Barry L. Nelso

E rundatmns
and Methods

of Stochastic
Simulation

A First Course

Chapter 2.3: p
VBA Primer

©Barry L. Nelson
Northwestern University
December 2012

Visual Basic for Applications

VBA a significant subset of the stand-alone Visual
Basic programming language

It is integrated into Microsoft Office applications
(and others)

It is the macro language of Excel
You can add

— Forms for dialog boxes with user input

— Modules containing procedures < this lecture
— Class Modules for object definitions < later

VBA & Excel for
discrete-event simulation

e Advantages
— VBA is easy to learn and available almost everywhere

— VBA is a full-featured programming language so what you
learn translates directly to C++, Java, etc.

— You have access to Excel functions for computation and
Excel itself for storing and analyzing outputs

e Disadvantages
— VBA is interpreted, not compiled, so execution is slow
— Excel functions can be buggy

Accessing VBA in Excel 2010+

e You launch the Visual Basic Editor from the
Developer Tab.

e |f you don’t have a Developer Tab in the
Ribbon, then go to the File, Options, and add
the “Developer” tab to the ribbon.

Home Insert Page Layout Formulas Data Review Vie

== [Record Macro B =l 3 [%F Properties [Import =)
& = 5)
2 E Use Relative References Q‘—J'J w Cod — & Expansion Packs & Export —,
ros : Add-Ins COM Insert Diesic : Source .. i Documen t
Ay Macro Security Add-Ins - el # Run Dialog) Refresh Data Panel
Code Add-Ins Controls XML Modify
Al - fe |
A | B E D E F G H | J K 5 %) 1

Project - YBAProject

% File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help
; S pomo@ B &S | @ Lny, coll

« Microsoft Visual Basic - TTF .xIs - [TTFCeilingReplications (Code)]

Type & question for help

|(Generan

j |(Dec|arations}

Project Explorer

=Rl =] B

+-B# atpvbaen.uls (ATPYBAEN.XLA)
-8 funcres (FUNCRES.XLA)
+- B Spluswiz.xls (SPLUSO7.XLA)
-|- B ¥BAProject (TTF.uls)
—|-25 Microsoft Excel Objects
] Sheetl (Run)
SheetZ {OutputFigure)
] Sheet3 (RepFigure)
@ ThisWorkbook,
—|--E5 Modules
& TTFCeiing
& TTFCeilingRephpations
& TTFReplications
2 TTFSingle

Modules are a
convenient way to
organize code

lingReplications

Properties - TTF

|TTFEemngRepﬁcaﬁor Madule _:J
Alphabetic Categoﬂzed]

TFCeiingReplications

Property Inspector

Diim Clock As Double !
Dim MNextFailure Ais Double !
Dim NextRepair is Double !
Diim 3 As Double !
Diim Slast As Double !
Diim Tlast As Double !
Dim Area A4s Double !

simulation clock

time of next failure event
time of next repair event
SYSLem State

previous value of the system state
time of previous state change

area under 3 (t] curve

—

Declarations made here are global; all
other code must be in a Sub or
Function

Public Sub TTFRep()

' Program to generate a sample path for the TTF example
Dim NextEvent As 3tring
Const Infinity = 1000000
End (-1)
Randomize [(1234)

' Define and initislize replication wvarisbles
Dim Rep A= Integer
Dim Sum3 A= Double,
Sum3 = 0
Sum¥ = 0

Sum¥ As Double

For Rep = 1 To 100

' Initialize the state and statistical wariables

3 =2z
Zlast = 2
Clock = 0
Tlast = 0O
Ares = 0O

' Zchedule the initial failure ewvent
MNextFailure = WorksheetFunction.Ceiling(& * REnd(), 1)
MNextRepair = Infinity

' ALdwvance time and execute events until the system fails
Do Until 3 =0
NextEvent = Timer
Select Case NextEvent
Caze "Failure™
Call Failure
Case "Repair'™
Call Repair
End ZSelect
Loop

' hoewralate replicsation statistics
SumS = Sumd + Area / Clock
Sum¥ = Sum¥ + Clock
Next Rep

' Display output
M=gBox

["iverage failure at time "

Code Window:

This is where you
will write your
simulation programs

& Jum¥ / 100 & "™ with average # functional components " £ Sumd / 100)

Structure of a VBA project

e Modules are collections of VBA code
— From menu: Insert 2 Module
— Module can be named in the Property Inspector

— Includes:
e Global Declarations that occur before any Subs or Functions
e Procedures (Subs) and Functions of executable code

e Class Modules are covered later....

e UserForms are graphic objects for user input and
output; we will not work with UserForms

Variables

e |t is good programming practice to declare the
type of all variables

e Standard types in VBA

— Single, Double (single and double-precision reals)

— Integer, Long (small 32k and large 2 billion
integers)

— String (character variables)
— Boolean (True or False)

Variable scope

“Scope” determines to what part of your VBA code a variable
is visible

Project level: Entire workbook

— Public X As Double

— Must be declared at the top of a Module

— You will rarely want to do this
Module level: Entire module (“Global”)

— {Dim or Private} Z As Long

— Must be declared at the top of a Module
Procedure level: Sub or Function (“Local”)

— {Dim or Private} Y As String
— Declared inside a Sub or Function

Constants & Statics

e Const constantName [As type] = expression
— Value cannot be changed
Const PI =3.1, NumPLANETS =9

e Static staticName As type

— Static causes variables in Subs and Functions to
retain their values (normally lost when you exit
Sub or Function)

Static yourName As String

The values of these variables in the
initial declarations are available to
Examples
p all Subs or Functions in this Module,
but not to other Modules

Dim Clock As Double " simulation clock
Dim NextFairlure As Double " time of next failure event N
Dim NextRepair As Double " time of next repair event
Dim S As Double " system state
Dim Slast As Double " previous value of the system state >
Dim Tlast As Double " time of previous state change
Dim Area As Double " area under S(t) curve)
Public Sub TTFRep()
" Program to generate a sample path for the TTF example

Dim NextEvent As String

Const Infinity = 1000000 *- Declaration of a constant

Rnd (-1)
Randomize (1234)

" Define and initialize replication variables These variables’ values are onl
Dim Rep As Integer Y

Dim SumS As Double, SumY As Double * known to Sub TTFRep

10

Arrays

e Arrays can have any number of dimensions

e Where the indices start is up to you
Dim X(1 to 100) as Integer
Dim EIf(O to 5, 0 to 20) as String

e You can also dynamically allocate and reallocate an
array

Dim Calendar() as Integer
ReDim Calendar (1 to 31) as Integer

11

Control Structures

e \/BA contains the usual control structures for
branching, looping, etc.

e We will present a few of the most useful ones.

e A consistent feature of VBA control structures
is that there is an explicit "end" statement

12

If-Then-Else-Endif Structure

If Index =0 Then
X=X+1
Y = VBA.Sqr(X)
Else If Index =1 Then
Y = VBA.Sqr(X)
Else If Index = 2 Then
Y=X
Else

Note: All control structures in VBA have an
End If explicit ending statement

13

Select Case Structure

The case will be selected

/based on the value of this

Select Case IndexVariable

variable
Case 0
statements...
Case 1to 10
statements...
Casels<O0 Notice that the “cases” can
statements... be constants, ranges,

conditions and variables; this

Case NumSteps .
is a powerful control

statements... structure that we will use to
Case Else select events to execute
statements...

End Select

14

Loops

For counter = start To end [Step increment]
statements

Next counter

Do
statements...

Loop {While | Until} condition

Do {While | Until} condition
statements...

Loop

For Each element In group
statements

Next element

15

~

Because the
“Until”
condition
appears at
the top it is
tested before
the loop is
executed for
the first time

_

For Rep = 1 To 100

" Initialize the state and statistical variables

S =2

Slast = 2 Timer is a function that
Clock = 0 returns the name of the next
Tlast = O event; more on that later...

Area = 0

" Schedule the 1nitial failure event
NextFailure = WorksheetFunction
NextRepair = Infinity

eiling(6 * Rnd(), 1)

" Advance time and execute eventg until the system fails

o~ Do Until S =0

NextEvent = Timer
Select Case NextEvent
Case "Failure" ™
Call Failure Notice that
Case "'Repair" NextEvent is a String
Call Repair variable so the cases
End Select D arein “”

= Loop

" Accumulate replication statistics
SumS = SumS + Area / Clock
SumY = SumY + Clock

Next R
ext Rep 16

Exiting control structures

ForJ=1To 10 Step 2
[statement block]

Exit For —
OCk] Optional statements to

allow early, graceful exit
NEXt J from the loop before the

termination condition

Do

[statement block]

Exit Do

[statement block]
Loop Until Check = False

17

Subs and Functions:
Where the action occurs

e Private Sub mySub (arguments)
— no value returned except through arguments
— Called when needed
Call mySub(param1, param?2)
e Private Function myFunction (arguments) As type

— value returned
— assign return value to function name
X = myFunction(2, 7, Z)
e By default Subs and Functions have module-level
scope; can have project-level scope by declaring
them Public

18

Subs

e Basic syntax:

{Public|Private} Sub name(arguments)

statements... Optional way to leave the Sub
Exit Sub «— before reaching the End statement

statements...
End Sub

19

Functions

e Basic syntax:

{Public|Private} Function name(arguments) AS type
statements...

name =returnvalue.
Exit Function Value returned as the name of

the function
statements...
End Function

Optional way to leave the Function
before reaching the End statement

20

Arguments for procedures

e Pass by Reference (default) means that changes
to the value of the variable will be returned

Sub stuff(item As String, price As Integer)

e Pass by Value means only the value is passed so
the original variable is unchanged

Sub stuff(ByVal item As String, ByVal price As Integer)

21

Notice that a Function must have a
Private Function Timer() As Stringt/type since it returns a value
Const Infinity = 1000000

" Determine the next event and advance time
IT NextFailure < NextRepailr Then
Timer = "Fairlure" <
Clock = NextFailure
NextFailure = Infinity
Else
Timer = "Repair"
Clock = NextRepair
NextRepair = Infinity
End ITf
End Function

Value is returned as the name of the
Function

Private Sub Failure()
" Failure event
" Update state and schedule future events
S=S-1
ITS =1 Then
NextFailure = Clock + WorksheetFunction.Ceiling(6 * Rnd(), 1)
NextRepair = Clock + 2.5

End IT No arguments are passed

" Update area under the S(t) curve here, so how does the
Area = Area + Slast * (Clock - Tlast) Function or Sub know the
Tlast = Clock values of these variable?
Slast = S

22
End Sub

Another example from VBASIm

“Variant” allows any variable type The underscore character
means “continued on the

next line” /

Public Sub Report(Output As Variant, WhichSheet As String, Row As Integer,
Column As Integer)

" basic report writing sub to put an output on worksheet WhichSheet(Row, Column)
Worksheets(WhichSheet) .CellIs(Row, Column) = Output

End Sub

This is one way to reference a
particular cell in a worksheet

23

Interacting with Excel

e We will frequently interact with Excel in two
ways:
1. Reading from and writing to cells in a worksheet
2. Using Excel intrinsic functions within VBA code

24

Writing to a worksheet

e Put the absolute value of the variable Fudge in
row I=2, column J=20 of the Worksheet
named Sheetl.

Worksheets(“Sheet1”).Cells(2,20) = VBA.Abs(Fudge)
Worksheets(“Sheet1”).Cells(l,J) = VBA.Abs(Fudge)

Worksheets(“Sheet1”).Range(“T2”)=VBA.Abs(Fudge)

~—

This is how you address
VBA intrinsic functions

25

Reading from a worksheet

e Here we read the value from row 4, column 7
of the worksheet "myData"

X = Worksheets(“myData”).Cells(4, 7)

26

Using an Excel function

e VBA has a limited number of built-in functions
which you access as VBA.function

X = VBA.Exp(7)

e You can use any Excel worksheet function in
the following way:

WorksheetFunction.functionname

— W = WorksheetFunction.Max(0, W + S - a)
— NextFailure = WorksheetFunction.Ceiling(6 * Rnd(), 1)

27

Running the Code

e Perhaps the easiest way to run the code is to
place your cursor in the module you want to
run and press the Run|[» | button (which is
also function key F5).

e Your modules will also appear as Macros that
can be run from Excel

28

Useful tools in the Debug menu, especially setting a

Watch to track how a variable or expression changes D e b u gg' n g

@ Microsoft Visual Basic - NewCode042704 xls [oreak] - [DiscreteTTF {Code]]

#Eile Edit “iew Insert Format Debuy Bun Tools Add-lns “Window Help loop ry . g %
Ba-d 4k o o)y @ md BES P B Lnss, Coll -
Project - VBAProject I(General) j IFaiIure j
E - ' Determine the next event and advance time zl
Sheetl3 (TTF) = If NextFailure < NextRepair Then
Sheetl4 (SAFD) Timer = "Fallure"
Sheet1S (VarGen) Clock = MextFailure H -
Sheet2 (T TFEstimation) A Setting break points causes
Chests (s Bloe d hen the poi
Shzzt‘ﬁ C(:I\SAA) lasler re) Timer = ”Repair" CO e to Stop W en t e p0|nt
Clock = MextRepair . .
Sheetd (TTFCrude) !
e NextRepair = 1000000 is reached (F5 to continue)
Sheeta (TTFCE) End If
.. EH] Sheetd (TTFIS) End Function
.38 ThiswWorkbook
E1-455 Modules . Public Sub Failure ()
el Analysis 'Failure event
“&QBQNT%t | Area = Areg Clock - Tlast) * §
w8 DiscreteTTF K
o Irwt oc
-8 MGL =
<| b . P I _}I_I 9 =5 - 1
¢ Jlllzt 5 = 1 Then

Properties - DiscreteT TR NextFailure = Clock + WorksheetFunction.Floor{(6 * Rnd{}, 1) + 1
|DiscreteTTFMOdule j NextRepair = (Clock=5 %5\

End If

Alphabetic |Categorized| End Sub PaSSing the cursor
[GEIWEY] Discrete TTF .
Public Sub Repair() over variables shows

e hiea + (clock - Tiasty + 5 their current value

Tlast = Clock

=958 +1
If 5 = 1 Then
NextRepair = Clock + 2.5
NextFallure = Clock + WorksheetFunction.Floor(6 * Rnd{}, 1) + 1
End If
End 8ub

d o

El'

Finishing up

e Exercise:
— Insert a new Module and name it “Test”

— Write a Function that evaluates the standard
normal density function
f(x) = exp(-x*/2)/sqr(2 r)

— Write a Sub that uses a loop to call your function
and evaluate the standard normal density at x = -

2.5,-1.5, -0.5, 0.5, 1.5, 2.5 then write the results
in column B of an Excel worksheet

30

