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What you need for this class

* Nothing; you can just watch and listen.

» But if you want to do the exercises...
= E-mail me nelsonb@northwestern.edu for the R code.
= [nstall RStudio from https://rstudio.com/
= Create an RStudio project for this class.
= Open the RScript file | sent you called FirstChallenge.R.

= |f you decide to continue after the first video you should...
Open Procedures.R, Simulations.R and ParallelProcedures.R.
Install the parallel package from CRAN to your RStudio.
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Hands-on example

We have the ability to simulate k = 4 different system designs that use redundancy
to be resistant to system failure.

Let Y (x) be the time to failure (TTF) of design type = 1,2,3,4. Your job is
to find z* = argmax, E[Y (x)]. You have 10 minutes.

MySim <- function(x, n=1, RandomSeed=-1){
# function to simulate CTMC TTF example
# x in {1,2,3,4} is the system index
# n is number of replications
# RandomSeed sets the initial seed
# output is time to system failure
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Postmortem

Compile class results & supporting arguments.

If we were going to create an algorithm what would we want it to do?

e Control sample size for us.

Provide statistical guarantees (such as?)

Work for large k

Exploit parallel computation

Be efficient (how measured?)
e Other?
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Optimizing simulated systems

 Stochastic, dynamic, often
nonstationary.

« Can only evaluate instances.
* May be computationally
expensive.
* The 3 errors:
= Don't visit the optimal solution.

= Don'’t recognize the best
solution visited.

= Optimistic estimate of the
performance of the selected
solution.

Maximize E[Performance]
Subject to: Budget constraint on staff & machines
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A tiny bit of history

This class will address methods known collectively as Ranking & Selection (R&S).

e R&S originated with Bechhofer (Cornell) and Gupta (Purdue) in the 1950s
for biostatistics types of applications:

— Evaluate the efficacy of 3 drug treatments and a placebo.
e Characteristics included

— small number of treatments k
— normally distributed response
— relatively equal (maybe even known) variances
— need to be easy to implement

— sampling done in batches, not sequentially
Northwestern |ENGINEERING 7 STOR-i 2020
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Then simulation adopted R&S...

At WSC 1983 Goldsman presented a tutorial on R&S and organized a session with
Bechhofer & Gupta arguing that R&S was useful for optimizing simulated systems.

Simulation folks had grander delusions: -
“ o &SN oo ol OiERe
e Much larger numbers of “treatments” k. (m =3
i /d
e Non-normal (nominal) output data. & o EE
e Significantly unequal variances.

Intentionally induced dependence due to Common Random Numbers (CRN).

e As complex as we want to be if it reduces number of “simulations.”
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R&S: A simulation success story

R&S has been a theoretical and practical success for simulation:

e Strong theory; asymptotic regimes for non-normal data; effective use of
“statistical learning.”

e Widely applied in real problems; included in many commercial languages.
— Ex: KN and GSP in P>Simio

e Can control all 3 errors.

Clearly there is a R&S limit since all feasible solutions must be simulated: much
research has been on pushing that limit (e.g., statistically efficient; using parallel
computing).
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1. Hand's on example & motivation 8. Asymptotic regimes
2. Review of simulation optimization 9. Parallel R&S
3. The best-mean R&S problem 10. Other formulations
4. Some R&S building blocks 11. Bootstrap R&S
5. Efficiency via allocation, elimination 12. Relationship to multi-armed bandits
and CRN (MAB)
6. PCS vs. PGS 13. Class project
7. Unknown variances 14. References
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Simulation optimization (SO)

maxy E[Y (x)] = u(x) distribution of output objective depends on x

subject to:
x e X deterministic constraints
E[C(x)] € C stochastic constraints

“Expectation” includes optimizing probabilities and chance constraints.

As in math programming, the nature of X (finite, countable, uncountable) has a
huge impact on the approach.

Clear overlap with stochastic programming, however SO assumes E[Y (x)] and
E[C(x)] cannot be evaluated, but Y (x) and C(x) can be simulated.
11
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Approaches

1. Finite X, simulate them all: R&S; this masterclass.

2. Finite or countable X, can’t simulate them all: Adaptive random search;
statistical learning.

3. Uncountable (continuous) X: Stochastic gradient descent; statistical
learning; sample-average approximation.

The guarantees (if any) for 2 & 3 are typically asymptotic (infinite effort).
Dimension of X tends to be the limiting factor.

To date commercial software is dominated by R&S and metaheuristics.
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Basics of the “best mean” R&S problem

If the true system performance expected values are

p(1) < p(2) <o < plk = 1) < p(k)

then we refer to system k, or any system tied with system k, as the best.

For system = we can only estimate pu(x) with a consistent estimator such as the
sample mean of n(x) replications:

The R&S procedure returns something like % = argmax .1 5 1Y (7).

Northwestern |ENGINEERING 13 STOR-i 2020
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Objective: Fixed precision

Simulate until a fixed inference is achieved; ideally PCS: Pr{Z* =k} > 1 — a.

Since this can be computationally infeasible, a compromise is made such as...
e Indifference zone: Pr{z* =k | w(k) —puk—1) >0} > 1 — «
e Good selection: Pr{u(k) — pu(@*) <} >1 -«
e Topm: Pr{z*e|kk—1,....k—m+1]} >1—-a
e Subset: Find S C {1,2,...,k} such that Pr{k € S} > 1 —a

These are typically frequentist guarantees to be achieved as efficiently as possible.
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Objective: Fixed budget

Obtain as strong an inference as possible within a fixed computation budget.
Formulated as minimizing some expected loss for the chosen solution: E[L(Z*)].

Inference is typically Bayesian in nature:

e 0-1 Loss: Maximize posterior PCS

e Opportunity cost: Minimize posterior expected optimality gap

Approaches include “Expected Improvement,” “Knowledge Gradient,” etc.
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The problems...

¢ Highly reliable system: Y (z) is the time to failure.

— k = 4 designs use redundancy to make the system resistant to failure.

— Output is variable; simulation is slow.
e Normal: Y (z) ~ N(u(z),a?).

— k = 11, satisfies assumptions of any R&S procedure we try.
e (s,S) inventory: Y (x) is -(cost of the inventory policy).

— k = 1600 combinations of reorder point s and order-up-to level S balance
ordering, holding and lost sales costs.

— Many solutions with similar performance.
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More problems...

e Stochastic activity network: Y (x) is -(time to complete the network)

— k = 5 designs allocate resources to one activity to reduce time to
complete project.

— The output is
Y(z) = — max{A;(z)+ A4(z), A1 (z) + Az(z) + A5(z), As(z) + As(x) }
e M/M/1: Y(x) is -(cost of waiting + cost of service rate)

— k = 100 different service rates that cost more for faster service.

— Slow simulation, low variance of output, many close competitors.
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The normal means case

From system z, Yi(x), Ya(z),. .. are i.id. N(u(x),o%(x)).

It may be that Cov(Y (z),Y (z')) # 0 if we use common random numbers.

Question: Is normally distributed output really relevant? Answers:

e Output Y is often the average of more basic outputs (e.g., daily average
customer waiting time).

e Sample sizes are large, so we can group or “batch” outputs.

e Sample sizes are large, so normal-theory methods apply asymptotically.

Initially we assume we can only simulate one system at a time; later we parallelize.

Northwestern |ENGINEERING 18 STOR-i 2020

Rinott’s Procedure

1. Choose confidence level 1 — «, initial sample size ng > 2 and “indifference
zone" § > 0. Set h = h(k,1 — a,ng). Note h(4,0.95,50) = 3.074.

2. For each system x = 1,2,..., k do the following:

(a) Simulate ng replications and compute the sample variance S?(x).

h*S?(z
(b) Compute N(z) = [%w
(c) Simulate max{0, N(x) — ng} additional replications.
(d) Compute the sample mean Y (z).

3. Choose 7* = argmax, Y (z)

Northwestern |ENGINEERING 19 STOR-i 2020
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Using your birthday as your seed # loop through the k systems
[set.seed(211256)], run Rinott on the  for (x in 1:k){

TTF problem with ng = 50, @ = 0.05 and Y <- MySim(x, n0)
4 = 1000 hours. 82 <- var(Y)
N <- ceiling(h~2%*52/delta"2)
Rinott <- function(k, alpha, n0, delta){ if (N > n0){
# implements Rinott’s procedure Y <= c(Y¥, MySim(x, N-n0))
# k = number of systems b
# 1-alpha = desired PCS Ybar <- c(Ybar, mean(Y))
# n0 = first-stage sample size Vars <- c(Vars, 82)
# delta = indifference-zone parameter N <- max(N, n0)
# note: uses 99% UCB for Rinott’s h Ns <= c(Ns, W)
h <- Rinotth(k,n0,1-alpha,0.99,10000)$UCB I
Ybar <- NULL list(Best = which.max(Ybar), Ybar =
Vars <- NULL Var = Vars, N = Ns)
Ns <- NULL }

Ybar,

STOR-i 2020

Rinott guarantees

e Rinott assumes the outputs are i.i.d. normally distributed, unknown and
possibly unequal variances, and independent across systems.

— Implies distinct random number seeds.

— Does our data look normally distributed?
o Let (1) < u(2) <--- < u(k), so system k is best. Rinott guarantees
PCS=Pr{z*=Fk | plk)—uk—-1)>0}>1—-«
Later we will learn how Rinott-like procedures provide this guarantee.

e 0 is often interpreted as the “smallest practically significant difference” but
is called the indifference-zone parameter.

Northwestern |ENGINEERING 21
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Rinott pro & con

e Rinott is easy to implement, and requires no coordination among systems
(easy to parallelize).

e But it is pessimistic: it assumes the means are in the “least favorable
configuration” (1) =--- = pu(k —1) = u(k) — 4.

e What happens if there are other good (closer than §) systems?

— Turns out it also has 1 — a guarantee of selecting a “good” system
(within § of the best); not true for all procedures.

e N(z) grows as h?/6%. How does h(k,1 — «,ng) grow with the number of
systems k7 (Answer: too fast).

Northwestern | ENGINEERING 22 STOR-i 2020

Foundation

Since we assume p(k) — p(z) > 0, x # k,

Pr{Y(k)>Y(z)}
= Pr{Y(k)-Y(z) >0}
= Pr{¥Y(k) = V(@) - [u(k) — p(@)] > =[n(k) — ()]}
> Pr{Y(k) - Y(z) - [u(k) — p(z)] > —5}

The statistic

Y (k) =Y (2) — [u(k) — p(z)]
has mean 0, so we can find the number of replications needed to provide the
desired probability guarantee considering only ¢ and the variances.

Northwestern |ENGINEERING 23 STOR-i 2020
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Indifference-zone paradigm

This formulation—where we want PCS > 1 — « when u(k) — p(x) > 9 and we
assume the LFC—has been dominant in frequentist R&S.

e Frees the probability statements from dependence on the true means.
There are two challenges:
1. When pu(k) — p(z) > & the LFC does not exploit it.

2. What happens if u(k) — u(x) < 6 for some inferior system z? We would like
a “good selection” guarantee:

PGS = Pr{u(k) — pu(@*) <6} > 1—a.

It is not always the case that indifference-zone PCS implies PGS.
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R&S based on “statistical learning”

These are ideas based (formally or informally) on Bayesian reasoning.

Frequentist: wu(1),...,u(k) are fixed performance measures and probability
statements (e.g., PCS) are with respect to repeated experiments.

Bayesian: Reduce our uncertainty by updating our knowledge.

pl), k)~ M(1),..., M(k)

-y

your problem r.v.'s with a“prior” distribution

After observing some data H = {Y;(z)} we update our knowledge based on the
conditional (“posterior”) distribution [M(1),..., M (k)]|H.

Northwestern |ENGINEERING 25 STOR-i 2020

12



4/18/2020

Generic Bayesian R&S

1. Forz € {1,2,...,k}, setn(z) =0, Y(z) =null, Ho =0, j =

2. 2 = 7(H,) and simulate Y;,;(z\))  [policy 7(-) based on posterior]

. . — . 1 )
3. Update n(z@) = n(z®) + 1 and ¥ () = T2 > Yiu(z9)

Hjp=H; U {f(j)a Yj+1(33(j))}

4. If budget is exhausted then return 7* = argmax_Y (z)
else 7 =741 and go to 2

Northwestern |ENGINEERING 26 STOR-i 2020

Clearly the action is in the policy 7(-).

Typically the policy is expressed as some sort of “acquisition” function; e.g.,
argmax, .z« a(r,7") = argmax, 5. B[max{0, M(x) — M(z*)}| H]
which is the solution with the largest posterior expected improvement.

An additional goal is to learn “optimally,” meaning as efficiently as we can.

Finally, the policy has to be computable, which often means it cannot look too
many steps ahead.

Northwestern | ENGINEERING 27 STOR-i 2020
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Gaussian processes provide a very useful framework for this sort of approach.

If (Zl, ZQ) ~ BVN(,U,hMQ,O'%,O'g,p) then Zl ~ N(,U,l,O'%), But

a
%1% =z~ N (m 402 (e = ), 031 - p2>)
2

. -

i v' "
learning

If Z ~ N(0,1) then E [max{0, u + 02Z}] = ud (E) + oo (E) where @ and ¢
o o
are the cdf and density of 7.
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Complete Expected Improvement policy

If z* is the current sample best solution, select as the next solution to simulate
m(H) = argmax, 5. E [max {0, M(x) — M(z*)}| H] = argmax, ;. CEl(z, 7*)

When the posterior is normal, then using the fun fact we have

CEl(z,7%) = (m(z) — m(5*))® (m(‘”) — m(ﬁ))

Var(z,z*)

e L

Var(z, z*)
where m(z) = E(M (z)), Var(z,z*) = Var(M(z) — M (z*)). Is this a good idea?

Northwestern |ENGINEERING 29 STOR-i 2020
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A convergence-rate perspective

Suppose that the best system is unique: p(k) > p(k —1).

Then as all the n(z) — oo, even if not equal, we will eventually correctly select
z* = k due to the strong law of large numbers.

But what is the best way to get to co?
A formulation:
Let n(z) = B, N where 8, > 0and > 3, =1.

What choice of /3, ..., B makes limy_,o Pr{Z* # k} go to O the fastest?

Northwestern |ENGINEERING 30 STOR-i 2020

A third pillar of statistics: Large deviations

Zy,Zy, ..., Zy iid. (u,0?), plus.... Then as N — oo,
1. SLLN: Z(N) %%
2. CLT: VN(Z(N) — p) =5 oN(0,1)

3. LDP: limy_,0o ~ In[Pr{Z(N) > z}] = —I(z) where I(-) is the rate function
that depends on the distribution of Z. The LDP can be interpreted as

Pr{Z(N) > z} ~ e M@ for large N

For R&S we want to choose f31, ..., 3r to maximize the rate of decay of

PICS = Pr{Y,(8,N) — Yi(BiN) > 0} = exp(—NI(0, Bz, Br))

Northwestern |ENGINEERING 31 STOR-i 2020
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LD optimal allocation

Glynn and Juneja (2004) showed that if the outputs are normally distributed then
the LD rate-optimal allocation satisfies [let ., = p(z), 0, = o(zx)].

&) -=(&

_ 2 , 2
(;u:l; iu*fz) _ (:U%; ,u;;) : \7’9:,:1:’ 7& L
95 4 %k Zet 4 %k
fB:D lBk 2! ﬁk

Obvious problem: This expression involves things we don't know, and just plug-
ging in estimates does not give the best possible rate (although it is not horrible).
Things get harder for unknown distributions (estimating LD rates is difficult).

Northwestern |ENGINEERING 32 STOR-i 2020

Optimal Computer Budget Allocation (OCBA) arrives at this result through
a Bayesian-inspired approximation to the posterior PCS. OCBA uses plug-in
estimates and nonlinear optimization to allocate batches of runs to achieve this
balance; it is a heuristic. See Chen and Lee (2011).

CEl: Chen and Ryzhov (2017) showed that a slight modification of the CEI
policy is asymptotically equivalent to the rate-optimal allocation! This result
is remarkable because CEl comes from unrelated reasoning: the Bayes-optimal

allocation of the next simulation run if it will be your last.

We will play with a version of the CEI algorithm now....

Northwestern |ENGINEERING 33 STOR-i 2020
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cei <- function(k, n0O, Nmax){ while(sum(N) < Nmax){
f <- function(z){z*pnorm(z) + dnorm(z)} xstar <- which.max(Ybar) # sample best
Ybar <- rep(0, k) # check if sample best has too few reps
Sum2 <- rep(0, k) if (2#N[xstar]~2/(Sum2[xstar]/(N[xstar]-1))
N <- rep(0, k) < sum(N~2/(Sum2/(N-1)))){
Y <- rep(0, k) x <- xstar}
CEI <- rep(0, k) else{ # calculate CEIs
systems <- 1:k S2 <- Sum2/(N - 1)/N
for (i in systems){
# get n0 reps from each system v <- sqrt(S2[xstar] + 52[il)
for (i in 1:k){ CEI[i] <- vxf(-abs(Ybar[i]
for (j in 1:n0){ - Ybar [xstar])/v)
Y[j1 <- MySim(i) CEI [xstar] <- 0}
} x <- which.max(CEI)
Ybar[i] <- mean(Y) }
Sum2[i] <- (n0-1)*var(Y) # simulate x and update statistics
N[i] <- nO Yx <- MySim(x)
} difference <- Yx - Ybar[x]
# start sequential allocation Ybar[x] <- Ybar[x] + difference/(N[x]+1)
Sum2[x] <- Sum2[x] + differencex(¥x - Ybar[x])
N[x] <- N[x] + 1}
¥ STOR-i 2020
1. Load the SAN example, which has k£ = 5 alternatives.
2. Run CEl with ny = 20 and maximum observations 5000. Remember to set
the seed to your birthday before starting.
result <- cei(5, 20, 5000)
result$xstar # estimated optimal
result$N # observations allocated to each system
plot(results$xpath) # sequence of solutions x simulated
plot (result$Ypath) # sequence of estimated optimal value
3. Which solution did you get as optimal? Which solutions were simulated most?
Northwestern |ENGINEERING 35 STOR-i 2020
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How can we do better than rate optimal?

e The asymptotically optimal allocation is not necessarily the best allocation
for finite N.

— We don’t need to drive PICS to 0.
— All systems remain in play.
— There is a lot of overhead on each step, especially if £ is large.

— It is hard to do fixed-precision stopping.

e Often (especially when k is large) there are bad systems we can completely
eliminate quickly.

e |t is becoming increasingly easy to simulate p systems at a time in parallel.

Northwestern |ENGINEERING 36 STOR-i 2020

Strategy: Elimination

e Subset & select: Get a small number of replications from all solutions,
create a subset that still contains the best, then apply an efficient R&S
procedure to the remainder.

— Usually requires splitting the « error between subset and selection:
Pr{ke S} > 1—a/2.

e Continuous screening: Iteratively replicate, eliminate, replicate, eliminate...
until one system remaining.

— Usually splits into pairwise comparisons and controls overall error via
(say) the Bonferroni inequality.

— Need results that allow “multiple looks” at the data.

Northwestern |ENGINEERING 37 STOR-i 2020
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Basic subset selection

the (1 — a)*=1

1. Given n(z) > 2 observations from solution z, set t(z) = ¢ 1
(1—a) k=1, n(a)-1

quantile of the ¢ distribution with n(z) — 1 degrees of freedom, for x = 1,2,..., k.

2. Calculate the sample means Y (x) and sample variances

@)= —— 3 (V@) - V()"

n(z) -1 4
forx =1,2,...,k, and also for all x # 2’
2 2, N 1/2

3. Form the subset R - -
S={z:Y(x)>Y(z") - W(z,a') forall 2’ # z}.

Northwestern |ENGINEERING 38 STOR-i 2020

Subset foundation

The following is behind many subset selection procedures:

Pr{k € §}
= Pr{Y(k)>Y(z) - W(k,z), z #k}
= Pr{T (k) — ¥ (2) — [u(k) — p(@)] > W (k, 3) — [u(h) — p(@)], = # &}
> Pr{V(k) = V(s) — [u(hk) — ple)] > —W(k, ), 2 # b}

The statistic B B

Yi(z) = Y(2') — [u(x) — p(a)]
has mean 0 for all x # 2/, allowing the W (z,2')'s to be derived that give the
desired probability based only on their variances.

Northwestern |ENGINEERING 39 STOR-i 2020
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Subset procedure

Subset <- function(k, alpha, n){
Yall <- NULL
for (x in 1:k){Yall <- cbind(Yall, MySim(x, n))}
Ybar <- apply(Yall, 2, mean)
S2 <- apply(Yall, 2, var)/n Load the M/M/1 example which has k = 100
tval <- qt((1-alpha)”(1/(k-1)), df = n-1) <5 tions and run Subset first with ng = 10, then
SR ng = 100 at @ = 0.05. Remember to set the

for (i in 1:k){ . .
for (§ in 1:k){ seed to your birthday each time.

if (Ybar[i]l < (Ybar[jl-tval*sqrt(S2[i] + S2[j1))){
Subset[i] <- 0
break
}
}
}
list(Subset = Subset[Subset '= 0], Ybar = Ybar, S2 = S2)}

Northwestern |ENGINEERING 40 STOR-i 2020

The role of Brownian motion

Let {B(t); ¢ O} be standard Brownian motion (BM):

(
1. B(0) =
2. B(t) is almost surely continuous
3. B(t) has independent increments: B(t) L B(t + s) — B(t)
4. B(t)— B(s) ~N(0,t —s), 0<s<t i)
5. BM with drift: B(t;6) = B(t) + 6t >\
6. Scaling: oB(t;0/0) = oB(t) + ot — /
A lot is known about BM exiting regions like —
Northwestern | ENGINEERING 41 STORA 2020
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Relationship of BM to R&S

Consider D, (r) = Y.'_,(Y;(k) — Y;(z)), with of, = Var(Y;(k) — Yj(x)) and

j=1
Ok = p(k) — p(x), and all outputs normally distributed. Then

{D.(r); r=1,2,...} = {0k B(t; Oz fOke); T=1,2,...}

Theorem (Jennison, Johnson & Turnbull 1980): “
Suppose § > 0, g(t) > 0 Vt and continuous. Let B\

N
Ty = min{r: |[B(r;9)| > g(r), r=1,2,...}

T. = min{t: |B(t;6)| > g(t), t > 0}.
Then T, < Ty as. and Pr{B(Ty;9) < —g(Ty)} < Pr{B(T.;9) < —g(T.)}.
42
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Extension to unequal sample sizes

Standardized sums of differences:

2 271 2 271

oy O _ . D oy 0%

—= 4+ = YEk)-Y(x)| =B |—=+—=| ;ulk)—plz

Za =) 7w - Y () (Lﬁn} k) — ))

B(1:0,0)
Build a region such that the
probability of BM exiting the
wrong direction is controlled — S r 7 ;
Northwestern |ENGINEERING 43 STOR-i 2020
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Deep dive: Paulson’s Procedure

Fully sequential |Z procedure for known, common variance.
0. Set S ={1,2,...,k}, choose A € (0,0), seta = % In (%) and set r = 0.

1. Set r = r 4+ 1. Simulate Y, (z), Vz € S.

2. Mark systems ¢ € § for elimination if

min Z(Y;(E) —Y;(i)) p < min{0, —a + Ar}.

ieS r
Jj=1
—a+ Ar
3. Remove all marked systems from S.
. = en Stop and selecCt system as best, else go 1o e .
4. If |S| =1 then st d select system & as best; el to Step 1
Northwestern | ENGINEERING 44 STOR-i 2020
Load the Normal distribution simulation which # start sequential
has & = 11 solutions. Run Paulson with a <- eta(alpha, k, nO)*k#*(n0-1)*S2/delta
ng = 10, @ = 0.05 and 6 = 0.1,0.01, 1.0. Ysum <- apply(YnO, 1, sum)
Remember to reset the seed each time to your r <~ no
birthday # main elimination loop
while (sum(Active)> 1){
Paulson <- function(k, alpha, n0, delta){ r<r+d
IT <- 1:k ATemp <- Active
Active <- rep(TRUE, k) for(i in II[Activel){
Elim <- rep(O, k) YSIIHI[i] <- Ysum[i] + MySim(i)
}
YnO <- matrix(0, nrow=k, ncol=n0) for(l in II[Activel)
for (i im 1:k){ if ((Ysum[1] - max(Ysum[Active]))
for (j in 1:n0){ < min(0, -atdelta*r/2)){
Yno[i,jl <- MySim(i) ATemp[1] <- FALSE
} Elim[1] <- r
} }
82 <- mean(apply(¥n0,1,var)) ;l‘ctive <- ATemp
list(Best = II[Activel, n = r, Elim=Elim)
1}
STOR-i 2020
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Comments on Paulson’s Procedure

Paulson tries to be observation efficient by attempting to eliminate systems
after each additional observation.

Notice that elimination decisions are highly coordinated, and require looking
at ("g‘) differences.

Guarantees Pr{select k | u(k) — u(k — 1) > 6} > 1 — «, but guarantee is
not clear when there are systems closer than 9.

e Extension to unknown o2 not hard (later).

e The procedure ends by or before step n+ 1 = [a/A| + 1 (why?).
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Large-deviation result supporting Paulson

Theorem 1 Suppose Z,,Z5,... are i.id. N(u,c?) with u < 0. Then for any
constant a > (

. 2

Pr{ E Z; > a for some r < oo} < exp ('u;)

o
J=1

Notice that since < 0 we expect the sum to drift down; this large deviation
result bounds the probability it drifts up more than a.

In the IZ formulation, we believe that Y;(z) — Y;(k) has negative drift of at least
—0 for all x # k. Attack all pairwise differences:

k—1 k—1
Pr{k eliminated} < ) ~Pr{i eliminates k} = > ~Pr{ICS;} = (k—1)[a/(k—1)].
Northwestern |ENGINEERING i=1 47 i=1 STOR-i 2020
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Pr{ICS;} < Pr { (Y;(k) —Y;(i)) < —a+ Ar somer < n -+ 1}

_ pr{

Q.
Il
an

-

(Y;(4) = Y;(k) + A) > a some r < n+1}

3

<

=

< Pr{ (Y;—(z')—Yj(k)—Q—/\)>asomer<oo}
;(,u(z) — u(k) + Na (=0+Na)  «
S ( 20 ) =P (a—) TEo1

2 E—1
Therefore set a = — 3 In ( ) with A = §/2 a common choice.
— o'
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Improving on Paulson’s Procedure

e Need to deal with unknown and unequal variances for sure.

e Tighter large-deviation result (notice the result we used protected system k
for all » < c0). There are many choices.

e Variance-dependent sampling: systems with low variance need to be
simulated less.

e Providing a PGS guarantee for when p(k) — u(k — 1) < 4.

e Avoid breaking up into paired comparisons (difficult) and using Bonferroni's
inequality.

e Exploit common random numbers (easy, but requires synchronization).
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Common random numbers

R&:S procedures that employ pairwise comparisons can often be “sharpened” by
using CRN:

Var(Y (z) — Y(2')) = Var(Y(z)) + Var(Y (z")) — 2 Cov(Y (z), Y (2"))

CRN tends to make Cov(Y (z), Y (2')) > 0, but usually requires equal sample sizes.

Intuition:
In the inventory problem, CRN implies each (s,S) policy sees exactly the same
sequence of demands.

In the TTF problem excessively short component failure times times occur in the
same sequence: YU A,) = —In(1 —=U,) /A, r=1,2,....
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Impact on subset:

273\ \ 1/2 9 NN 1/2
+ t(m’)QS (@ )) becomes W (x,z) = (t2M)

n

Impact on Paulson (equal, known variance o2 & correlation p > 0):

2(1 — kE—1 2 kE—1
aza(g_/\p)ln( - )ratherthana:(si)\ln( - )

‘ —a+ Ar

Northwestern |ENGINEERING 51 STOR-i 2020
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CRN and R

set.seed(12345) maps to a starting seed, but we have no idea if set.seed(1)
and set.seed(2) are near or far apart in the random number sequence.

Simulation languages have “streams” that map to starting seeds that are very far
apart; thus, we can assign a unique stream to each random process and replication.

R is better at matrix operations than loops, so compute variance of difference as

S2 <- cov(Yall)/n # var-cov matrix of sample means

S2[i,il + S2[j,j] - 2+S2[i,j] # var(Ybar[i]l - Ybar[jl)
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Subset procedure with CRN

SubsetCRN <- function(k, alpha, n, seed){
Yall <= NULL Go back and run SubsetCRN

for (x in 1:k){ on the same M/M/1 problem,

[Yall <- cbind(Yall, MySim(x, n, seed))} )
Ybar <~ apply(Yall, 2, mean) and compare the size of your

[ S2 <- cov(Yall)/n | subsets to your previous
tval <- qt(i-alpha/(k-1), df = n-1) results. Use your birthday as
Subset <- 1:k your seed.

for (i in 1:k){
for (j in 1:k){
Ii:f (Yvar[i] < (Ybar[jl-tval*sqrt(S2[i,i] + S2[j,j] - 2*S2[i,j]))){|
Subset[i] <- 0

break
}
}
}
list (Subset = Subset[Subset != 0], Ybar = Ybar, S2 = S2, corr=cor(Yall))
Northwestern |ENGINEERING 53 STOR-i 2020
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“Good selection”

Certainly the most adopted paradigm has been the indifference zone setting
PCS=Pr{z*=Fk|puk)—puk—-1)>46}>1—«

0 is usually chosen as the “smallest practically meaningful difference” which may
not be close to the actual difference pu(k) — u(k —1).

When k is large we expect many “good” systems.

Thus, guaranteed probability of good selection
PGS = Pr{u(k) —pz") <6} 21 -«

is more meaningful: a bound on the optimality gap.
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Theory vs. practice

Empirical experience has shown that procedures with an |Z PCS guarantee seem
to also provide a PGS guarantee; however, counterexamples can be created.

IZ procedures without elimination (e.g., Rinott) can often be shown to guarantee
PGS as well (see next slide), but elimination makes proofs difficult.

An excellent comprehensive reference is

Eckman & Henderson. 2018. Guarantees on the probability of good
selection. Proceedings of the 2018 Winter Simulation Conference, 351-
365.
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Nelson & Matejcik (1995) condition

Theorem: Suppose a R&S procedure creates estimators [i(1), 11(2), . .., (k) that
guarantee Pr{pi(k) > (i), Vi # k | p(k) — p(k — 1) > 6} > 1 — a. Then if

fi(k)
Ak — 1) — u(k — 1) + (u(k) — 8)
(1) — (1) + (u(k) — 0)

has the same distribution as estimators would have had in the corresponding LFC
problem, then the procedure also guarantees PGS > 1 — a.

Normally distributed output procedures like Rinott that do not adapt to the sample

means satisfy this.
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Zhong & Hong (2018) Paulson adjustment

Recall Paulson eliminates ¢ if for some ¢

> (Y50 = Y;(2) < —a+ A

Select alternative i

Instead, Zhong & Hong use
22:1(}/3'(@ —Y;(i) +90) < —a+ Ar. U~

i slope = —l‘[ /g
Notice that when pu(k) — p(f) < 6, 0 - =
> -1 (Y5(€) = Yj(k) + d) has positive drift. P 5
Thus, good systems should survive to the B i
end, and we will pick the best looking one. ) E

Select alternative k |
Northwestern |ENGINEERING 57 STOR-i 2020

28



4/18/2020

A Bayesian perspective on good solutions

A Bayesian “good selection” R&S procedure would stop when it has collected
enough output so that there is a system 7* for which

Pr{M(z*) > M(z) =6, Ve #T" | H} > 1 — «

[Computable under some assumptions, but if not then can be approximated or
bounded.]

Interpretation: With probability at least 1 — o the random problem from your
space of priors is one for which the fixed system T* is good.

This contrasts with the frequentist perspective: The random solution z* chosen
by the procedure has probability at least 1—« of being good for this fixed problem.
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Unknown variances

e As a general rule, neither known nor equal variances can be assumed in
simulation R&S problems.

— For procedures that break into pairwise differences and apply Bonferroni,
the variance of each pairwise difference can be estimated separately.

o A useful result: If Zy, Z,,..., Z,, areiid. N(u,o?) then Z L S2.

— Thus, using a “first-stage” S? to calibrate the additional simulation
needed does not introduce bias.

— If done cleverly, we can derive the PCS conditional on S? and then
uncondition.

2

— Using estimated ¢* increases E(sample size) relative to known variance.
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lllustration: Unknown variance Paulson

Recall in Paulson we set A = §/2 and a = 2i In (E) l7
) o r
—a+ Ar

Now estimate S% = Z Z 2 from initial ny sample.
?’LO —
x—l j=1

Two useful facts:

]{2(7'2,0 — 1)82

- ~ x5 with d = k(ng — 1) and E [exp(tx7)] = (1 — 2t) 42,
o
2

We now set a = UT and see what 7 needs to be to get the desired PCS.
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Derivation

In the Paulson proof we used the LD result to show that for fixed a and A\ = §/2
o'

)
< 2 al=—
Pr{ICS;} <exp ( 52 a) =1
Set a = 1S?/§ and see what 7 needs to be to get Pr{ICS;} < a/(k — 1).

Pr{ICS;} = E[Pr{ICS;|S*}] <E lexp (*%HT?N

where d = k(ng — 1). Then solve for . Why is Y | S? critical?

Northwestern |ENGINEERING 61 STOR-i 2020
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Beyond Paulson...

Paulson is great for illustrating concepts, but the limitation to equal variances and
no common random numbers makes it rarely used in simulation.

There are many descendants, with one of the most statistically efficient and robust
still being KN (Kim and N 2001).

e Uses a tighter Brownian motion LD result due to Fabian.
e Allows unequal variances and CRN.

e Has been shown to be asymptotically valid (discussed later) for non-normal
output data.

e Has been implemented in commercial simulation languages, and in parallel.
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Apply Paulson and KN to the M/M/1 problem with ny = 30, § = 1 and o = 0.05.
Compare the chosen solution, elimination points, and final sample size.

result <- KN(100, 0.05, 30, 1)
Remember to set the seed to your birthday before running each experiment.

Note: Paulson is not technically valid for this problem because the variances are
unequal.

Extra: Outside of this class, try both with § = 0.1 which is actually more reason-
able for this problem. Leave Paulson to run over night!
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31



4/18/2020

A note on asymptotic analysis

Asymptotic analysis of R&S procedures is useful in at least three contexts:

1. Establishing that a procedure will work when core assumptions such as
normality are violated (typically as § — 0 in a way that makes the problem
harder).

2. Comparing the efficiency of procedures that are difficult to evaluate in finite
samples (typically as 1 — & — 1 so that behavior becomes deterministic).

3. Comparing the efficiency of procedures with estimated variances relative to
their known-variance counterparts (typically as § — 0 drives ng — 00).

#1 helps explain why normal-theory procedures seem to work well more generally.
#2 is often the only way (other than empirically) to compare procedures that

eliminate systems.
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Asymptotic PCS for IZ procedures

Show desired PCS is achieved in a meaningful limit, even if assumptions violated.

Pointless: If (k) — () is fixed, then as we let 6 — 0 we have PCS — 1 for
any kind of data. Why? (remember N; oc 1/6% for many procedures)

Useful: Kim and N (2006) let p(k) = p and u(i) = p— § for i # k.

Notice that as 6 — 0 the sample size goes to 0o and the problem itself gets harder.
Is this a relevant setting? Yes. If 6 > u(k) — () then any solution is acceptable.
If & < (k) — p(i) then we will simulate so much we will get it right. Thus

(i) = p(k) — 4 is the critical regime.

Northwestern |ENGINEERING 65 STOR-i 2020
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Key tool for asymptotic PCS

Donsker’s (Functional Central Limit) Theorem: If Y;,Y5,... arei.i.d. (i, 0?)
with 0% < oo then as N — oo

S - Nt o

oV N

Note: The regular CLT is at t = 1.

B(t), 0<t<1

Donsker’'s Theorem says that very general i.i.d. output processes, standardized the
right way, look like Brownian motion as we get more and more data.

In 1Z R&S procedures, Y; = (Y;(x) —Y;(2')), and letting 6 — 0 drives the sample
size to 0o (N oc 1/62).

Northwestern |ENGINEERING 66 STOR-i 2020

The future is now: Parallel R&S

e Simulation languages are being redesigned to run in the cloud.

— Computer time is “rented.”

.. . Your vision. Your cloud.
— Example: Simio can recruit up to 10,000

processors from Microsoft Azure;
this greatly extends the R&S limit.

ing a trusted

e Since we have to pay for the service, the focus changes from being observation
efficient to being computationally efficient in wall clock time.

— Ok to waste observations to avoid idling and get done faster.

e Heterogeneous processors, communication delays, processor failures,
etc. disrupt the usual synchronization in R&S.
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Simple parallelization in R

R has some limited capabilities do to parallel computation, both on multi-core/thread
computers and across compute nodes.

This is particularly useful to avoid loops (which are slow in R) when the calculations
within the loops do not interact; e.g., simulating n replications from k different
systems.

Here | will illustrate the doParallel package which enhances capabilities of the
foreach package using the parallel package.

> library(foreach)
> library(parallel)
> library(doParallel)
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doParallel set up

> library(foreach)

> library(parallel)

> library(doParallel)

> detectCores() # number of available cores/workers

> cl <- makeCluster(d) # define a cluster of size d workers

> registerDoParallel(cl) # required for Windows

> ptime <- system.time({ })[3] # a wrapper to obtain timing information

> getDoParWorkers () # check number of workers doParallel will exploit
> stopCluster(cl) # release the cluster

> result <- foreach(range, options) Ydopar} {codel}

> Yall <- foreach(x=1:k, .combine=cbind) %dopar? {MySim(x, n, seed)}

Northwestern |ENGINEERING 69 STOR-i 2020
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Timing comparison

Reload the TTF problem. Compare SubsetCRN to SubsetParallel using 4 cores
and 100 replications, in terms of timing; if you use the same seed, they should get
the same answer. The only difference between the two functions is

Yall <- foreach(x=1:k, .combine=cbind) Jdopar’% {MySim(x, n, seed)}
replaces

for (x in 1:k){Yall <- cbind(Yall, MySim(x, n))}

Example calling sequence:

ptime<-system.time({result<-SubsetParallel(4,0.05,100,12211956)}) [3]
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1 Master doing p Workers doing
calculations and simulation and
generating new Jobs calculation Jobs

\4

Master-Worker paradigm

STOR-i 2020
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What would be affected if we did a direct # start sequential
parallelization of Paulson with 1 master and p a <- eta(alpha, k, n0)+*k*(n0-1)*S2/delta
workers? Ysum <- apply(YnO, 1, sum) master
r <- n0
# main elimination loop
Paulson <- function(k, alpha, n0, delta)<{ while (sum(Active)> 1){
IT <- 1:k r<-r+1
Active <- reP(TRUE: k) } master ATemp <- Active p workers
Elim <- rep(0, k) for(i in II[Active]){ in parallel
Ysum[i] <- Ysum[i] + MySim(i)

Yn0 <- matrix(0, nrow=k, ncol=n0) p workers }
for (i in 1:k){ in parallel for(l in II[Activel)
for (j in 1:n0){ if ((Ysum[1] - max(Ysum[Active]))
YnO[i,j] <- MySim(i) < min(0, -a+deltaxr/2)){
} ATemp[1] <- FALSE master
} Elim[1] <- T
S2 <- mean(apply(¥nO,1,var)) } master h!
Active <- ATemp
}
list(Best = II[Active]l, n = r, Elim=Elim)
1

STOR-i 2020

Thinking about R&S computations

Job j is the ordered list

Hunter & N, "Parallel ranking

_ and selection," Advances in
Jj - {(QJ ) Aj! uj )1 (Pj ) C]) } Modeling and Simulation,
\__V_'/ —— Springer, 2017.
simulate  calculate

Q; C {1,2,...,k} indices of systems to be simulated

A; = {A,;} how many replications to take from each system z € Q;

U; (optional) the assigned block of random numbers

C; is a list of non-simulation calculations or operations to perform

P; is a list of jobs that must complete before the calculation C;

Northwestern |ENGINEERING 73 STOR-i 2020
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The nominal computational paradigm

For¢=1,2,...

1. Simulation jobs
Je = [{(system 1,1 rep), (D)}, ..., {(system i,1 rep), (0)},.. ]

2. Comparison jobs

Jy = {(0), (all jobs in Ty, Co)}

where C; performs calculations on all (non-eliminated) systems.

The nominal model enforces many of the assumptions necessary for both small-
sample and asymptotic analysis by “synchronized coupling.”
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Looking at parallel Paulson as Calculation and # start sequential

Simulation jobs. a <- eta(alpha, k, n0)+*k#*(n0-1)*S2/delta
Ysum <- apply(YnO, 1, sum) T ——
r <- n0 job
# main elimination loop
Paulson <- function(k, alpha, n0, delta)<{ while (sum(Active)> 1){
IT <- 1:k r<-r+1
Active <- rep(TRUE, k) } Calculation ATemp <- Active
Elim <- rep(0, k) ob for(i in II[Active]){ _Si;)nulation
jobs
Ysum[i] <- Ysum[i] + MySim(i)
Yn0 <- matrix(0, nrow=k, ncol=n0) }
for (i in 1:k){ _Sitf:u'aﬁon for(1 in II[Activel)
for (j in 1:n0){ 1058 if ((Ysum[1] - max(Ysum[Activel]))
YnO[i,j] <- MySim(i) < min(0, -a+deltaxr/2)){ Calculation
} ATemp[1] <- FALSE job
b Elim[1] <-
82 <- mean(apply(Y¥n0,1,var)) } Calculation h!
job Active <- ATemp
}
list(Best = II[Active]l, n = r, Elim=Elim)
1
STOR-i 2020
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Why not just use the outputs as soon as you get them?

Recall there are p 4 1 processors: 1 master and p workers.

Input sequence: X;(z) is the jth requested observation
from alternative z, with execution time 7}(x).

Output sequence: Yj(x) is the jth returned observation from alternative z.

Consider a round robin allocation of Simulation jobs.

Master

20 000 00—
\__/ h
76
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New statistical issues

1. Random sample sizes — 1

0sl -

s e

06 +  Alternative 1|4
. +  Alternative 2
+  Alternative 3

04r - © Alternative 4 |1

02f -

ratio

0 20 40 60 80 100
sample size of the phantom alternative

2. Yi(z), j=1,2,... not i.i.d.
Ex: k=1, X; = Tj ~ Expon(y) implies E(Y}) = u (1 _ (1 - é)‘?)
3. Subtle dependence caused by elimination of systems.
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New efficiency issues

R&S Procedure = jobs generated by the Master: J = {J;: 1 < j < M}.

o Let 0 < T} < oo be the wall-clock time job J; finishes, so

T(J)= max T;

j=1,2,.. M
is the ending time of the procedure.
e ¢(p,s) = cost to purchase p processors for s time units.
e t(p,b) = maximum time we can purchase on p processors for budget $b

t(p,b) = max{s: c(p,s) < b}.
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Revised “efficient” objectives

Fixed precision requires statistical guarantees while being efficient:

minimize, 7 E[8: Te(T) +8: c(p, Te(T))]
SN—— S———
time cost
s.t. Pr{G(@"k)} >1—«
d
good event

Fixed budget provides an efficiency guarantee within a budget:

minimize, 7 E[L(G(z", k), T)]

L 7

W
loss of bad event

5.t Hpb) <t
——

processor time
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Existing patches

Load Balancing

R&S Procedure (Standard Assumptions)

Comparison Timing
(Relaxed Assumptions)

Simple Divide and Conquer
(Chen 2005)
Vector-Filling Procedure
(Luo et al. 2015)
Good Selection Procedure
(Ni et al. 2017)
Strategic Updating
(Zhong et al. 2019)

Fixed-Precision

Asymptotic Parallel Selection

(Luo et al. 2015)

Parallel OCBA
(Luo et al. 2000)
Asynchronous OCBA/KG
(Kaminski & Szufel 2018)

Fixed-Budget

Northwestern |ENGINEERING 80
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If we make a comparison at some time ¢t when

> (Y(k) = Yj(2)) = 350, (X;(k) — X;(2))

then the order of return does not matter.

At phantom return times we can only be off
by an asymptotically negligible amount.

2@ - @ >
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New paradigm: Does insuring PCS/PGS make sense if k is very large?

e If | have k£ > 1,000,000 systems is it sensible to insist on locating the single
best /near-best with high probability?

e We expect many bad systems, but also a lot of good ones.

e Runs counter to approaches in large-scale statistical inference of controlling
“error rates.”

— To control PCS requires more effort/system as k increases.

— Error rates such as “false discovery” can be attained with little or no
“k effect.”
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New goals for parallel R&S

® More scalable—Dbut still useful and understandable—error control than PCS/PGS.

— Example: Expected False Elimination Rate (EFER): fraction of good
systems eliminated.

e Avoid coupled operations and synchronization.

— Comparisons with a standard

e PASS = Parallel Adaptive Survivor Selection
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Building blocks

Yo1, Yoo, ... iid. with mean p, and pp > pp—q1 > -+ > g

Sz(n) = Z?=1(ij —p) = Z;;l Yoj —npt

A non-decreasing function g.(-) such that

S gy 2 p
Pr{S;(n) < —g.(n), some n < oo}

60 40 20 0 20 40 60

=1 p <p

G = {333 fo 2 ,U*} D ’ ) : :

Fan, Hong and N, "Indifference-zone-free
Selection of the Best," Operations Research
64 (2016), 1499-1514.
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Parallel Survivor Selection (PSS)
1. given a standard p*, an increment An and a budget

2. let W= {1,2,...,p} be the set of available workers; @ = {1, 2, ..., k} the set of surviving
systems; and n, = 0 for all z € Q.

3. until the budget is consumed

(a) while an available worker in W, do in parallel:

i. remove next system x € Q and assign to available worker w € W

i. =1

iii. while j < An
simulate Y, n, 4
if Sz(nz +7) < —gz(ng + j) then eliminate system z and break loop
else j=7+1

iv. if 2 not eliminated then return to Q@ = QU {z}

v. release worker w to available workers W

4. return Q STOR-i 2020
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Building block: Law of the iterated logarithm

The generic boundary function g(-) needs to unsure that driftless Brownian
motion (u, = p*) crosses with probability no more than the EFER «, while
Brownian motion with negative drift (1, < p*) crosses with probability 1.

Driftless Brownian motion grows to co at rate O(y/tloglog(t)), while BM with
negative drift goes to —oco at rate O(t).

Thus g(-) needs to be between these two.

Example: g(t) = /[c +log(t + 1)](t + 1), tune c to get the desired EFER, and
scale time by o?

T
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From PSS to PASS

e PSS requires no coupling & keeps the workers constantly busy.
— Could be more efficient by making An depend on the system.

e The EFER is still controlled at < « and elimination still occurs with probability
1 if we replace p* by u(n) < u*.
— A system eliminated by a smaller standard would also have been
eliminated by a larger standard.
— A system protected from a larger standard would also be protected from
a smaller one.

e This suggests we should try to learn a standard that achieves our objectives:
Parallel Adaptive Survivor Selection.
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Defining a “standard”

e Generically, we define the standard to be p* = s(puq, fto, - -+, plgs 7).
e Some examples of possibly interesting standards:

— Protect the best: p* =
— Protect the top m: u* = pr_me1
— Protect best & everything as good as p™: p* = min{u™, i}

e We want to learn the standard’s value in a way that still avoids coupling and
does not affect the EFER.
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e Consider the standard

_ 1 =
K= @ Z Y, (n,)

e Essentially, the average of the current survivors.
— Thus, the standard acts like a bisection search.

e Under some conditions we can show that the EFER is still < a.

Pei, Hunter & N, "Parallel adaptive survivor

selection," WSC 2018.
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Master updating the Workers simulating

standard and and (possibly)

\ comparing against it comparing against
the standard

- O — 0 ©

We can control the expected Jobs = Systems
false elimination rate in
several useful settings without
penalty for scale.

bipassFast <- function(k,c,n0,dn,Nmax){ # main elimination loop
# synchronized biPASS w/ pooled variance while(sum(Active) > 1 && N < Nmax){
# k = number of systems r <-r + dn
# c = constant needed to guarantee EFER N <- N + dn*sum(Active)
# n0 = first-stage sample size
# dn = batch size per run Ynew <- foreach(i=II[Active], .combine=rbind)
# Nmax = maximum number of replications %dopar’, {MySim(i, dn)}
MySim <- MySim # make the simulation local
g <- function(t, calpha=c) Ysum[Active] <-
{sqrt((calpha + log(t+1))*(t+1))} Ysum[Active] + apply(Ynew, 1, sum)

IT <- 1:k rmuhat <- sum(Ysum[Active])/sum(Active)
Active <- rep(TRUE, k)
Elim <- rep(0, k) for(1l in II[Activel){

if(Ysum[1] - rmuhat <= -g(r/S2)*52){
Yn0 <- foreach(i=1:k, .combine=rbind) Active[l] <- FALSE

%dopary, {MySim(i, n0)} Elim[1] <- T

}
82 <- mean(apply(¥nO,1,var)) T
Ysum <- apply(¥YnO, 1, sum) }
r <- n0 list(Best = II[Activel, n = r, Elim=Elim,
N <- nO*k Means = Ysum[Active]/r)

} STOR-i 2020
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lllustration: Known p;, vs. bi-PASS vs. subset
* (s,5) inventory problem
= p+1=101 processors e
= k = 22,500 solutions ® PSS
* a=0.02 EFER . P
= Run as fixed budget; $
7 systems left av
- Baseline: take total g
consumed <+ k and apply 5”7
subset selection s
= 181 in subset vs.
7 for bi-PASS o1 . . . . . i
0 500 1000 1500 2000 2500 3000
Time elapsed
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lllustration: GSP vs. bi-PASS

For the same problem setting, we ran 10 macroreplications of both procedures
until the surviving systems had at least 1000 replications each.

e GSP Results e bi-PASS Results

95.3 survivors remaining 37.7 survivors remaining

1,265,439 total replications
no false eliminations

348.0 seconds on average
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575,326 total replications
no false eliminations

238.5 seconds on average
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Experiment 1 with bi-PASS

Load the (s,S) inventory problem, which has & = 1600 solutions. With a total
budget of 160,000 replications, compare bipassSlow, bipassFast, SubsetCRN
and SubsetParallel.

For subset, allocate n = 160,000/1600 = 100 replications to each solution. For
bi-PASS use ng = 10 An = 20 and ¢ = 5, which gives an EFER of 0.05.

Remember to use your birthday for the seed.

ptimeSP <- system.time({resultSP <- SubsetParallel(1600, 0.05, 100, 12211956)}) [3]

ptimeBF <- system.time({resultBF <- bipassFast(1600, 5, 10, 20, 160000)}) [3]
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Experiment 2 with bi-PASS

Load the M/M/1 queue problem, which has £ = 100 solutions. With a
total budget of 15,000 replications, compare the time to execute bipassSlow vs.
bipassFast.

For bi-PASS use ng = 10, An = 10, and ¢ = 5, which gives an EFER of 0.05.

Remember to use your birthday for the seed.

ptimeBS <- system.time({resultBS <- bipassSlow(100, 5, 10, 10, 15000)})

ptimeBF <- system.time({resultBF <- bipassFast(100, 5, 10, 10, 15000)})
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CS issues really matter in parallel

There is not one, unique parallel architecture, and customizations can matter.

Message passing via MPI is conceptually easy, but unexpected behavior can
occur, and passing messages does take time.

Processors may be heterogeneous, and results can be lost.

Memory may be shared or not.

The overhead to load a simulation onto a processor can be substantial, so also
need to consider fixed cost to set up as well as marginal time per replication.

Management of pseudo-random numbers can be tricky, e.g., to use CRN.
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Parallel R&S recap

e If a simulation optimization problem can be treated as a R&S problem then
it can be “solved.”

— All three errors can be controlled.

e High-performance, parallel computing extends the “R&:S limit" but introduces
new statistical and computational problems.

— "Embarassingly parallel”
— Violation of standard assumptions

— cost # number of observations

e The computer architecture issues can no longer be ignored.
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Other formulations

e Procedures have been created for specific non-normal data; e.g., Poisson.

e Procedures have been created for other performance measures; e.g.,
probabilities, quantiles.

— Procedures like KN are asymptotically valid for probabilities, and actually
work pretty well.

e Selecting the system that is most likely to be the best (multinomial selection).
— Makes sense for one-shot decisions.
e Selecting the best system better than a standard.

— Is related to bi-PASS and to feasibility checking.
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An omnibus approach

Holy Grail: A procedure that works for virtually any performance measure (mean,
probability, quantile) and data (normal, non-normal). Two insights make this
possible:

~

1. If we can construct estimators 0(z) of parameters 0(z) such that

o~

Pr {(9‘(9;) —O(k) — (6(z) — 6(k)) < 6, Vx # k} >l—a (1)

then
PGS =Pr{f(k) - 0(z") <6} > 1 -«

2. Given a sample of output data, we can estimate the probability in (1) using
bootstrapping, and then increase the sample size until it is > 1 — a.
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Bootstrap PGS

Suppose we have N replications from each of the & systems, and let

T* = argmax,f(z), the sample best.

Then our bootstrap estimate of PGS is

PGS = %i 1z {éﬁb)(m) — G — [é‘(gg) . 5(?0*)] < 5}

b=1 x#Z*

where §%)(z) come from bootstrap samples of size N. We increase N (generate
more simulation output) until this estimate is > 1 — a.

Lee and N showed this approach to be asymptotically valid under very mild
conditions on the data (6 — 0).
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Best-mean illustration

Simulation output: [Yi(z),...,Yn(2)] = Y(z), z=1,2,...,k

T* = argmax, Y (z) < current sample best with NV replications

Bootstrap: We bootstrap the simulation outputs B times to get
Yl(”)(x),...,yg,.”)(m)] SVO(2), 2=1,2,...,k b=1,2,...,B

b=1 z#T*
Note: To incorporate CRN we bootstrap vectors of replications.
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bootRS <- function(k,alpha,n0,delta,B,dn){ PGS <- bsum/B
# k = number of systems print (c("N=", n0O, "PGS =",PGS))
# n0 = first-stage sample size if (PGS < 1 - alpha){
# l-alpha = desired PCS Ytemp <- NULL
# delta = indifference-zone parameter for (x in 1:k){
# B = number of bootstrap samples Ytemp <- cbind(Ytemp, MySim(x, dn))
# dn = increment to increase n0O }
PGS <- 0 Yall <- rbind(Yall, Ytemp)
Yall <- NULL n0 <- n0 + dn
for (x in 1:k){ }
Yall <- cbind(Yall, MySim(x, n0))} else{break}
}
while (TRUE) { list(Best = xstar, PGS=PGS, N = n0)
bsum <- 0 }

Ybar <- apply(Yall, 2, mean)

xstar <- which.max(Ybar)

for (i in 1:B){
Ybarstar <- apply(apply(Yall, 2, sample, replace=TRUE), 2, mean)
diffs <- Ybarstar - Ybarstar([xstar] - (Ybar - Ybar[xstar])
bsum <- bsum + prod(as.numeric(diffs <= delta))

}
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Testing bootstrap R&S

Reload the TTF example. Remember that the output data are highly non-normal.

Remembering to set the seed to your birthday, rerun Rinott with k = 4, ng = 50,
a = 0.05, and 6 = 1000. Note which system is selected, and the total number of
observations generated.

Remembering to set the seed to your birthday, run bootRS with the same setting,
plus B = 200 and An = 100.

resultBoot <- bootRS(4, 0.05, 50, 1000, 200, 100)

The total number of observations is 4 x ending sample size.
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Multi-arm bandits

e There is a connection between R&S and multi-arm bandit (MAB) problems,
but they are not the same.

— Objectives of MAB and R&S often different
(e.g., minimize regret).
— MARB focus is online; R&S is always offline.

— Different standards for “good performance.”

— Different assumptions about the data.

e R&S tends to be more willing to waste observations on inferior systems to
reduce the overall number of observations.
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“Multi-armed bandit” is a slang name for a slot machine. Losing as little money
as possible, you would like to find the machine with the highest payout.

e In lllinois the percentage payback ranged from 89-92.5% in 2017.
e Cooler name than “ranking & selection.”
A good overview reference is

Jamieson & Nowak. 2014. Best-arm identification algorithms for multi-
armed bandits in the fixed confidence setting. 48th Annual Conference
on Information Sciences and Systems. |EEE.
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More about the differences

“Online” means making decisions as we play, and it costs to play. “Offline” means
doing our analysis, then implementing the choice, and rewards follow.

“Regret” depends on the rewards | accumulate as | play. PCS depends only on
getting the best choice in the end, not how | get there.

MAB tends to evaluate algorithms via their probability complexity. R&S evaluates
algorithms by their finite-time effort.

MAB tends to assume sub-Gaussian (even bounded) reward distributions; R&S
often assumes normally distributed output.

MAB typically assumes finite budget; R&S often desires fixed precision.
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Classical stochastic MAB

x €{1,2,...,k} arms to play, with reward distribution F, having mean u(z).

I; the arm | choose to play on turn ¢, and Y;(I;) ~ F7, is the reward | receive.

Regret Ry, = max PR ACED IR ALY
=1 t=1

Expected regret | r,, = E(R,,)

mn n
Pseudo-regret | 7, = maxE Z}Q(:c) — ZYt(It)
t=1 t=1

x

Loosely, the goal is to pick a policy for selecting /; that minimizes (pseudo) regret.
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Upper confidence bound policy

At the end of turn t, construct an UCB for each u(x). On turn ¢ + 1 play the arm
with the largest UCB. “Optimism in the face of uncertainty.”

Clearly all forms of regret are non-decreasing in the number of turns n; MAB wants
it to increase at the slowest possible rate. A building block:

Tn = TL/J/(]ﬁ) _ZE(:U’Q)

k
= nu(k) — Z p(z)E(# times played arm x thru turn n)
=1

k
= Z(,u(k) — p(x))E(# times played arm x thru turn n)
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MAB type of resulit

Try to upper bound the rate at which E(# times played arm z thru turn n)
increases as turns n increases for x # k.

This bounds the rate at which 7,, increases.

Note that this bound on the rate of increase is neither an estimate of the pseudo-
regret 7, nor a statistical guarantee.

It does say that as you play you accumulate regret no faster than the derived rate.

MAB policies are frequently quite simple to implement, which makes them
attractive, and of course many problems require online solutions.
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Project: Create a large-scale R&S procedure

Our (s,S) inventory problem has k = 1600 feasible solutions; pretty large.

Your job is to find the best by using the building blocks we already have to
construct a new procedure: NSGS.

NSGS first applies subset selection to all k systems (ng reps, confidence level
1 — «/2), then passes the survivors to Rinott (7 reps, confidence level 1 — «/2,
k systems, 6 = 0.1), using the data already obtained for subset.

Comment: It might seem that we could use the Rinott & for the reduced k = |§
the size of the surviving subset, but sadly this is not the case.
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Some useful R

The Rinott phase will need to loop over just the survivors; here is one way to do
that:

> result <- Subset(5, 10, 0.05)
> result$Subset

(1] 1 4

>

> for(i in result$Subset)q{

+ print (i)}

(1] 1

[1] 4
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Special thanks to David Eckman and Linda Pei for commenting on these slides.
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