuration with k = 5 in the synchronous vs.
asynchronous environment in terms of the computation time relative to the serial environment.

time that a processor spends to perform a certain number of elementary mathematical operations
(which takes around 1 second in the serial environment). We note that the expected value of the
bimodal distribution is approximately 0.276, which is the expected simulation execution time in
seconds per replication.

Setting k = 5, we ran four experiments in total for the slippage configuration, where all the
inferior systems are the same, including four different values of the number of processors, p ∈
{1, 2, 4, 8}. In the experiments, we set the number of macro-replications M = 100 and T = 350,
i.e., the procedures terminate after obtaining a certain number of outputs. Figure 2 illustrates the
computational benefit of using the asynchronous caching and credit procedures over the respective
synchronous versions. Compared to the airline-reservation and M/M/1 queue examples, a clear
computational benefit of the asynchronous environment can be seen in this stylized example. It
can be attributed to the fact that the simulation execution time is highly variable across replications,
making it wasteful to wait for all processors to complete.

7 CONCLUSION

In this article, we tackled a R&S problem in both serial and parallel environments. We first showed
that the gCEI procedure, which applies gCEI as the acquisition function in the serial environment,
achieves the rate-optimal allocation of Glynn and Juneja [2004] in the limit under the normality
assumption.

We also proposed two procedures, caching and credit, that can be combined with any user-
selected acquisition function and adapted to both synchronous and asynchronous parallel envi-
ronments. Both procedures repeatedly apply the acquisition function to choose a single system
to simulate for each idle processor. The currently running replications, which are yet to be ob-
tained, are taken into account by considering the corresponding sample means as the persistence
forecasts. These procedures differ in the usage of the history of all simulated systems and their
replications while choosing systems to simulate. In particular, the caching procedure uses only
a subset of the history and caches its complement, whereas the credit procedure uses the whole
history. Caching allows the procedure to behave as if it is implemented in a serial environment.
Under certain assumptions, the caching procedure extending any acquisition function into the par-
allel environments achieves the same asymptotic allocation as in the serial environment. A similar
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result holds for the credit procedure using gCEI as the acquisition function. The credit procedure
empirically performs as well as the caching procedure despite not carefully controlling the history
as the caching procedure does.

As parallelizing simulation has gotten easier, parallel R&S has become an active area of inquiry,
and many procedures have been created, as noted in Section 1. When considering which procedure
to use, issues such as number of systems, computational cost per replication per system, R&S
algorithm overhead, communication delays, and the particular parallel architecture all matter, as
noted in Hunter and Nelson [2017]. Our caching and credit procedures will be appropriate when
the following apply: (a) The computational cost per replication is high, so strategically deciding
which system to simulate next dominates all-current-survivors algorithms like KN. (b) The number
of systems is small enough (certainly 100 or less) that it is reasonable to keep all systems in play;
very large numbers of systems favors eliminating procedures that may be able to discard many
systems after they are simulated the first time. (c) The number of parallel processors is modest
(say, 64 or less), as we expect persistence forecasts to eventually break down if, for instance, it is
needed to forecast hundreds of choices into the future to keep processors busy. Many problems
faced by working engineers fit squarely in this domain.

Future research includes modifying the gCEI acquisition function and evaluating its perfor-
mance when spatial correlations exist among the systems. Implementing the caching and credit
procedures for other simulation optimization problems, beyond R&S, is interesting future work.

APPENDICES

A CACHING PROCEDURE WITH LIMITED CACHE SIZE

Let Li ≥ p denote a user-defined limit on the cache size for system i . Also, letCi denote the cache
size (at the end of the batch iteration) for system i . Algorithm 9 presents the BAF for the caching
procedure with a cache-size limit. To avoid an infinite loop, the user-selected acquisition function
must satisfy a condition: choosing each system infinitely many times in the limit when it is adopted
by a serial procedure. A serial procedure could not be based on persistence forecasts.

B PROOFS

We first show the following auxiliary result, which serves as a basis for the proofs of the theorems
in this article.

Proposition B.1. For the credit procedure with AF gCEI (·), ri (t ) → ∞ almost surely as t → ∞ for

all i ∈ S.

Proof of Proposition B.1. We fix a sample path ω but suppress it in the notation. For each
batch iteration b = 0, 1, . . . , recall that x (t ) = AF gCEI (H

bp ∪ Ft ) for t = bp, . . . ,bp + p − 1.

Therefore, the statistics used by the acquisition function at iteration t are conditional on Hbp ∪Ft .
To ease notation, we write these statistics as functions of t . For example,

ri (t ) = ri (Hbp ∪ Ft ) =
t−1∑
τ=0

I (x (τ ) = i ) and Ȳi (t ) = Ȳi (Hbp ∪ Ft ) =
1

ri (bp)

bp−1∑
τ=0

I (x (τ ) = i )Y (τ ).

Let S = {i ∈ S : ri (t ) → ∞ as t → ∞}. Since at least one system must be simulated infinitely
often as t → ∞, notice S is non-empty. Assume that Sc = S\S is also non-empty. Then, the last
iteration at which a system in Sc is simulated, R1 = sup{t + p : x (t − 1) ∈ Sc }, is finite. Notice for
all i ∈ S that Ȳi (t ) → μi by the strong law of large numbers. However, for all j ∈ Sc , Ȳj (t ) = Ȳj (R1)
and r j (t ) = r j (R1) ≤ R1 for all t ≥ R1.
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ALGORITHM 9: BAF for the Caching Procedure with Limited Cache Size in a Synchronous
Environment

Input: Cbp and Dbp

Output: x (bp), . . . ,x (bp + p − 1)
1: Let t ← bp, C← Cbp , D← Dbp and Ft ← ∅.
2: Ci ← |Ci |, ∀i ∈ S. � |·| represents the cardinality.
3: while t ≤ bp + p − 1 do

4: i ← AF (D ∪ Ft ).
5: while Ci � ∅ do � Ci = {(x (s ),Y (s )) ∈ C : x (s ) = i}
6: Let τ ← min{s : (x (s ),Y (s )) ∈ Ci }.
7: Update C← C\{(x (τ ),Y (τ ))} and D← D ∪ {(x (τ ),Y (τ ))}. � x (τ ) = i
8: i ← AF (D ∪ Ft ).
9: end while

10: if Ci < Li then � Simulating system i will not violate the cache size limit.
11: x (t ) ← i .
12: Update Ft+1 ← Ft ∪ {(x (t ), Ȳx (t ) (D))} and t ← t + 1.
13: Ci ← Ci + 1.
14: else � Simulating system i will violate the cache size limit.
15: Update Ft ← Ft ∪ {(i, Ȳi (D))}.
16: end if

17: end while

We first show that there exists an iteration R2 ≥ R1 such that k (t ) ∈ S for all t ≥ R2: Assume to
the contrary that this is not true. Then there exists a subsequence (tn )∞n=1 with t1 ≥ R1 on which

k (tn ) ∈ Sc . Notice that k (tn ) = kc is fixed, since tn ≥ R1 so kc = arg maxj ∈Sc {Ȳj (R1)}. Moreover, for

all j ∈ Sc\{kc }, we have ∂CEIj (tn )/∂r j (tn ) = ∂CEIj (R1)/∂r j (R1) = −εj for some εj > 0, since Ȳj (tn ),
Ȳkc (tn ), r j (tn ) and rkc (tn ) are all fixed for tn ≥ R1. However, for any i ∈ S , ∂CEIi (tn )/∂ri (tn ) → 0
as n → ∞ so ∂CEIi (tn )/∂ri (tn ) will eventually be greater than −maxj ∈Sc \{kc } εj < 0. Therefore,
there exists an iteration tn′ such that

min
j ∈Sc \{kc }

∂CEIj (tn′ )

∂r j (tn′ )
= − max

j ∈Sc \{kc }
εj < min

i ∈S

∂CEIi (tn′ )

∂ri (tn′ )
.

That is, д(tn′ ) ∈ Sc . As k (tn′ ) ∈ Sc and д(tn′ ) ∈ Sc , we have x (tn′ ) ∈ Sc , contradicting the existence
of R1, since tn′ ≥ R1. Hence, such a subsequence does not exist, and therefore, there exists R2 ≥ R1

such that k (t ) ∈ S for all t ≥ R2.
Since k (t ) ∈ S for all t ≥ R2, there exists a subsequence (tm )∞m=1 with t1 ≥ R2 on which k (tm ) = l

for some l ∈ S . Notice for all j ∈ Sc that ∂CEIj (tm )/∂r j (tm ) < −ϵj for some ϵj > 0, since r j (tm )
is fixed for tm ≥ R2 ≥ R1. On the other hand, for all i ∈ S\{l }, ∂CEIi (tm )/∂ri (tm ) → 0 as m → ∞
so it will eventually be greater than −maxj ∈Sc ϵj < 0. Moreover, ∂CEIi (tm )/∂rl (tm ) → 0 for all
i ∈ Sl as m → ∞ so we will eventually have

∑
i ∈Sl
∂CEIi (tm )/∂rl (tm ) > −maxj ∈Sc ϵj . Therefore,

there exists an iteration tm′ such that

min
j ∈Sc

∂CEIj (tm′ )

∂r j (tm′ )
< −max

j ∈Sc
ϵj < min

i ∈S\{l }

∂CEIi (tm′ )

∂ri (tm′ )
(i.e., д(tm′ ) ∈ Sc )

and ∑
i ∈Sl

∂CEIi (tm′ )

∂rl (tm′ )
> −max

j ∈Sc
ϵj > min

j ∈Sc

∂CEIj (tm′ )

∂r j (tm′ )
(i.e., x (tm′ ) = д(tm′ )).

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 4, Article 12. Publication date: October 2023.



Using Cache or Credit for Parallel Ranking and Selection 12:23

Hence, x (tm′ ) = д(tm′ ) ∈ Sc . However, this contradicts the existence of R1, since tm′ ≥ R2 ≥ R1.
Hence, we conclude that Sc is empty, and thus S = S, i.e., ri (t ) → ∞ as t → ∞ for all i ∈ S. Since
this will occur on almost all sample paths, the convergence is with probability 1. �

Recall that in Section 4.2, we mention that Theorem 1 is a direct consequence of Corollary 2,
which follows from Theorem 3. Below, we present the proofs of Theorem 3 and Corollary 2,
respectively.

Proof of Theorem 3. We fix a sample path ω but suppress it in the notation. Similar to the
proof of Proposition B.1, the statistics used by the acquisition function AF gCEI (·) at iteration t are

conditional on Hbp ∪ Ft , but we write these statistics as functions of t to ease notation.
Let ε be a constant such that 0 < ε < 1

2 (μk − μk−1). From Proposition B.1, there exists some R3

such that for all i ∈ S, we have |Ȳi (t ) − μi | < ε for t ≥ R3 by the strong law of large numbers. By
the choice of ε , we have k (t ) = k for t ≥ R3.

Consider the empirical allocation (α1 (t ), . . . ,αk (t )). Since 0 ≤ αi (t ) ≤ 1 for each i , we know
by the Bolzano-Weierstrass theorem that the allocation must have at least one limit point. We
will show that the limit point is unique and is α ∗. Let (α1, . . . ,αk ) be an arbitrary limit point of
(α1 (t ), . . . ,αk (t )). Then, there exists a subsequence (tn )∞n=1 such that αi (tn ) → αi for all i ∈ S as

n → ∞. Let λ′i = (σ 2
i /αi + σ

2
k
/αk ) = limn→∞ tnλi (tn ).

Fix an arbitrary pair (i, j ) such that i, j ∈ Sk , and consider a sub-subsequence (tnm
)∞m=1 on

which ∂CEIi (tnm
)/∂ri (tnm

) ≤ ∂CEIj (tnm
)/∂r j (tnm

). We know such a sub-subsequence exists be-
cause otherwise the gCEI procedure would simulate system i only finitely many times, contradict-
ing Proposition B.1. To simplify notation, we denote the index of the sub-subsequence by τ , i.e.,
(τ )∞τ=1 ≡ (tnm

)∞m=1. Then for every τ ,

σ 2
i /(ri (τ ))2

σ 2
j /(r j (τ ))2

√
λj (τ )

λi (τ )
× exp

{
−1

2

(
(Ȳi (τ ) − Ȳk (τ ))2

λi (τ )
−

(Ȳj (τ ) − Ȳk (τ ))2

λj (τ )

)}
≥ 1. (6)

Notice that, as τ → ∞, the non-exponential term will converge to a positive constant, that is,

lim
τ→∞

⎧⎪⎪⎨⎪⎪⎩
σ 2

i /(ri (τ ))2

σ 2
j /(r j (τ ))2

√
λj (τ )

λi (τ )

⎫⎪⎪⎬⎪⎪⎭
= lim

τ→∞

⎧⎪⎪⎨⎪⎪⎩
σ 2

i /(ri (τ )/τ )2

σ 2
j /(r j (τ )/τ )2

√
τλj (τ )

τλi (τ )

⎫⎪⎪⎬⎪⎪⎭
=

σ 2
i /α

2
i

σ 2
j /α

2
j

√
λ′j

λ′i
> 0.

However, as τ → ∞, the exponential term will converge to 0 unless

lim
τ→∞

{
(Ȳi (τ ) − Ȳk (τ ))2

τλi (τ )
−

(Ȳj (τ ) − Ȳk (τ ))2

τλj (τ )

}
=

(μi − μk )2

λ′i
−

(μ j − μk )2

λ′j
≤ 0. (7)

We note that the sample means converge to the true means, because they include only a finite
number of (at most p−1) persistence forecasts at each iteration in addition to all the corresponding
outputs obtained up to the current batch iteration.

Next, consider another sub-subsequence on which ∂CEIi (τ )/∂ri (τ ) ≥ ∂CEIj (τ )/∂r j (τ ); we
again know that such a sub-subsequence exists from Proposition B.1. This reverses the inequal-
ity in (6). Then a similar argument shows that the left-hand side of Equation (7) must be ≥ 0 in
the limit, because the exponential term will go to ∞ as τ → ∞ otherwise. Therefore, equality is
required:

(μi − μk )2

λ′i
−

(μ j − μk )2

λ′j
= 0. (8)

Since this equality holds for arbitrary i, j ∈ Sk , the limit point (α1, . . . ,αk ) satisfies the first of two
conditions for the rate-optimal allocation of Glynn and Juneja [2004].
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Similarly, for arbitrary j ∈ Sk , consider a sub-subsequence (that exists from Proposition B.1) on
which

∑
i ∈Sk
∂CEIi (τ )/∂rk (τ ) ≤ ∂CEIj (τ )/∂r j (τ ). For such indices,

∑
i ∈Sk

σ 2
k
/(rk (τ ))2

σ 2
j /(r j (τ ))2

√
λj (τ )

λi (τ )
× exp

{
−1

2

(
(Ȳi (τ ) − Ȳk (τ ))2

λi (τ )
−

(Ȳj (τ ) − Ȳk (τ ))2

λj (τ )

)}
≥ 1. (9)

Notice that, as τ → ∞, the exponential term will converge to 1 due to Equation (8). Thus,

lim
τ→∞

⎧⎪⎪⎨⎪⎪⎩
σ 2

k
/(rk (τ ))2

σ 2
j /(r j (τ ))2

∑
i ∈Sk

√
λj (τ )

λi (τ )

⎫⎪⎪⎬⎪⎪⎭
=

σ 2
k
/(αk )2

σ 2
j /(α j )2

∑
i ∈Sk

√
λ′j

λ′i
≥ 1. (10)

Next, consider another sub-subsequence (that again exists from Proposition B.1) on which∑
i ∈Sk
∂CEIi (τ )/∂rk (τ ) > ∂CEIj (τ )/∂r j (τ ). This reverses the inequality in (9). Then a similar ar-

gument shows that the left-hand side of Equation (10) must be ≤ 1. Therefore, equality is required
in the limit:

σ 2
k
/(αk )2

σ 2
j /(α j )2

∑
i ∈Sk

√
λ′j

λ′i
= 1.

Since this equality holds for arbitrary j ∈ Sk , after some rearrangement, and by summing both
sides over j ∈ Sk , we obtain

∑
j ∈Sk

(
α j

σj

)2 ∑
i ∈Sk

√
1

λ′i
=

(
αk

σk

)2 ∑
j ∈Sk

√
1

λ′j
.

Dividing out the common term gives

∑
j ∈Sk

(
α j

σj

)2

=

(
αk

σk

)2

,

which is the second condition of Glynn and Juneja [2004]. And, since this will occur on almost all
sample paths, the convergence is with probability 1. �

Proof of Corollary 2. First, notice that Proposition B.1 will hold provided that σ̂ 2
i (t ) > 0 for

all i ∈ S. Then, we know by the strong law of large numbers that σ̂ 2
i (t ) → σ 2

i almost surely for all
i ∈ S as t → ∞. Thus, Theorem 1 holds from the continuous mapping theorem. �

Recall that Section 4.1 discusses the proof of Theorem 2.

C SENSITIVITY ANALYSIS

Using a stylized example, we provide comprehensive sensitivity analyses of the proposed proce-
dures in the following subsections. Each system i ∈ S has normally distributed simulation outputs
with mean μi = cηi , where ηi is a prescaled true mean value provided in Table 6 and c is a scaling
constant explained below. All systems’ outputs are independent from each other. Among the four
configurations in Table 6, all systems have equal variances in the slippage and ascending means
configurations. In the other two configurations the means are ascending, but the variances are
proportional and inversely proportional to the prescaled mean values.

In every experiment, we first allocate 10 replications to each system before applying any pro-
cedure. To create sensible cases, we scale the true means so at least r0 replications are consumed
before the difference between the best and second-best systems matches the standard error of their
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Table 6. Configurations for Experiments with Normally Distributed Outputs

Configuration Prescaled true mean values True standard deviations

Slippage ηi = −1 for i ∈ Sk and ηk = 0 σi = 1
Ascending mean ηi = log(i ) σi = 1
Ascending variance ηi = log(i + 1) σi =

√
ηi

Descending variance ηi = log(i + 1) σi = 1/
√
ηi

estimated difference if r0 replications are allocated according to the rate-optimal ratios in Glynn
and Juneja [2004]. Specifically,

μk − μk−1 = c (ηk − ηk−1) =

√
σ 2

k−1

r0α∗k−1

+
σ 2

k

r0α∗k
. (11)

Namely, we control how quickly the best system becomes distinguishable from the others. To find
c satisfying Equation (11), we first calculate α ∗ by solving the expressions in Equations (4) and (5)
with the ηi ’s from Table 6. The constant c does not change the optimal allocation, because scaling
all μi ’s does not affect α ∗. We set r0 = 20k .

The procedures stop when the stopping criterion introduced in Section 2 is met for the confi-
dence level P∗ = 0.95. We consider different levels of tolerance. In particular, for anyn = 1, . . . ,k−1,
we set δn = μk − 1

2 (μk−n + μk−n+1) so the top n systems are considered as good. Using δn , we
introduce

P̂GSn =
1

M

M∑
m=1

I (μk (Tm ) > μk − δn ) =
1

M

M∑
m=1

I (k (Tm ) ∈ {k, . . . ,k − n + 1})

to report the estimate of PGS by averaging the good selection across the macro-replication; we
set the number of macro-replications M = 5,000.

Although we ran several experiments for each comparison, in the following subsections, we
report the results for a subset of experiments, because the results for the other experiments are
similar to ones that we report unless otherwise stated.

C.1 Comparison of Acquisition Functions: gCEI vs. mCEI

First, we compare the performances of AF gCEI (·) and AFmCEI (·) in Algorithms 4 and 5, i.e., under
the caching and credit procedures in the synchronous environment. For this comparison, setting
k = 20 and p = 4, we ran experiments for all four configurations in Table 6 but only present one
representative result.

Table 7 exhibits results for the slippage configuration. Both caching and credit procedures ter-
minate earlier when the gCEI acquisition function is used. Despite the earlier termination, gCEI
yields slightly larger PGS. This result demonstrates the efficiency and effectiveness of gCEI as
an acquisition function in the parallel environment. Further, it emphasizes the importance of the
choice of the acquisition function for the performance of the caching and credit procedures.

We note that the procedures achieve the PGS target of 0.95 regardless of the acquisition func-
tion adapted. This target is also achieved in all experiments with normally distributed outputs,
which was not the case in the airline-reservation and M/M/1 queue examples where the simulation
outputs are non-normal. This emphasizes the importance of the choice of the stopping criterion
depending on the problem characteristics for the performance of the procedures in terms of good
selection.
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Table 7. gCEI vs. mCEI Acquisition Function on the
Slippage Configuration with Tolerance δ1 in the

Synchronous Environment

Caching procedure Credit procedure

gCEI mCEI gCEI mCEI

T̂mean 1,410.8 2,443.1 1,398.9 2,434.4

T̂se 8.4 66.2 8.0 66.8

T̂median 1,324 1,536 1,308 1,528

T̂max 9,064 103,380 8,832 97,044

P̂GS1 0.994 0.978 0.995 0.976

Table 8. Caching (Cache) vs. Credit (Crdt) Procedure on the Ascending Variance Configuration with
Tolerance δ2 and k = 20 in the Synchronous Environment

p = 1 p = 4 p = 8 p = 16 p = 32 p = 64

gCEI Cache Crdt Cache Crdt Cache Crdt Cache Crdt Cache Crdt

T̂mean 392.4 404.2 404.1 414.1 412.3 429.9 427.1 451.3 452.4 490.4 492.4

T̂se 2.0 2.0 2.0 2.1 2.0 2.1 2.1 2.1 2.2 2.3 2.3

T̂median 370 384 380 392 392 408 408 424 424 456 456

T̂max 1,095 1,172 1,020 1,032 1,320 1,096 1,112 1,160 1,192 1,224 1,288

P̂GS2 0.960 0.965 0.969 0.972 0.967 0.970 0.972 0.978 0.977 0.981 0.981

C.2 Credit vs. Caching Procedure

Next, we compare the caching and credit procedures (using the gCEI acquisition function) in
the synchronous environment in terms of the total number of outputs obtained and the PGS.
Also, we investigate the cache size behavior under the caching procedure for different number
of processors. We ran 120 experiments in total for five different values of number of systems
k ∈ {20, 40, 60, 80, 100}, six different values of number of processors p ∈ {1, 4, 8, 16, 32, 64}, and
all four configurations in Table 6. Recall that both caching and credit procedures reduce to the
gCEI procedure when p = 1.

As a representative example, Table 8 exhibits results for the ascending variance configuration
with tolerance δ2 (i.e., the top two systems are considered good) and k = 20. Based on T and PGS,
both procedures show similar performance. A possible explanation is that the procedures tend to
adhere closely to the desired path, as an increases in p does not lead to a significant increase in
T for either procedure. This indicates that the persistence forecast is effective at predicting the
desired path.

To investigate how the achieved PGS changes as the number of iterations increases, we also
ran the same set of 120 experiments under the fixed-budget framework by setting T = 200k , i.e.,
the procedures terminate after obtaining a certain number of outputs. We do not show any results
from these experiments but mention that they did not provide any evidence to conclude that either
procedure empirically outperforms the other.

Finally, to evaluate how well the caching procedure builds the desired path, Figures 3
and 4 visualize the maximum cache size at any iteration and cache size at termination, re-
spectively, for the slippage configuration by using a violin plot, a combination of a box plot
with the addition of a rotated kernel density plot on each side. The violin plots in parts
(a) and (b) of these figures show the corresponding cache sizes per processor for a fixed
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Fig. 3. Maximum cache size per processor/system for the slippage configuration with tolerance δ1.

Fig. 4. Cache size per processor/system at termination for the slippage configuration with tolerance δ1.

number of systems k = 60 and per system for a fixed number of processors p = 16, respec-
tively. The maximum cache size per processor first increases and then decreases with the
increase in p, whereas the maximum cache size per system is not significantly affected by
the change in k , except for a few outliers. The cache size per system/processor at termination
shows similar behavior but is less affected by the change in the number of processors/systems.
We also observe similar behavior of the cache size per system/processor for the experiments with
different configurations. However, the cache sizes are not as large as in the slippage configuration,
where all the inferior systems are identical.
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