ACCOUNTING FOR RANDOMNESS IN HEURISTIC SIMULATION OPTIMIZATION

Justin Boesel and Barry L. Nelson
Department of Industrial Engineering & Management Sciences
Northwestern University
Evanston, Illinois 60208 USA

E-mail jboesel@nwu.edu and nelsonb@nwu.edu

KEYWORDS

Operations research, Optimization, Stochastic, Dis-
crete simulation, Statistical packages

ABSTRACT

Research on the optimization of stochastic systems
via simulation often centers on the development of
algorithms for which global convergence can be guar-
anteed. Applications of optimization via simulation,
on the other hand, typically involve search heuristics
that have been successful in deterministic settings.
Search heuristics give up on global convergence in or-
der to be more generally applicable and to yield rapid
progress toward good solutions. Unfortunately, most
commercial implementations do not formally account
for the randomness in simulation responses, meaning
that their progress may be no better than a random
search if the level of randomess is high. In addition,
they do not provide statistical guarantees about the
goodness of the final results. In this paper, we report
on the work we have done to uncouple the error con-
trol for the search from the error control for the final
solution. We also report on our implementation of
this work in software developed for JGC Corporation
of Japan.

THE PROBLEM

Like many organizations, JGC, a Japanese construc-
tion management company, uses simulation to evalu-
ate and compare proposed designs for facilities such
as pharmaceutical plants, oil refineries and automo-
bile manufacturing plants. A JGC research super-
visor noticed that his engineers spent a great deal
of time adjusting model decision variables (such as
buffer size) and comparing the output results (such
as work-in-process inventory). Furthermore, he rec-
ognized that the conclusions drawn from these com-

parisons were not guaranteed to be statistically valid.
To remedy these shortcomings, JGC approached
Northwestern University, asking for a simulation-
optimization package that could provide good results
on a broad range of problems in a reasonable amount
of time, and provide statistical guarantees on those
results.

From an optimization viewpoint, several difficul-
ties emerge. First, the optimization approach needs
to handle simulation models that may combine inte-
ger decision variables (such as the number of drills
in a machine shop), continuous decision variables
(such as conveyor speed in an assembly plant or
flow rate in a pharmaceutical plant) and categor-
ical decision variables (such as queue discipline or
scheduling rules). This means that some traditional
simulation-optimization techniques, such as gradient-
search, cannot always be applied.

Second, the response properties of the problems are
unknown. That is, no exploitable properties, such as
convexity or continuity, can be assumed. Not surpris-
ingly, this makes the task of finding the best design
much more difficult because 1t prevents us from infer-
ring anything about solutions that are not explicitly
evaluated.

Third, the responses are stochastic, so one needs
multiple (and perhaps very many) replications to get
reliable information on a single solution.

Existing Approaches

Broadly speaking, two general approaches have been
developed for stochastic simulation-optimization
problems. Academic research has focussed on ap-
proaches for which asymptotic convergence to the
global optimum solution can be proven as the num-
ber of replications or the run length approach infinity.
These procedures may not seek rapid improvement
in the early stages of the algorithm, and provide no
statistical guarantees for a finite number of replica-
tions. For these reasons they are not widely applied

in industrial settings. See (Fu 1994, Jacobson and
Schruben 1989) for review articles.

Most applied simulation-optimization approaches
use heuristic search procedures—including genetic al-
gorithms, tabu search and pattern search—that were
designed for use in a deterministic setting. Typically,
the number of replications taken at each solution is
preset by the user. While these approaches often find
good solutions quickly, they may also devolve into a
random search if the level of sampling variability is
high or the user has set the number of replications
too low. On the other hand, these procedures may
be overly conservative and slow if the user sets the
number of replications too high or the level of sam-
pling variability is low.

Our Approach

Our approach has two separate components:

1. Search: Like some commercially available pack-
ages, our algorithm uses a heuristic search pro-
cedure (genetic algorithm) to seek out better so-
lutions. Unlike any commercially available pack-
age, our algorithm uses variance information to
adjust the number of replications taken at each
solution during the search. This provides ade-
quate (but not excessive) error control during the
search, keeping it from blindly devolving into a
random search.

2. Selection: In order to provide the user with a
statistical guarantee as to which of the visited
solutions is the best, our algorithm uses a screen-
and-select procedure developed by (Nelson et al.
1998). This procedure screens out clearly inferior
solutions (those which are very unlikely to be the
best), and then performs additional replications
on the remaining solutions to determine which
is the best. The procedure guarantees that the
returned solution is within § of the best solution
visited by the search with probability 1 —«. The
user-defined parameter é is the smallest differ-
ence 1n expected performance that is practically
significant to the user, while 1 — « is the over-
all confidence level that the user desires. Small §
and large 1 —« imply that more simulation effort
will be expended to achieve the user’s goals.

Compromises

Because of the difficulties mentioned above (lack of
known response properties, stochastic response and
limited time), our algorithm does not guarantee that
it returns the best solution over the entire solution

space, just over the solutions visited by the search
procedure. In other words, we do not make state-
ments about unvisited solutions. Of course, if the
search procedure exhausts the solution space and vis-
its all possible solutions, then the statistical guaran-
tee applies globally. Because exhaustion is possible
in smaller problems, we designed the software to do
so if the user has provided enough time.

SOFTWARE

The software Northwestern delivered to JGC earlier
this year has five interrelated components:

1. Interface: The interface allows the user to
define the simulation-optimization problem by
defining the amount of time available, defining
and setting the ranges of the decision variables,
selecting the simulation model or models to be
evaluated, setting the desired level of statistical
confidence, and setting the practically significant
difference 6.

2. Solution Generators: All generated solutions
are evaluated by the simulator and passed on to
the screen-and-select procedure. The software
currently has four methods for generating new
solutions.

(a) User-Defined Solutions: Because the en-
gineer developing the simulation model usu-
ally has good ideas about what solutions
are promising, the software allows the user
to input these solutions at the beginning of
the algorithm.

(b) Extreme Point Finder: Because good so-
lutions often lie at the extreme points of the
solution space, our software generates all of
the extreme (vertex) point solutions at the
beginning of the algorithm. These extreme
points may later be fed into the genetic al-
gorithm, ensuring that it provides an ade-
quately broad search of the solution space.

(¢) Exhaustor: On smaller problems it often
makes sense to simply evaluate all possible
solutions. Our software explicitly exhausts
the solution space if there is adequate time.
The software decides whether there 1s ade-
quate time by observing the average time to
evaluate a solution. Exhaustion is desirable
because the statistical guarantee returned
under exhaustion covers the entire solution
space.

(d) Genetic Algorithm (GA): A genetic al-
gorithm is a “population-based” search al-
gorithm as opposed to a “point-based” algo-
rithm in that in each iteration 1t simultane-
ously keeps a number of solutions active. A
GA uses the Darwinian concepts of “natu-
ral selection” and “survival of the fittest” to
produce improved solutions. Essentially, a
GA assigns better solutions a higher proba-
bility of survival, where survival means the
ability to pass on characteristics to future
populations of solutions. These character-
istics are passed on by combining or mating
parent solutions to form a new population
of child solutions. The genetic algorithm
is initialized by filling the first population
with the extreme points and the best of the
user-defined solutions.

3. Screen-and-Select Procedure: Newly gener-
ated solutions are sent to the screen-and-select
procedure, which screens out clearly inferior so-
lutions and requests additional replications for
unscreened solutions. This procedure provides
the statistical guarantee that makes our software
unique among simulation-optimization packages.

4. Simulator: Central to the software is a simu-
lation package, which evaluates each alternative
produced by the solution generators. Our soft-
ware links to the AweSim! simulation package
(Symix Corp./Pritsker Division), which is used
by JGC. The user develops a simulation model,
independent of our software. The user then de-
fines the objective function, which can be any
function of any combination of simulation out-
puts, in a C++ “user insert.” The user insert
also provides the “hooks” that allow our software
to control AweSim!.

5. Database: Because the solution generators may
produce a large number of alternatives, each of
which has unique parameter settings and output
data, we maintain a database to record this in-
formation. Each unique solution generated has
a record in the database. Furthermore, because
a GA tends to generate the same solution more
than once, and because we want to avoid wast-
ing simulation effort on repeat evaluations, the
genetic algorithm first checks the database to see
if a solution has been evaluated previously. If
not, the GA requests the information from the
simulator. The simulator writes all output in-
formation to the database, while the screen-and-
select procedure writes status information (such

as “screened” or “unscreened”) to the database.

The database, which is in Microsoft Access for-
mat, also enables the user to analyze solution
output after the simulation-optimization run has
concluded.

Our software, dubbed Scenario Seeker, runs un-
der Windows 95 and Windows NT. We developed the
interface in Visual Basic, while the solution genera-
tors and the screen-and-select procedure were written
in C++. We licensed GALib—a C++ library of ge-
netic algorithms written by David Wall at M.I.T.—to
develop our GA.

ERROR
SEARCH

CONTROL DURING THE

An iteration of a GA is defined by creating a new
population of m solutions from a current population
of m solutions. Composition of the next population of
solutions depends on which solutions in the current
population are selected to form the parents for the
next generation.

In a typical deterministic GA that employs rank-
based selection, the solutions in a population are
ranked from best to worst according to their perfor-
mance (objective function value), and a probability
of selection is assigned based on these ranks. For our
discussion, it is more convenient to use antiranks, so
that the rank-m solution is the best in the current
population, and the rank-1 solution is the worst. For
some constant ¢ > 2, a g-tournament selection pro-
cedure (Béck, 1996) is equivalent to assigning prob-
ability p; = (i — (i — 1)?)/m? to the ith ranked so-
lution, so that the expected number of copies of the
tth ranked solution that will be in the parent pool for
the next population is mp;.

In a stochastic simulation it is not possible to
conclusively rank any population of solutions with-
out expending excessive simulation effort (number
of replications). Therefore, our approach is to ex-
pend enough simulation effort to achieve stochas-
tic equivalence for some important characteristic of
our stochastic GA and a corresponding determinis-
tic GA. Here we will describe preserving mp,, =
m(1—((m—1)/m)?), the expected number of copies of
the best solution in the current population that enter
the parent pool for the next population. Stated in GA
terminology, we try to match the “selective pressure”
in a stochastic GA to a desirable selective pressure in
a deterministic GA. Notice that in a g-tournament a
larger value of ¢ implies a larger selective pressure.

Since we cannot rank the solutions with certainty,
we expend just enough simulation effort to divide

them into a minimum number of distinct groups of
solutions. We then assign the same selection proba-
bilities to all solutions within a group, specifically the
average selection probability across all of the ranks in
the group.

For instance, if the best group contains ¢ solutions,
and we are highly confident that the best solution is
in that group, then the expected number of copies of
the best solution that will be in the parent pool for
the next population is

S (-5

g m
while the desired expected number is m(1 — ((m —
1)/m)9). We can therefore obtain stochastic

equivalence—in terms of expected number of copies
of the best solution—Dby setting ¢’ so that

()) (- ()

g m m

That is, we increase the pressure parameter to ¢’ so as
to achieve the same expected number of copies of the
best solution as we would achieve in a deterministic
GA with parameter ¢. Of course, in order for this
matching to be feasible at least a minimum number
of groups must be formed; this minimumis a function
of the population size m and desired value of ¢q. The
Scenario Seeker software dynamically controls the
number of replications obtained at each solution to
insure that at least the minimum number of groups
can be formed.

ERROR CONTROL AFTER THE SEARCH

At the conclusion of the search phase, the GA has
explored some portion of the decision space, uncov-
ering good solutions and (quite likely) many poor so-
lutions as well. We therefore turn our attention to
separating those solutions into the best, near best
and inferior solutions. Since we apply only enough
error control in the search phase to insure that the
search makes progress, it i1s quite likely that there
i1s too much sampling error in the performance esti-
mates to make these finer distinctions. In this section
we describe a screen-and-select procedure that takes
the output of our search, eliminates clearly inferior
solutions, and obtains enough additional replications
to separate the best and near-best from the rest. This
procedure is based on (Nelson et al. 1998).

Suppose that at the end of the search phase & dis-
tinct solutions have been simulated. Let n; be the
number of replications obtained from solution ¢, for
t=1,2,...k, let X;; be the output from the jth

replication of solution 7, and let é represent the mini-
mum practically signifcant difference in performance
that the user considers worth detecting. Under the
assumption that the X;; are approximately normally
distributed, and that larger expected performance is
better, the following procedure retains the solution
with the largest true mean with probability > 1 —«y,
while screening out inferior solutions:

1. Set ¢; = tl—ozg)lel,n,—l’ where tﬁ,y is the ﬁ

quantile of the ¢ distribution with v degrees of
freedom.

2. Compute the sample means and variances X;
and S? for i =1,2,... k. Let

1/2
1252 (252
Vsz — (% + J

nj
for all ¢ # j.
3. Set
I={i:Xi>X; - (Wi -6t Vi#i}.

4. Return I.

The number of solutions in I will typically be much
smaller than the k solutions explored by the search.
The subset I contains, with high probability, the best
and near best solutions, as well as some solutions
that could not be eliminated due to sampling er-
ror. The selection procedure described below obtains
enough additional replications to make these distinc-
tions clear. In the procedure, h is a critical value that
depends on k, n; and a desired confidence level 1—«:

5. If I contains a single solution, then select that
solution. Otherwise, for all « € I compute the
total sample size

ool 1]}

6. Obtain N; — ny additional replications from all
solutions ¢ € I. Compute the overall sample
means X; for ¢ € I.

7. Select as best the solution with the largest X;.

The combination of the screening and selection pro-
cedure guarantees, with probability > 1 — ag — aq,
that the selected solution is either the best, or within
6 of the best, of all the solutions visited by the search.

EXAMPLE

In the software delivered to JGC, we included an
example of a manufacturing facility design problem
adapted from the AweSim! User’s Guide. In brief,
the problem is to find out how many of each of four
different types of machines are required to achieve
a throughput of 190 parts in 80 hours at minimum
cost. The following costs are incurred: $1000 for
each Operation 10 machine, $3000 for each Operation
20 machine, $2000 for each Operation 30 machine,
$6000 for each Flexible machine (which can perform
any operation), and $100x (190 - actual throughput)?
as a penalty for under- or overachieving the target
throughput. Therefore, our objective is to minimize
the expected value of

1000x (# of Operation 10 machines) +
3000 x (# of Operation 20 machines) +
2000 x (# of Operation 30 machines) +
6000% (# of Flexible machines) + 100 x (190 — T')?

where T is the observed throughput, the only random
variable in the objective. The required level of statis-
tical confidence was set at 90%, and the indifference
level was set at & = $5000. The feasible numbers of
machines of each type were set from 1 to 10, so there
were 10* = 10,000 possible combinations.

We allowed the program to run for 5 hours. Of the
1,639 machine combinations evaluated by the soft-
ware, the best combination encountered was (4,1,2,2);
that is, 4 Operation 10 machines, 1 Operation 20 ma-
chine, 2 Operation 30 machines, and 2 Flexible ma-
chines. This combination yielded an estimated ex-
pected cost of $28,500. We are guaranteed that this
1s the best solution visited by the search, or within
$5000 of the best, with 90% confidence. The next best
solution encountered, (3,1,7,2), had an estimated ex-
pected cost of $38,460.

The best combination was the 747th solution en-
countered, so it was generated about midway through
the 5-hour run. The best combination found in
the first 100 solutions was (1,4,1,5), with a cost of
$46,380. To give a sense of the range of costs across
solutions, the worst combination encountered was an
extreme point (1,10,1,1), which had an estimated cost

of $1,225,150.

CONCLUSIONS

Our approach to simulation-optimization has two dis-
tinct phases: The first phase 1s a search for good solu-
tions, and the second phase is a screen-and-select pro-
cess to find the best among these solutions. In each
of these phases we have incorporated adaptive error

control so that our approach expends adequate—but
not excessive—simulation effort to deal with sampling
variability.

In the search phase, we view error control as
“stochastic equivalence” with respect to some impor-
tant property of a GA. In this paper we presented
a method that yields stochastic equivalence to one
such property, the expected number of copies of the
best solution that are passed through one GA itera-
tion. We are currently developing methods that ex-
tend stochastic equivalence to the expected number
of copies of each solution, not just the best, that are
passed through each GA iteration.

In the screen-and-select phase, there are two goals:
to eliminate or screen out as many inferior solutions
as possible without expending additional simulation
effort, and to use minimal additional effort to sepa-
rate the surviving solutions into the best, near best
and all others, while maintaining an overall statistical
guarantee of being correct. Although the procedure
used in Scenario Seeker provides the desired guar-
antee, 1t 1s statistically conservative, meaning that
there are opportunities to improve its efficiency (re-
duce the simulation effort required).

ACKNOWLEDGMENTS

This work was sponsored by JGC Corporation of
Japan, National Science Foundation Grant Number
DMI-9622065, Systems Modeling Corporation and
Pritsker Corporation.

REFERENCES

Back, T. 1996. FEwvolutionary Algorithms in Theory
and Practice: Fvolution Strategies, Fvolutionary Pro-
grammang, Genetic Algorithms. Oxford University
Press, New York.

Fu, M. 1994. “Stochastic Optimization via Simu-
lation: A Review.” Annals of Operations Research

93:199-248.

Jacobson, S. and L. Schruben. 1989. “A Review of
Techniques for Simulation Optimization.” Operations
Research Letters 8:1-9.

Nelson, B. L., J. Swann, D. Goldsman and W. Song.
1998. “Simple Procedures for Selecting the Best Sim-
ulated System when the Number of Alternatives is
Large,” Research Report, Department of Industrial
Engineering and Management Sciences, Northwest-
ern University, Evanston, IL.

