
ACCOUNTING FOR RANDOMNESS IN HEURISTIC SIMULATION OPTIMIZATIONJustin Boesel and Barry L. NelsonDepartment of Industrial Engineering & Management SciencesNorthwestern UniversityEvanston, Illinois 60208 USAE-mail jboesel@nwu.edu and nelsonb@nwu.eduKEYWORDSOperations research, Optimization, Stochastic, Dis-crete simulation, Statistical packagesABSTRACTResearch on the optimization of stochastic systemsvia simulation often centers on the development ofalgorithms for which global convergence can be guar-anteed. Applications of optimization via simulation,on the other hand, typically involve search heuristicsthat have been successful in deterministic settings.Search heuristics give up on global convergence in or-der to be more generally applicable and to yield rapidprogress toward good solutions. Unfortunately, mostcommercial implementations do not formally accountfor the randomness in simulation responses, meaningthat their progress may be no better than a randomsearch if the level of randomess is high. In addition,they do not provide statistical guarantees about thegoodness of the �nal results. In this paper, we reporton the work we have done to uncouple the error con-trol for the search from the error control for the �nalsolution. We also report on our implementation ofthis work in software developed for JGC Corporationof Japan.THE PROBLEMLike many organizations, JGC, a Japanese construc-tion management company, uses simulation to evalu-ate and compare proposed designs for facilities suchas pharmaceutical plants, oil re�neries and automo-bile manufacturing plants. A JGC research super-visor noticed that his engineers spent a great dealof time adjusting model decision variables (such asbu�er size) and comparing the output results (suchas work-in-process inventory). Furthermore, he rec-ognized that the conclusions drawn from these com-

parisons were not guaranteed to be statistically valid.To remedy these shortcomings, JGC approachedNorthwestern University, asking for a simulation-optimization package that could provide good resultson a broad range of problems in a reasonable amountof time, and provide statistical guarantees on thoseresults.From an optimization viewpoint, several di�cul-ties emerge. First, the optimization approach needsto handle simulation models that may combine inte-ger decision variables (such as the number of drillsin a machine shop), continuous decision variables(such as conveyor speed in an assembly plant orow rate in a pharmaceutical plant) and categor-ical decision variables (such as queue discipline orscheduling rules). This means that some traditionalsimulation-optimization techniques, such as gradient-search, cannot always be applied.Second, the response properties of the problems areunknown. That is, no exploitable properties, such asconvexity or continuity, can be assumed. Not surpris-ingly, this makes the task of �nding the best designmuch more di�cult because it prevents us from infer-ring anything about solutions that are not explicitlyevaluated.Third, the responses are stochastic, so one needsmultiple (and perhaps very many) replications to getreliable information on a single solution.Existing ApproachesBroadly speaking, two general approaches have beendeveloped for stochastic simulation-optimizationproblems. Academic research has focussed on ap-proaches for which asymptotic convergence to theglobal optimum solution can be proven as the num-ber of replications or the run length approach in�nity.These procedures may not seek rapid improvementin the early stages of the algorithm, and provide nostatistical guarantees for a �nite number of replica-tions. For these reasons they are not widely applied



in industrial settings. See (Fu 1994, Jacobson andSchruben 1989) for review articles.Most applied simulation-optimization approachesuse heuristic search procedures|including genetic al-gorithms, tabu search and pattern search|that weredesigned for use in a deterministic setting. Typically,the number of replications taken at each solution ispreset by the user. While these approaches often �ndgood solutions quickly, they may also devolve into arandom search if the level of sampling variability ishigh or the user has set the number of replicationstoo low. On the other hand, these procedures maybe overly conservative and slow if the user sets thenumber of replications too high or the level of sam-pling variability is low.Our ApproachOur approach has two separate components:1. Search: Like some commercially available pack-ages, our algorithm uses a heuristic search pro-cedure (genetic algorithm) to seek out better so-lutions. Unlike any commercially available pack-age, our algorithm uses variance information toadjust the number of replications taken at eachsolution during the search. This provides ade-quate (but not excessive) error control during thesearch, keeping it from blindly devolving into arandom search.2. Selection: In order to provide the user with astatistical guarantee as to which of the visitedsolutions is the best, our algorithm uses a screen-and-select procedure developed by (Nelson et al.1998). This procedure screens out clearly inferiorsolutions (those which are very unlikely to be thebest), and then performs additional replicationson the remaining solutions to determine whichis the best. The procedure guarantees that thereturned solution is within � of the best solutionvisited by the search with probability 1��. Theuser-de�ned parameter � is the smallest di�er-ence in expected performance that is practicallysigni�cant to the user, while 1 � � is the over-all con�dence level that the user desires. Small �and large 1�� imply that more simulation e�ortwill be expended to achieve the user's goals.CompromisesBecause of the di�culties mentioned above (lack ofknown response properties, stochastic response andlimited time), our algorithm does not guarantee thatit returns the best solution over the entire solution

space, just over the solutions visited by the searchprocedure. In other words, we do not make state-ments about unvisited solutions. Of course, if thesearch procedure exhausts the solution space and vis-its all possible solutions, then the statistical guaran-tee applies globally. Because exhaustion is possiblein smaller problems, we designed the software to doso if the user has provided enough time.SOFTWAREThe software Northwestern delivered to JGC earlierthis year has �ve interrelated components:1. Interface: The interface allows the user tode�ne the simulation-optimization problem byde�ning the amount of time available, de�ningand setting the ranges of the decision variables,selecting the simulation model or models to beevaluated, setting the desired level of statisticalcon�dence, and setting the practically signi�cantdi�erence �.2. Solution Generators: All generated solutionsare evaluated by the simulator and passed on tothe screen-and-select procedure. The softwarecurrently has four methods for generating newsolutions.(a) User-De�ned Solutions: Because the en-gineer developing the simulationmodel usu-ally has good ideas about what solutionsare promising, the software allows the userto input these solutions at the beginning ofthe algorithm.(b) Extreme Point Finder: Because good so-lutions often lie at the extreme points of thesolution space, our software generates all ofthe extreme (vertex) point solutions at thebeginning of the algorithm. These extremepoints may later be fed into the genetic al-gorithm, ensuring that it provides an ade-quately broad search of the solution space.(c) Exhaustor: On smaller problems it oftenmakes sense to simply evaluate all possiblesolutions. Our software explicitly exhauststhe solution space if there is adequate time.The software decides whether there is ade-quate time by observing the average time toevaluate a solution. Exhaustion is desirablebecause the statistical guarantee returnedunder exhaustion covers the entire solutionspace.



(d) Genetic Algorithm (GA): A genetic al-gorithm is a \population-based" search al-gorithm as opposed to a \point-based" algo-rithm in that in each iteration it simultane-ously keeps a number of solutions active. AGA uses the Darwinian concepts of \natu-ral selection" and \survival of the �ttest" toproduce improved solutions. Essentially, aGA assigns better solutions a higher proba-bility of survival, where survival means theability to pass on characteristics to futurepopulations of solutions. These character-istics are passed on by combining or matingparent solutions to form a new populationof child solutions. The genetic algorithmis initialized by �lling the �rst populationwith the extreme points and the best of theuser-de�ned solutions.3. Screen-and-Select Procedure: Newly gener-ated solutions are sent to the screen-and-selectprocedure, which screens out clearly inferior so-lutions and requests additional replications forunscreened solutions. This procedure providesthe statistical guarantee that makes our softwareunique among simulation-optimization packages.4. Simulator: Central to the software is a simu-lation package, which evaluates each alternativeproduced by the solution generators. Our soft-ware links to the AweSim! simulation package(Symix Corp./Pritsker Division), which is usedby JGC. The user develops a simulation model,independent of our software. The user then de-�nes the objective function, which can be anyfunction of any combination of simulation out-puts, in a C++ \user insert." The user insertalso provides the \hooks" that allow our softwareto control AweSim!.5. Database: Because the solution generators mayproduce a large number of alternatives, each ofwhich has unique parameter settings and outputdata, we maintain a database to record this in-formation. Each unique solution generated hasa record in the database. Furthermore, becausea GA tends to generate the same solution morethan once, and because we want to avoid wast-ing simulation e�ort on repeat evaluations, thegenetic algorithm �rst checks the database to seeif a solution has been evaluated previously. Ifnot, the GA requests the information from thesimulator. The simulator writes all output in-formation to the database, while the screen-and-select procedure writes status information (such

as \screened" or \unscreened") to the database.The database, which is in Microsoft Access for-mat, also enables the user to analyze solutionoutput after the simulation-optimization run hasconcluded.Our software, dubbed Scenario Seeker, runs un-der Windows 95 and Windows NT. We developed theinterface in Visual Basic, while the solution genera-tors and the screen-and-select procedure were writtenin C++. We licensed GALib|a C++ library of ge-netic algorithms written by David Wall at M.I.T.|todevelop our GA.ERROR CONTROL DURING THESEARCHAn iteration of a GA is de�ned by creating a newpopulation of m solutions from a current populationofm solutions. Composition of the next population ofsolutions depends on which solutions in the currentpopulation are selected to form the parents for thenext generation.In a typical deterministic GA that employs rank-based selection, the solutions in a population areranked from best to worst according to their perfor-mance (objective function value), and a probabilityof selection is assigned based on these ranks. For ourdiscussion, it is more convenient to use antiranks, sothat the rank-m solution is the best in the currentpopulation, and the rank-1 solution is the worst. Forsome constant q � 2, a q-tournament selection pro-cedure (B�ack, 1996) is equivalent to assigning prob-ability pi = (iq � (i � 1)q)=mq to the ith ranked so-lution, so that the expected number of copies of theith ranked solution that will be in the parent pool forthe next population is mpi.In a stochastic simulation it is not possible toconclusively rank any population of solutions with-out expending excessive simulation e�ort (numberof replications). Therefore, our approach is to ex-pend enough simulation e�ort to achieve stochas-tic equivalence for some important characteristic ofour stochastic GA and a corresponding determinis-tic GA. Here we will describe preserving mpm =m(1�((m�1)=m)q ), the expected number of copies ofthe best solution in the current population that enterthe parent pool for the next population. Stated in GAterminology, we try to match the \selective pressure"in a stochastic GA to a desirable selective pressure ina deterministic GA. Notice that in a q-tournament alarger value of q implies a larger selective pressure.Since we cannot rank the solutions with certainty,we expend just enough simulation e�ort to divide



them into a minimum number of distinct groups ofsolutions. We then assign the same selection proba-bilities to all solutions within a group, speci�cally theaverage selection probability across all of the ranks inthe group.For instance, if the best group contains g solutions,and we are highly con�dent that the best solution isin that group, then the expected number of copies ofthe best solution that will be in the parent pool forthe next population ismg �1��m� gm �q�while the desired expected number is m(1 � ((m �1)=m)q). We can therefore obtain stochasticequivalence|in terms of expected number of copiesof the best solution|by setting q0 so thatmg  1� �m � gm �q0! = m�1� �m � 1m �q� :That is, we increase the pressure parameter to q0 so asto achieve the same expected number of copies of thebest solution as we would achieve in a deterministicGA with parameter q. Of course, in order for thismatching to be feasible at least a minimum numberof groups must be formed; this minimumis a functionof the population size m and desired value of q. TheScenario Seeker software dynamically controls thenumber of replications obtained at each solution toinsure that at least the minimum number of groupscan be formed.ERROR CONTROL AFTER THE SEARCHAt the conclusion of the search phase, the GA hasexplored some portion of the decision space, uncov-ering good solutions and (quite likely) many poor so-lutions as well. We therefore turn our attention toseparating those solutions into the best, near bestand inferior solutions. Since we apply only enougherror control in the search phase to insure that thesearch makes progress, it is quite likely that thereis too much sampling error in the performance esti-mates to make these �ner distinctions. In this sectionwe describe a screen-and-select procedure that takesthe output of our search, eliminates clearly inferiorsolutions, and obtains enough additional replicationsto separate the best and near-best from the rest. Thisprocedure is based on (Nelson et al. 1998).Suppose that at the end of the search phase k dis-tinct solutions have been simulated. Let ni be thenumber of replications obtained from solution i, fori = 1; 2; : : : ; k, let Xij be the output from the jth

replication of solution i, and let � represent the mini-mum practically signifcant di�erence in performancethat the user considers worth detecting. Under theassumption that the Xij are approximately normallydistributed, and that larger expected performance isbetter, the following procedure retains the solutionwith the largest true mean with probability � 1��0,while screening out inferior solutions:1. Set ti = t(1��0) 1k�1 ;ni�1, where t�;� is the �quantile of the t distribution with � degrees offreedom.2. Compute the sample means and variances �Xiand S2i for i = 1; 2; : : : ; k. LetWij =  t2iS2ini + t2jS2jnj !1=2for all i 6= j.3. Set I = �i : �Xi � �Xj � (Wij � �)+; 8j 6= i	 :4. Return I.The number of solutions in I will typically be muchsmaller than the k solutions explored by the search.The subset I contains, with high probability, the bestand near best solutions, as well as some solutionsthat could not be eliminated due to sampling er-ror. The selection procedure described below obtainsenough additional replications to make these distinc-tions clear. In the procedure, h is a critical value thatdepends on k, ni and a desired con�dence level 1��1:5. If I contains a single solution, then select thatsolution. Otherwise, for all i 2 I compute thetotal sample sizeNi = max(n0;&�hSi� �2') :6. Obtain Ni � n0 additional replications from allsolutions i 2 I. Compute the overall samplemeans �Xi for i 2 I.7. Select as best the solution with the largest �Xi.The combination of the screening and selection pro-cedure guarantees, with probability � 1 � �0 � �1,that the selected solution is either the best, or within� of the best, of all the solutions visited by the search.



EXAMPLEIn the software delivered to JGC, we included anexample of a manufacturing facility design problemadapted from the AweSim! User's Guide. In brief,the problem is to �nd out how many of each of fourdi�erent types of machines are required to achievea throughput of 190 parts in 80 hours at minimumcost. The following costs are incurred: $1000 foreach Operation 10 machine, $3000 for each Operation20 machine, $2000 for each Operation 30 machine,$6000 for each Flexible machine (which can performany operation), and $100�(190 - actual throughput)2as a penalty for under- or overachieving the targetthroughput. Therefore, our objective is to minimizethe expected value of1000�(# of Operation 10 machines) +3000�(# of Operation 20 machines) +2000�(# of Operation 30 machines) +6000�(# of Flexible machines) + 100� (190� T )2where T is the observed throughput, the only randomvariable in the objective. The required level of statis-tical con�dence was set at 90%, and the indi�erencelevel was set at � = $5000. The feasible numbers ofmachines of each type were set from 1 to 10, so therewere 104 = 10,000 possible combinations.We allowed the program to run for 5 hours. Of the1,639 machine combinations evaluated by the soft-ware, the best combination encountered was (4,1,2,2);that is, 4 Operation 10 machines, 1 Operation 20 ma-chine, 2 Operation 30 machines, and 2 Flexible ma-chines. This combination yielded an estimated ex-pected cost of $28,500. We are guaranteed that thisis the best solution visited by the search, or within$5000 of the best, with 90% con�dence. The next bestsolution encountered, (3,1,7,2), had an estimated ex-pected cost of $38,460.The best combination was the 747th solution en-countered, so it was generated about midway throughthe 5-hour run. The best combination found inthe �rst 100 solutions was (1,4,1,5), with a cost of$46,380. To give a sense of the range of costs acrosssolutions, the worst combination encountered was anextreme point (1,10,1,1), which had an estimated costof $1,225,150.CONCLUSIONSOur approach to simulation-optimization has two dis-tinct phases: The �rst phase is a search for good solu-tions, and the second phase is a screen-and-select pro-cess to �nd the best among these solutions. In eachof these phases we have incorporated adaptive error

control so that our approach expends adequate|butnot excessive|simulation e�ort to deal with samplingvariability.In the search phase, we view error control as\stochastic equivalence" with respect to some impor-tant property of a GA. In this paper we presenteda method that yields stochastic equivalence to onesuch property, the expected number of copies of thebest solution that are passed through one GA itera-tion. We are currently developing methods that ex-tend stochastic equivalence to the expected numberof copies of each solution, not just the best, that arepassed through each GA iteration.In the screen-and-select phase, there are two goals:to eliminate or screen out as many inferior solutionsas possible without expending additional simulatione�ort, and to use minimal additional e�ort to sepa-rate the surviving solutions into the best, near bestand all others, while maintaining an overall statisticalguarantee of being correct. Although the procedureused in Scenario Seeker provides the desired guar-antee, it is statistically conservative, meaning thatthere are opportunities to improve its e�ciency (re-duce the simulation e�ort required).ACKNOWLEDGMENTSThis work was sponsored by JGC Corporation ofJapan, National Science Foundation Grant NumberDMI-9622065, Systems Modeling Corporation andPritsker Corporation.REFERENCESB�ack, T. 1996. Evolutionary Algorithms in Theoryand Practice: Evolution Strategies, Evolutionary Pro-gramming, Genetic Algorithms. Oxford UniversityPress, New York.Fu, M. 1994. \Stochastic Optimization via Simu-lation: A Review." Annals of Operations Research53:199{248.Jacobson, S. and L. Schruben. 1989. \A Review ofTechniques for SimulationOptimization." OperationsResearch Letters 8:1{9.Nelson, B. L., J. Swann, D. Goldsman and W. Song.1998. \Simple Procedures for Selecting the Best Sim-ulated System when the Number of Alternatives isLarge," Research Report, Department of IndustrialEngineering and Management Sciences, Northwest-ern University, Evanston, IL.


