
Chapter 4

Simulation Programming with JavaSim

This chapter shows how simulations of some of the examples in Chap. 3 can be
programmed in JavaSim. The goals of the chapter are to introduce JavaSim, and

to hint at the experiment design and analysis issues that will be covered in later

chapters.

4.1 JavaSim Overview

JavaSim is a collection of Java methods and classes that aid in developing discrete-

event simulations. They are entirely open source and can be modified to suit the user.

The JavaSim package consists of the JavaSim class, supporting classes for simula-
tions, and examples of simulations written using JavaSim. The random-number and

random-variate generation routines implemented in the class Rng are Java trans-

lations of the corresponding routines in simlib (Law 2007) which is written in C.

JavaSim is designed to be easy to understand and use, but not necessarily efficient.

Here is a brief description of the methods in the JavaSim class:

javaSimInit: Initializes JavaSim for use, typically called before the start of

each replication.

schedule: Schedules future events.

schedulePlus: Schedules future events and allows an object to be stored with

the event.
report: Writes a result to a specific row and column of a JTable table.

clearStats: Clears certain statistics being recorded by JavaSim.

Here is a brief description of the methods in the Rng class:

Rng: Random number generator class. The constructor initializes the random-

number generator; typically called only once in a simulation.

expon: Generates exponentially distributed random variates.
uniform: Generates uniformly distributed random variates.

41

42 4 Simulation Programming with JavaSim

randomInteger: Generates a random integer.

erlang: Generates Erlang distributed random variates.

normal: Generates normally distributed random variates.

lognormal: Generates lognormally distributed random variates.
triangular: Generates triangularly distributed random variates.

The random-variate generation methods take two types of arguments: parame-

ters, and a random-number stream; the random-number stream is always the last

argument. For instance

x = uniform(10, 45, 2)

generates random-variates that are uniformly distributed between 10 and 45, using

stream 2.

As you already know, the pseudorandom numbers we use to generate random

variates in simulations are essentially a long list. Random-number streams are just

different starting places in this list, spaced far apart. The generator in JavaSim

(which is a translation of the generator in Law 2007) has 100 streams. Calling
the random-number generator constructor Rng() sets the initial position of each

stream. Then each subsequent call to a variate-generation routine using stream #

advances stream # to the next pseudorandom number. The need for streams is dis-

cussed in Chap. 7, but it is important to know that any stream is as good as any other

stream in a well-tested generator.
Here is a brief description of the classes in JavaSim:

Entity: Object used to model transient items that flow through the system.

FIFOQueue: Object to hold entities in first-in-first-out order.

Resource: Object used to model a scarce quantity.

EventNotice: Object used to represent a future event.
EventCalendar: Data structure holding event notices in chronological order.

CTStat: Object used to record continuous-time statistics.

DTStat: Object used to record discrete-time statistics.

4.2 Simulating the M(t)/M/∞ Queue

Here we consider the parking lot example of Sect. 3.1, a queueing system with

time-varying car arrival rate, exponentially distributed parking time and an infinite

number of parking spaces. The simulation program consists of the class initializa-
tions (Fig. 4.1), a main program and some event routines (Fig. 4.2), an initialization

method (Fig. 4.3), a method to generate car arrivals (Fig. 4.4), and the support func-

tionality provided by JavaSim. Two important aspects of JavaSim are illustrated by

this model: event scheduling and collecting time-averaged statistics.

The key state variable that we need to track is the number of cars in the lot. There
are two essential events that affect the state, the arrival of a car and the departure

of a car, and a third event we will use to stop the simulation at a specific point in

4.2 Simulating the M(t)/M/∞ Queue 43

time. The tricky part is that there can be an unlimited number of pending “departure”

events; in fact, there are as many pending departure events as there are cars in the lot.

Therefore, having a unique variable to represent the scheduled time of each pending

event, as was used for the TTF example in Chap. 2, will not work.
To handle event scheduling, JavaSim has an event calendar class called

EventCalendar, a method called schedule for putting events on the

EventCalendar and a method called remove for extracting the next event from

the calendar. An event in JavaSim is a Java object of class EventNotice which

has (at least) two properties: EventType and EventTime. The statement

JavaSim.schedule(name, increment)

creates an EventNotice, assigns the character string name to the EventType

property, assigns the value clock + increment to the EventTime prop-

erty, and schedules the EventNotice on the EventCalendar in the cor-

rect chronological order. The method JavaSim.calendarRemove() extracts
the chronologically next EventNotice from the EventCalendar, making its

EventType and EventTime properties available to advance time and execute

the proper event.

The simulation main program MtMInf in Fig. 4.2 illustrates how the event-

related features of JavaSim work. The following statements, or ones very similar,
will appear in all simulations using JavaSim:

EventNotice nextEvent;

nextEvent = javaSim.calendarRemove();

javaSim.setClock(nextEvent.getEventTime());

if (nextEvent.getEventType() == specifiedEventType1) {

}

else if (nextEvent.getEventType() == specifiedEventType2) {

}

...

else if(nextEvent.getEventType() == specifiedEventTypeN) {

}

Since our simulation will repeatedly remove the next EventNotice

from EventCalendar, we need an object of this class to which to as-
sign it; the statement EventNotice nextEvent provides this. The state-

ment nextEvent = javaSim.calendarRemove() illustrates how the

remove method extracts the next event, after which we advance the simulation

clock to time nextEvent.EventTime and execute the event indicated by

nextEvent.EventType.

44 4 Simulation Programming with JavaSim

/**

* Example illustrating use of JavaSim for simulation of

* M(t)/M/infinity Queue parking lot example. In this

* version parking time averages 2 hours; the arrival

* rate varies around 100 per hour; the lot starts empty,

* and we look at a 24-hour period.

* See JavaSim package for generic declarations and for

* the supporting JavaSim class

*/

// simulation variables and statistics

private int n; // Number in queue

private CTStat queueLength; // use to keep statistics on n

private int maxQueue; // largest observed value of n

Fig. 4.1 Declarations for the parking lot simulation.

JavaSim’s schedule method places events on the EventCalendar; for in-

stance, the statement

JavaSim.Schedule("EndSimulation", 24)

creates an EventNotice of type EndSimulation to occur 24 hours from the time

currently on clock (which is 0 at the beginning of the simulation). Notice that

JavaSim requires the user to decide on the base time unit in the simulation and to
use it consistently throughout. In this simulation the base time unit is hours.

The key state variable in this simulation is n, the current number of cars in the

parking lot, and we want statistics on it. JavaSim contains a CTStat class that can

be used to record time-averaged statistics. Here is how it works: First, we declare a

new CTStat using the statement

Private CTStat queueLength;

as shown in the class declarations (Fig. 4.1). Second, the CTStat should be initial-

ized using the statement

queueLength = new CTStat();

as shown in Fig. 4.3. Third, the CTStat can (and usually should) be added to a spe-
cial collection called TheCTStats, as shown in Fig. 4.3. JavaSim reinitializes any

CTStat in TheCTStats collection whenever JavaSim.javaSimInit() is

executed, which is typically at the beginning of each replication. Next, when-

ever the value of the variable of interest changes, the record method of the

CTStat is employed to record the change (which means it is called just after the
change occurs); in this simulation the statement is queueLength.record(n,

javaSim.getClock()), as shown in Fig. 4.2. Finally, the time-averaged value

of the CTStat can be computed using the Mean method of the CTStat, as in

queueLength.mean(javaSim.getClock()).

Notice that JavaSim also has a report method that writes a value or character

string to a given row and column of a Java JTable. The syntax is

4.2 Simulating the M(t)/M/∞ Queue 45

/**

* Run the MTMInfinity simulation and output the results

*/

private void runSimulation() {

EventNotice nextEvent;

for(int reps = 0; reps < 1000; reps++) {

n = 0;

maxQueue = 0;

javaSim.javaSimInit(); // initialize javaSim for each replication

javaSim.schedule("Arrival", nspp(0));

javaSim.schedule("EndSimulation", 24);

do {

nextEvent = javaSim.calendarRemove();

javaSim.setClock(nextEvent.getEventTime());

if (nextEvent.getEventType() == "Arrival") {

arrival();

} else if (nextEvent.getEventType() == "Departure") {

departure();

}

} while(nextEvent.getEventType() != "EndSimulation");

javaSim.report(queueLength.mean(javaSim.getClock()), reps + 1, 0);

javaSim.report(maxQueue, reps + 1, 1);

}

}

Fig. 4.2 Main program and event routines for the parking lot simulation.

JavaSim.report(value or string, row, column)

See Figs. 4.2 and 4.3.
Recall that the arrival rate (in cars per hour) to the parking lot was mod-

eled by the function λ (t) = 1000 + 100 sin(πt/12). To make the simulation ex-

ecute more quickly for the purpose of this introduction, we change that rate to

λ (t) = 100 +10 sin(πt/12), so that the arrival rate varies between 90 and 110 cars

per hour, depending on the hour of the day t .
The method nspp shown in Fig. 4.4 generates interarrival times (time gaps be-

tween arrivals) from a nonstationary Poisson process with this arrival rate. The for-

mal definition of a nonstationary Poisson process is a topic of Chap. 6. However, we

provide an intuitive justification for the working of method nspp here:

A stationary Poisson process has times between arrivals that are exponentially

distributed with a fixed rate λ (or equivalently a constant mean time between ar-
rivals 1/λ). The inverse cdf method for generating exponentially distributed random

variates was described in Chap. 2.2.1. The maximum arrival rate for λ (t) is 110 cars

46 4 Simulation Programming with JavaSim

/**

* Initialize the simulation

*/

private void myInit() {

// initialize the random number generator

generator = new Rng();

// initialize the simulation

String simulationName = "M(t)/M/infinity";

javaSim = new JavaSim(simulationName);

// initialize the queue length CTStat

queueLength = new CTStat();

meanParkingTime = 2.0;

javaSim.addCTStat(queueLength);

// Write headings for the output reports

javaSim.report("Average Number in Queue", 0, 0);

javaSim.report("Maximum Number in Queue", 0, 1);

}

Fig. 4.3 Initializing the parking lot simulation.

per hour, so nspp generates possible arrivals using a stationary arrival process with

rate λ = 110. To achieve the time-varying arrival rate, it only accepts a possible

arrival at time t as an actual arrival with probability λ (t)/λ . Thus, a possible arrival

that is to occur at a time when λ (t) = 110 will always be an actual arrival, while a

possible arrival that is to occur when λ (t) = 90 will only have a 90/110 probability

of being an actual arrival. That this method, which is called “thinning,” generates a
nonstationary Poisson process with the desired rate is discussed in Chap. 6.

Fig. 4.5 shows a histogram of the 1000 daily averages of the number of cars in

the parking lot obtained by running the simulation for 1000 replications; the overall

average of these averages is 184.2±0.3 cars, where the “±0.3” part comes from a

95% confidence interval on the mean (confidence intervals are a subject of Chap. 7).
Thus, the simulation provides a pretty precise estimate of the time-average mean

number of cars that would be found in the (conceptually) infinite-size garage during

a day.

The histogram shows that the average number of cars in the garage can vary

substantially from day to day, so we certainly would not want to build a garage
with a capacity of, say, 185 cars. Further, averaging over the day masks the largest

number of cars in the garage during the day, and that number is more useful for

selecting a finite capacity for the garage.

JavaSim provides no special support for the maximum statistic, but since we have

access to everything in a JavaSim simulation we can easily record whatever we want.

Here we define a variable maxQueue which is initialized to 0 at the beginning of

4.2 Simulating the M(t)/M/∞ Queue 47

/**

* This function implements thinning to generate

* interarrival times from the

* nonstationary Poisson arrival process

* representing car arrivals. Time units

* are minutes.

*

* @param stream

* Seed for the random number generator

* @return interarrival time from nonstationary

* Poisson arrival process

*/

private double nspp(int stream) {

double possibleArrival =

javaSim.getClock() + generator.expon(1.0 / 110.0, stream);

while(generator.uniform(0, 1, stream)

>= (100 + 10 *
Math.sin(3.141593 * possibleArrival / 12.0)) / 110.0) {

possibleArrival += generator.expon(1.0 / 110.0, stream);

}

return possibleArrival - javaSim.getClock();

}

Fig. 4.4 Method to generate interarrival times to the parking lot.

each replication, and is increased to the current value of n whenever n exceeds the

previous value of maxQueue. See in particular the method arrival in Fig. 4.2.

Suppose that we want the parking lot to be of adequate size 99% of the time.
Since we record the maximum size on 1000 replications, we could use the 990th

value (sorted from smallest to largest) as the size of the garage, which turned out to

be 263 cars in this simulation. Figure 4.6 shows the empirical cumulative distribu-

tion (ecdf) of the 1000 maximums recorded by the simulation. The ecdf treats each

observed value as equally likely (and therefore as having probability 1/1000), and

plots the sorted maximum values on the horizontal axis and the cumulative proba-
bility of each observation on the vertical axis. The plot shows how the cumulative

probability of 0.99 maps to the value of 263 cars, which might be a very reasonable

capacity for the garage. Putting a confidence interval on this value is quite different

than putting one on the mean, and will be discussed in Chap. 7. Without a confi-

dence interval (or some measure of error) we cannot be sure if 1000 replications is
really enough to estimate the 99th percentile of the maximum.

48 4 Simulation Programming with JavaSim

��� ��� ��� ���

�
�
�

�
�
�

�
�
�

�	
��
�����
���������

Fig. 4.5 Histogram of the daily average number of cars.

Maximum Number of Cars

C
u
m

u
la

tiv
e
 P

ro
b
a
b
ili

ty

210 220 230 240 250 260 270

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fig. 4.6 Empirical cdf of the daily maximum number of cars in the parking lot.

4.2.1 Issues and Extensions

1. The M(t)/M/∞ simulation presented here simulates 24 hours of parking lot op-
eration, and treats each 24-hour period as as independent replication starting with

4.3 Simulating the M/G/1 Queue 49

an empty garage. This only makes sense if the garage is emptied each day, for

instance if the mall closes at night. Is the assumed arrival rate λ (t) appropriate

for a mall that closes at night?

2. Suppose that the parking lot serves a facility that is actually in operation 24 hours
a day, seven days per week (that is, all the time). How should the simulation be

initialized, and how long should the run length be in this case?

3. How could the simulation be initialized so that there are 100 cars in the parking

lot at time 0?

4. When this example was introduced in Sect. 3.1, it was suggested that we size the
garage based on the (Poisson) distribution of the number of cars in the garage at

the point in time when the mean number in the garage was maximum. Is that what

we did, empirically, here? If not, how is the quantity we estimated by simulation

related to the suggestion in Sect. 3.1 (for instance, will the simulation tend to

suggest a bigger or smaller garage than the analytical solution in Sect. 3.1)?

5. One reason that this simulation executes quite slowly when λ (t) = 1000 +
100 sin(πt/12) is that the thinning method we used is very inefficient (lots of

possible arrivals are rejected). Speculate about ways to make it faster.

6. For stochastic processes experts: Another reason that the simulation is slow when

λ (t) = 1000 +100 sin(πt/12) is that there can be 1000 or more pending depar-

ture events on EventCalendar at any time, which means that scheduling a
new event in chronological order involves a slow search. However, it is possi-

ble to exploit the memoryless property of the exponential distribution of parking

time to create an equivalent simulation that has only two pending events (the next

car arrival and next car departure) at any point in time. Describe how to do this.

4.3 Simulating the M/G/1 Queue

Here we consider the hospital example of Sect. 3.2, a queueing system with Pois-

son arrival process, some (as yet unspecified) service-time distribution, and a sin-
gle server (either a receptionist or an electronic kiosk); in other words, an M/G/1

queue. Patient waiting time is the key system performance measure, and the long-

run average waiting time in particular.

Recall that Lindley’s Equation (3.3) provides a shortcut way to simulate succes-

sive customer waiting times:

Y0 = 0 X0 = 0

Yi = max{0,Yi−1 +Xi−1 −Ai}, i = 1,2, . . .

where Yi is the ith customer’s waiting time, Xi is that customer’s service time, and Ai

is the interarrival time between customers i−1 and i. Lindley’s equation avoids the

need for an event-based simulation, but is limited in what it produces (how would

you track the time-average number of customers in the queue?). In this section we

50 4 Simulation Programming with JavaSim

will describe both recursion-based and event-based simulations of this queue, start-

ing with the recursion.

4.3.1 Lindley Simulation of the M/G/1 Queue

To be specific, suppose that the mean time between arrivals is 1 minute, with the

distribution being exponential, and the mean time to use the kiosk is 0.8 minutes
(48 seconds), with the distribution being an Erlang-3. An Erlang-p is the sum of p

i.i.d. exponentially distributed random variables, so an Erlang-3 with mean 0.8 is

the sum of 3 exponentially distributed random variables each with mean 0.8/3.

In Sect. 3.2 we noted that the waiting-time random variables Y1,Y2, . . . converge

in distribution to a random-variable Y , and it is µ = E(Y) that we will use to summa-

rize the performance of the queueing system. We also noted that Ȳ (m) = m−1 ∑m
i=1 Yi

converges with probability 1 to µ as the number of customers simulated m goes to

infinity.

All of this suggests that we make a very long simulation run (large m) and esti-

mate µ by the average of the observed waiting times Y1,Y2, . . .,Ym. But this is not

what we will do, and here is why: Any m we pick is not ∞, so the waiting times early
in the run—which will tend to be smaller than µ because the queue starts empty—

will likely pull Ȳ (m) down. To reduce this effect, we will let the simulation generate

waiting times for a while (say d of them) before starting to actually include them in

our average. We will still make m large, but our average will only include the last

m−d waiting times. That is, we will use as our estimator the truncated average

Ȳ (m,d) =
1

m−d

m

∑
i=d+1

Yi. (4.1)

In addition, we will not make a single run of m customers, but instead will make

n replications. This yields n i.i.d. averages Ȳ1(m,d),Ȳ2(m,d), . . .,Ȳn(m,d) to which

we can apply standard statistical analysis. This avoids the need to directly estimate

the asymptotic variance γ2, a topic we defer to later chapters.
Figure 4.7 shows a JavaSim simulation of the M/G/1 queue using Lindley’s

equation. In this simulation m = 55,000 customers, we discard the first d = 5000 of

them, and make n = 10 replications. The ten replication averages are individually

written to a JTable called “M/G/1 Lindley” and are displayed in Table 4.1.

Notice that the average waiting time is a bit over 2 minutes, and that Java, like all
programming languages, displays a very large number of output digits. How many

are really meaningful? A confidence interval is one way to provide an answer.

Since the across-replication averages are i.i.d., and since each across-replication

average is itself the within-replication average of a large number of individual

waiting times (50,000 to be exact), the assumption of independent, normally dis-

tributed output data is reasonable. This justifies a t-distribution confidence inter-
val on µ. The key ingredient is t1−α/2,n−1, the 1−α/2 quantile of the t distribu-

4.3 Simulating the M/G/1 Queue 51

package org.javasim.examples;

import org.javasim.JavaSim;

import org.javasim.Rng;

public class MG1Lindley {

public static void main(String[] args) {

int d;

long m;

double y, x, a;

double sumY;

Rng generator = new Rng();

m = 55000;

d = 5000;

String simulationName = "M/G/1 Lindley";

JavaSim javaSim = new JavaSim(simulationName);

javaSim.report("Average Wait", 0, 0);

for(int rep = 0; rep < 10; rep++) {

y = 0.0;

sumY = 0.0;

for(int i = 0; i < d; i++) {

a = generator.expon(1.0, 0);

x = generator.erlang(3, 0.8, 1);

y = Math.max(0, y + x - a);

}

for(int i = d; i < m; i++) {

a = generator.expon(1.0, 0);

x = generator.erlang(3, 0.8, 1);

y = Math.max(0, y + x - a);

sumY += y;

}

javaSim.report(sumY / ((double) m - d), rep + 1, 0);

}

}

}

Fig. 4.7 Simulation of the M/G/1 queue using Lindley’s equation.

52 4 Simulation Programming with JavaSim

Table 4.1 Ten replications of the M/G/1 queue using Lindley’s equation.

replication Ȳ (55000,5000)
1 2.191902442

2 2.291913404
3 2.147858324

4 2.114346960
5 2.031447995

6 2.110924602
7 2.132711743

8 2.180662859
9 2.139610760

10 2.146212039

average 2.148759113

std dev 0.066748617

tion with n− 1 degrees of freedom. If we want a 95% confidence interval, then

1−α/2 = 0.975, and our degrees of freedom are 10−1 = 9. Since t0.975,9 = 2.26,

we get 2.148759113±(2.26)(0.066748617)/
√

10 or 2.148759113±0.047703552.

This implies that we can claim with high confidence that µ is around 2.1 minutes,

or we could give a little more complete information as 2.14± 0.05 minutes. Any

additional digits are statistically meaningless.
Is an average of 2 minutes too long to wait? To actually answer that question

would require some estimate of the corresponding wait to see the receptionist, either

from observational data or a simulation of the current system. Statistical comparison

of alternatives is a topic of Chap. 8.

4.3.2 Event-based Simulation of the M/G/1 Queue

The simulation program consists of some class-level declarations (Fig. 4.8), a

main program (Fig. 4.9), some event routines (Fig. 4.10), an initialization method
(Fig. 4.11), and the support functionality provided by JavaSim. Four JavaSim class

objects and one method are illustrated by this model: Entity, FIFOQueue,

Resource DTStat and clearStats. At a high level, here is what they do:

• Entity objects are used to model transient items, such as transactions or cus-

tomers that pass through the system. They can have attributes (Java properties)
that they carry with them; by default they have an attribute called createTime

which is set to the value of clock when an Entity object is created. In this

simulation the Entity objects represent patients or visitors.

• FIFOQueue is a Java collection, much like EventCalendar, that is used for

holding Entity objects in first-in-first-out order; it also records time-average
number in the queue statistics. In this simulation the queue represents the patients

using or waiting for the kiosk.

4.3 Simulating the M/G/1 Queue 53

/**

* Example illustrating use of JavaSim for simulation of

* M/G/1 Queue.

* See JavaSim package for generic declarations and for

* the supporting JavaSim class

*/

// parameters we may want to change

private double meanTBA; // mean time between arrivals

private double meanST; // mean service time

private int phases; // number of phases in

// service distribution

private double runLength; // run length

private double warmUp; // "warm-up" time

// objects for simulation

// these will usually be queues and statistics

FIFOQueue queue; // customer queue

DTStat wait; // discrete-time statistics

// on customer waiting

Resource server; // server resource

// simulation object and the random number generator

private JavaSim javaSim;

private Rng generator;

Fig. 4.8 Declarations for the hospital simulation.

• Resource objects represent scarce quantities like workers, machines and com-

puters that are needed (typically) to serve or process an Entity in some way;

they also record the average number of busy resource units. In this simulation the

Resource object represents the kiosk.
• DTStat is an object for recording discrete-time statistics; it is the companion to

CTStat for continuous-time statistics. In this simulation a DTStat is used to

record total waiting-time statistics, where we will define “total waiting time” to

be the time from patient arrival until they are finished with the kiosk. Notice that

this is (intentionally) different from the definition in Sect. 4.3.1, where the wait
only included the time to reach the front of the line.

• clearStats is a method that reinitializes all statistical variables found in two

collections, TheCTStats and TheDTStats. FIFOQueue and Resource

objects each create a CTStat which is automatically added to TheCTStats.

When the programmer creates a custom CTStat or DTStat then they must add

it to the appropriate collection.

Figure 4.8 shows the declarations of the FIFOQueue, DTStat and Resource

objects, specifically:

FIFOQueue queue;

DTStat wait;

54 4 Simulation Programming with JavaSim

/**

* Run the M/G/1 simulation and output the results

*/

private void runSimulation() {

EventNotice nextEvent;

for(int reps = 0; reps < 10; reps++) {

javaSim.javaSimInit();

javaSim.schedule("Arrival", generator.expon(meanTBA, 0));

javaSim.schedule("EndSimulation", runLength);

javaSim.schedule("ClearIt", warmUp);

do {

nextEvent = javaSim.calendarRemove();

javaSim.setClock(nextEvent.getEventTime());

if (nextEvent.getEventType() == "Arrival") {

arrival();

} else if (nextEvent.getEventType() == "EndOfService") {

endOfService();

} else if (nextEvent.getEventType() == "ClearIt") {

javaSim.clearStats();

}

} while(nextEvent.getEventType() != "EndSimulation");

// write output report for each replication

javaSim.report(wait.mean(), reps + 1, 0);

javaSim.report(queue.mean(javaSim.getClock()), reps + 1, 1);

javaSim.report(queue.numQueue(), reps + 1, 2);

javaSim.report(server.mean(javaSim.getClock()), reps + 1, 3);

}

}

Fig. 4.9 Main program for the hospital simulation.

Resource server;

These are declared as class members because there is only one of each and they will
be referenced from many places in the simulation code.

This contrasts with the Entity objects that will be created and discarded as

needed to represent patients coming and going. For instance, consider this statement

in the method arrival:

queue.add(new Entity(javaSim.getClock()), javaSim.getClock());

The keyword new causes a new instance of the Entity class to be cre-

ated. We can access its attributes using its public getter methods, as in

Entity.getCreateTime(). The add method of the FIFOQueue object

queue places Entity objects into the queue in order of arrival.

4.3 Simulating the M/G/1 Queue 55

Moving into the endOfService event routine, the following two statements

remove the first customer from the queue, use its createTime attribute to

compute the total waiting time and record this value using the DTStat object

wait. It is important to notice the absence of the keyword new in Entity

departingCustomer; this means that departingCustomer is declared to

be of type Entity, but a new Entity object is not created by the declaration

statement.

Entity departingCustomer = (Entity) queue.remove(javaSim.getClock());

wait.record(javaSim.getClock() - departingCustomer.getCreateTime());

Before a Resource object can be used, its capacity (number of identical units)

must be set. In the method myInit this is accomplished by using the object’s

setUnits method, server.setUnits (1). If, for instance, there were 3

identical kiosks then this statement would be server.setUnits (3). To make

one (or more) units of a Resource busy, the seize method is employed, while
idling a Resource is accomplished via the free method, as shown in the event

methods.

In this simulation we are interested in long-run performance, so the length of a

replication is determined by whatever we decide is long enough (which is not an

easy decision, actually). When we used Lindley’s equation it was natural to specify
the replication length in terms of the number of customers simulated. However, in

more complex simulations with many different outputs, it is far more common to

specify the replication length by a stopping time T chosen so that it will be long

enough for all of the outputs. Similarly, if we plan to discard data, then it is easier

to specify a time Td at which all statistics will be cleared.
To control the replication length by time, we schedule two events: an “EndSimu-

lation” event scheduled to occur at time T = 55,000 minutes, and a statistics clear-

ing event “ClearIt” that calls the method clearStats at time Td = 5000 minutes.

Because the arrival rate of patients and visitors is 1 per minute, these times will ap-

proximately correspond to the run lengths of 55,000 and 5000 patients; however the

actual number of patients will be random and vary from replication to replication.

Let Ȳ (T,Td) be a replication average of all waiting times recorded between times

Td and T . Clearly Ȳ (m,d) based on count, and Ȳ (T,Td) based on time, will have

different statistical properties, but it is intuitively clear that both will be good esti-

mators of µ if their arguments are fixed (not a function of the data) and large enough.

Notice also that a run time and deletion time are ideal for continuous-time statistics
like the time-average number in queue.

For this event-based simulation it is easy to record and report a number of statis-

tics. FIFOQueue, Resource and DTStat objects all have getMean meth-

ods for reporting average values, which for this simulation are queue.getMean,

server.getMean and wait.getMean, respectively. In addition, the FIFOQueue
objects have a numQueue method to deliver the current number of entities in the

queue; here we use it to report the number of patients in the queue at time 55,000

when the replication ends. Table 4.2 shows the results from 10 replications, along

with the overall averages and 95% confidence interval halfwidths.

56 4 Simulation Programming with JavaSim

/**

* Arrival event

*/

private void arrival() {

// schedule next arrival

javaSim.schedule("Arrival", generator.expon(meanTBA, 0));

// process the newly arriving customer

queue.add(new Entity(javaSim.getClock()), javaSim.getClock());

// If server is not busy, start service by seizing the server

if (server.getBusy() == 0) {

server.seize(1, javaSim.getClock());

javaSim.schedule

("EndOfService", generator.erlang(phases, meanST, 1));

}

}

/**

* End of service event

*/

private void endOfService() {

// remove departing customer from queue and record wait time

Entity departingCustomer =

(Entity) queue.remove(javaSim.getClock());

wait.record

(javaSim.getClock() - departingCustomer.getCreateTime());

// Check to see if there is another customer;

// if yes start service otherwise free the server

if (queue.numQueue() > 0) {

javaSim.schedule

("EndOfService", generator.erlang(phases, meanST, 1));

} else {

server.free(1, javaSim.getClock());

}

}

Fig. 4.10 Event routines for the hospital simulation.

4.3 Simulating the M/G/1 Queue 57

/**

* Initialize the simulation

*/

private void myInit() {

// initialize the simulation

String simulationName = "M/G/1 Simulation";

javaSim = new JavaSim(simulationName);

// initialize the simulation objects

wait = new DTStat();

queue = new FIFOQueue(javaSim);

server = new Resource(javaSim);

server.setUnits(1); // set the number of servers to 1

// initialize the random number generator

generator = new Rng();

meanTBA = 1.0;

meanST = 0.8;

phases = 3;

runLength = 55000.0;

warmUp = 5000.0;

// Add queues, resources and statistics that need to be

// initialized between replications to the class collections

javaSim.addDTStat(wait);

javaSim.addQueue(queue);

javaSim.addResource(server);

// write headings for the output reports

javaSim.report("Average Wait", 0, 0);

javaSim.report("Average Number in Queue", 0, 1);

javaSim.report("Number Remaining in Queue", 0, 2);

javaSim.report("Server Utilization", 0, 3);

}

Fig. 4.11 Initializing the hospital simulation.

Again there are meaningless digits, but the confidence intervals can be used to
prune them. For instance, for the mean total wait we could report 2.93±0.05 min-

utes. How does this statistic relate to the 2.14±0.05 minutes reported for the sim-

ulation via Lindley’s equation? Mean total time in the kiosk system (which is what

the event-based simulation estimates) consists of mean time waiting to be served

(which is what the Lindley simulation estimates) plus the mean service time (which

58 4 Simulation Programming with JavaSim

Table 4.2 Ten replications of the M/G/1 queue using the event-based simulation.

Rep Total Wait Queue Remaining Utilization

1 2.996682542 3.01742345 1 0.806654823

2 3.103155842 3.127773149 7 0.807276539
3 2.951068607 2.948352414 2 0.799341091

4 2.848547497 2.846673097 0 0.794701908
5 2.908913572 2.900437432 2 0.798615617

6 2.895622648 2.896900635 3 0.801983001
7 2.909777649 2.901219722 0 0.798658678

8 2.914666297 2.908612119 4 0.795440658
9 2.922193762 2.923535588 0 0.799157017

10 2.873148311 2.862172885 0 0.799143690

average 2.932377673 2.933310049 1.9 0.800097302

stdev 0.07227642 0.082882288 2.282785822 0.004156967
95% ci 0.051654132 0.059233879 1.631449390 0.002970879

we know to be 0.8 minutes). So it is not surprising that these two estimates differ by

about 0.8 minutes.

4.3.3 Issues and Extensions

1. In what situations does it make more sense to compare the simulated kiosk sys-

tem to simulated data from the current receptionist system rather than real data

from the current receptionist system?
2. It is clear that if all we are interested in is mean waiting time, defined either as

time until service begins or total time including service, the Lindley approach is

superior (since it is clearly faster, and we can always add in the mean service

time to the Lindley estimate). However, if we are interested in the distribution of

total waiting time, then adding in the mean service time does not work. How can

the Lindley recursion be modified to simulate total waiting times?
3. How can the event-based simulation be modified so that it also records waiting

time until service begins?

4. How can the event-based simulation be modified to clear statistics after exactly

5000 patients, and to stop at exactly 55,000 patients?

5. The experiment design method illustrated in the event-based simulation is of-
ten called the “replication-deletion” method. If we only had time to generate

500,000 waiting times, what issues should be considered in deciding the values

of n (replications), m (run length) and d (deletion amount)? Notice that we must

have nm = 500,000, and only n(m−d) observations will be used for estimating

µ.

6. An argument against summarizing system performance by long-run measures
is that no system stays unchanged forever (55,000 patients is approximately 38

24-hour days during which time there could be staff changes, construction or

4.4 Simulating the Stochastic Activity Network 59

emergencies), so a measure like µ is not a reflection of reality. The counter argu-

ment is that it is difficult, if not impossible, to model all of the detailed changes

that occur over any time horizon (even the time-dependent arrival process in the

M(t)/M/∞ simulation is difficult to estimate in practice), so long-run perfor-
mance at least provides an understandable summary measure (“If our process

stayed the same, then over the long run....”). Also, it is often mathematically eas-

ier to obtain long-run measures than it is to estimate them by simulation (since

simulations have to stop). Considering these issues, what sort of analysis makes

the most sense for the hospital problem?

4.4 Simulating the Stochastic Activity Network

Here we consider the construction example of Sect. 3.4 which is represented as a
stochastic activity network (SAN). Recall that the time to complete the project, Y ,

can be represented as

Y = max{X1 +X4,X1 +X3 +X5,X2 +X5}

where Xi is the duration of the ith activity. This simple representation requires that

we enumerate all paths through the SAN, so that the project completion time is
the longest of these paths. Path enumeration itself can be time consuming, and this

approach does not easily generalize to projects that have resources shared between

activities, for instance. Therefore, we also present a discrete-event representation

which is more complicated, but also more general.

4.4.1 Maximum Path Simulation of the SAN

Figure 4.12 shows a JavaSim implementation of the algorithm displayed in Sect. 3.4

and repeated here:

1. set s = 0

2. repeat n times:

a. generate X1,X2, . . .,X5

b. set Y = max{X1 +X4,X1 +X3 +X5,X2 +X5}
c. if Y > tp then set s = s+1

3. estimate θ by θ̂ = s/n

Since Pr{Y ≤ tp} is known for this example (see Eq. (3.12)), the true θ = Pr{Y >
tp} = 0.165329707 when tp = 5 is also computed by the program so that we can

compare it to the simulation estimate. Of course, in a practical problem we would

60 4 Simulation Programming with JavaSim

not know the answer, and we would be wasting our time simulating it if we did. No-

tice that all of the digits in this probability are correct—assuming that the numerical

functions in Java did their job—although certainly not practically useful.

The simulation estimate turns out to be θ̂ = 0.163. A nice feature of a probability
estimate that is based on i.i.d. outputs is that an estimate of its standard error is easily

computed:

ŝe =

√
θ̂ (1− θ̂)

n
.

Thus, ŝe is approximately 0.011, and the simulation has done its job since the true
value θ is well within ±1.96 ŝe of θ̂ . This is a reminder that simulations do not

deliver the answer, like Eq. (3.12), but do provide the capability to estimate the

simulation error, and to reduce that error to an acceptable level by increasing the

simulation effort (number of replications).

4.4.2 Discrete-event Simulation of the SAN

This section uses more advanced Java constructs than any other part of the book and
may be skipped without loss of continuity.

As noted in Sect. 3.4, we can think of the completion of a project activity as an

event, and when all of the inbound activities I (j) to a milestone j are completed

then the outbound activities i ∈ O(j) can be scheduled, where the destination mile-

stone of activity i is D(i). Thus, the following generic milestone event is the only
one needed:

event milestone (activity ` inbound to node j)

I (j) = I (j)− `
if I (j) = /0 then

for each activity i ∈ O(j)
schedule milestone(activity i inbound to node D(i) to occur Xi time units

later)

end if

Of course, this approach shifts the effort from enumerating all of the paths

through the SAN to creating the sets I ,O,D, but these sets have to be either ex-

plicitly or implicitly defined to define the project itself. The key lesson from this

example, which applies to many simulations, is that it is possible to program a sin-

gle event routine to handle many simulation events that are conceptually distinct,
and this is done by passing event-specific information to the event routine. In this

case we need to pass the inbound activity and the target node, and since this infor-

mation is needed when the event is executed, not when it is scheduled, we need to

store it with the event notice. To do this, we will create a new class module and

make use of a feature of the EventNotice class module.

4.4 Simulating the Stochastic Activity Network 61

public class SANMax {

public static void main(String[] args) {

double n, c, tp, y, theta;

double[] x = new double[5];

Rng generator = new Rng();

String simulationName = "Stochastic Activity Network";

JavaSim javaSim = new JavaSim(simulationName);

javaSim.report("Pr{Y > tp}", 0, 0);

javaSim.report("True Theta", 0, 1);

n = 1000.0;

c = 0.0;

tp = 5.0;

for(int rep = 0; rep < n; rep++) {

for(int i = 0; i < 5; i++) {

x[i] = generator.expon(1.0, 6);

}

y = Math.max(Math.max(x[0] + x[3], x[0] + x[2] + x[4]),

x[1] + x[4]);

if (y > tp) {

c++;

}

}

javaSim.report(c/n, 1, 0);

theta = 1.0 -

((tp * tp / 2.0 - 3.0 * tp - 3.0) *
Math.exp(-2.0 * tp) +

(-tp * tp / 2.0 - 3.0 * tp + 3.0) *
Math.exp(-tp) + 1.0 - Math.exp(-3.0 * tp));

javaSim.report(theta, 1, 1);

}

}

Fig. 4.12 Simulation of the SAN as the maximum path through the network.

We define a new class module Activity which has two properties:

WhichActivity and WhichNode:

/**

* Object to model an activity-destination node pair

*/

private int whichActivity;

private int whichNode;

62 4 Simulation Programming with JavaSim

This object represents an activity, which has a number 0,1, . . .,4, and also a desti-

nation node, which we will number with j = 0 for a, j = 1 for b, j = 2 for c and

j = 3 for d.

When we schedule an activity to be completed at some time in the future, we
will associate an Activity with the EventNotice using its whichObject

property; the EventNotice class module is reproduced below:

public class EventNotice {

private double eventTime;

private String eventType;

private Object whichObject;

/**

* Event with time and type.

*

* @param eventTime

* Time of event

* @param eventType

* String representing event

*/

public EventNotice(double eventTime, String eventType) {

this.eventTime = eventTime;

this.eventType = eventType;

}

/**

* Event with time, type and an object.

*

* @param eventTime

* Time of event

* @param eventType

* String representing event

* @param whichObject

* object associated with event

*/

public EventNotice(double eventTime,

String eventType, Object whichObject) {

this.eventTime = eventTime;

this.eventType = eventType;

this.whichObject = whichObject;

}

public double getEventTime() {

return eventTime;

4.4 Simulating the Stochastic Activity Network 63

}

public String getEventType() {

return eventType;

}

public Object getWhichObject() {

return whichObject;

}

// Add additional problem specific attributes here

Perhaps the most complex feature of this simulation is how nodes are represented

as lists of lists of Java ArrayLists. An ArrayList<Type> is a Java data struc-

ture, very much like a one-dimensional array, except that an ArrayList<Type>

contains objects of class Type and Java provides methods for adding, removing

and referencing elements of an ArrayList. Unlike arrays, ArrayList dynamically
change size as elements are added or removed. In this case, each element of the list

nodes.get(i).get(j) is a list of activities. If i = 0 it is inbound activities,

and if i = 1 it is outbound activities, for node j. Thus, nodes.get(0).get(j)

plays the role of the set I (j), while nodes.get(1).get(j) corresponds to the

set O(j). Another ArrayList called Destination associates each activity with its
destination and plays the role of the set D . The key initializations that define the

SAN take place in the method sanInit, shown in Fig. 4.14.

One other Java feature that we use extensively in this example is the ability to

define constants, meaning variables whose values are fixed once and for all in the

simulation. This is done to make the simulation more readable. For instance,

private final int a = 0;

private final int b = 1;

private final int c = 2;

private final int d = 3;

private final int inTo = 0;

private final int outOf = 1;

By doing this we avoid the need to remember that node c corresponds to the number

2, and what index corresponds to incoming vs. outgoing activities to a node.

Notice (see Fig. 4.13) that the simulation ends when there are no additional activ-

ities remaining to be completed. This can be checked via JavaSim.calendarN(),
a method that provides the number of events currently on the event calendar.

A difference between this implementation of the SAN simulation and the one

in Sect. 4.4.1 is that here we write out the actual time the project completes on

each replication. By doing so, we can estimate Pr{Y > tp} for any value of tp by

sorting the data and counting how many out of 1000 replications were greater than

tp. Figure 4.16 shows the empirical cdf of the 1000 project completion times, which
is the simulation estimate of Eq. (3.12).

64 4 Simulation Programming with JavaSim

/* SAN Simulation using a discrete-event approach */

// Nodes is a multi-dimensional ArrayList of ArrayList,

// where each ArrayListis a list of inbound or outbound

// activities to that node For Nodes(i, j) = inbound i=1

// or outbound i=2 node j = 1 for a, j = 2 for b,

// j = 3 for c, j = 4 for d.

private ArrayList<ArrayList<ArrayList<Integer>>> nodes;

private List<Integer> destination;

// simulation object and the random number generator

private JavaSim javaSim;

private Rng generator;

// constants

private final int a = 0;

private final int b = 1;

private final int c = 2;

private final int d = 3;

private final int inTo = 0;

private final int outOf = 1;

/* Run the SAN simulation and report output */

private void runSimulation() {

EventNotice nextEvent;

Activity thisActivity;

for(int rep = 0; rep < 1000; rep++) {

javaSim.javaSimInit();

sanInit(); // initializes the activities in the SAN

milestone(0, a); // causes outbound activities of

// node a to be scheduled

do {

nextEvent = javaSim.calendarRemove();

javaSim.setClock(nextEvent.getEventTime());

thisActivity = (Activity) nextEvent.getWhichObject();

milestone(thisActivity.getWhichActivity(),

thisActivity.getWhichNode());

} while(javaSim.calendarN() > 0); // stop when event

// calendar is empty

javaSim.report(javaSim.getClock(), rep + 1, 0);

}

}

/* Initialize the simulation */

private void myInit() {

// initialize the random number generator

generator = new Rng();

// initialize the simulation

String simulationName = "Discrete-Event Stochastic Activity Network";

javaSim = new JavaSim(simulationName);

javaSim.report("Completion Time", 0, 0);

}

Fig. 4.13 Main program for the discrete-event SAN simulation.

4.4 Simulating the Stochastic Activity Network 65

/* Initialize the activities in the SAN */

private void sanInit() {

// destinations

// destination[i] corresponds to the destination of activity i

// initialize the destination

destination = new ArrayList<Integer>(5);

// initialize the nodes

nodes = new ArrayList<ArrayList<ArrayList<Integer>>>();

for(int i = 0; i < 2; i++) {

nodes.add(new ArrayList<ArrayList<Integer>>());

}

for(ArrayList<ArrayList<Integer>> node : nodes) {

for(int j = 0; j < 4; j++) {

node.add(new ArrayList<Integer>());

}

}

destination.add(b);

destination.add(c);

destination.add(c);

destination.add(d);

destination.add(d);

List<Integer> inbound = new ArrayList<Integer>();

List<Integer> outbound = new ArrayList<Integer>();

// node a

outbound.add(0);

outbound.add(1);

nodes.get(inTo).get(a).addAll(inbound);

nodes.get(outOf).get(a).addAll(outbound);

inbound.clear();

outbound.clear();

// node b

inbound.add(0);

outbound.add(2);

outbound.add(3);

nodes.get(inTo).get(b).addAll(inbound);

nodes.get(outOf).get(b).addAll(outbound);

inbound.clear();

outbound.clear();

// node c

inbound.add(1);

inbound.add(2);

outbound.add(4);

nodes.get(inTo).get(c).addAll(inbound);

nodes.get(outOf).get(c).addAll(outbound);

inbound.clear();

outbound.clear();

// node d

inbound.add(3);

inbound.add(4);

nodes.get(inTo).get(d).addAll(inbound);

nodes.get(outOf).get(d).addAll(outbound);

inbound.clear();

outbound.clear();

}

Fig. 4.14 Network description for the discrete-event SAN simulation.

66 4 Simulation Programming with JavaSim

/**

* Schedule a milestone, an activity ’actIn’ inbound to node

* ’node’ to occur x

* ˜ expon(1) time units later

*

* @param actIn

* Inbound activity

* @param node

* Node at which mile stone happens

*/

private void milestone(int actIn, int node) {

int m;

ArrayList<Integer> inbound =

new ArrayList<Integer>(nodes.get(inTo).get(node));

ArrayList<Integer> outbound =

new ArrayList<Integer>(nodes.get(outOf).get(node));

m = inbound.size();

for(int incoming = 0; incoming < m; incoming++) {

if (inbound.get(incoming) == actIn) {

inbound.remove(incoming);

break;

}

}

nodes.get(inTo).get(node).clear();

nodes.get(inTo).get(node).addAll(inbound);

if (inbound.isEmpty()) {

m = outbound.size();

for(int actOut = 0; actOut < m; actOut++) {

Activity thisActivity = new Activity();

thisActivity.setWhichActivity(outbound.get(0));

thisActivity.setWhichNode(destination.get(outbound.get(0)));

javaSim.schedulePlus

("Milestone", generator.expon(1, 0), thisActivity);

outbound.remove(0);

}

}

}

Fig. 4.15 Milestone event for the discrete-event SAN simulation.

4.4.3 Issues and Extensions

1. In real projects there are not only activities, but also limited and often shared

resources that are needed to complete the activities. Further, there may be specific

resource allocation rules when multiple activities contend for the same resource.

How might this be modeled in JavaSim?

4.5 Simulating the Asian Option 67

ecdf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

tp

P
r{

Y
 <

=
 t

p
}

Fig. 4.16 Empirical cdf of the project completion times.

2. Time to complete the project is an important overall measure, but at the plan-

ning stage it may be more important to discover which activities or resources are

the most critical to on-time completion of the project. What additional output

measures might be useful for deciding which activities are “critical?”

4.5 Simulating the Asian Option

Here we consider estimating the value of an Asian option

ν = E
[
e−rT (X̄(T)−K)+

]

as described in Sect. 3.5, where the maturity is T = 1 year, the risk-free interest rate

is r = 0.05 and the strike price is K = $55. The underlying asset has an initial value

of X(0) = $50 and the volatility is σ2 = (0.3)2. Recall that the key quantity is

X̄(T) =
1

T

∫ T

0
X(t)dt

the time average of a continuous-time, continuous-state geometric Brownian motion

process which we cannot truly simulate on a digital computer. Thus, we approximate

it by dividing the interval [0,T] into m steps of size ∆ t = T/m and using the discrete
approximation

68 4 Simulation Programming with JavaSim

¯̂X(T) =
1

m

m

∑
i=1

X(i∆ t).

This makes simulation possible, since

X(ti+1) = X(ti)exp

{(
r− 1

2
σ2

)
(ti+1 − ti)+σ

√
ti+1− ti Zi+1

}

for any increasing sequence of times {t0, t1, . . ., tm}, where Z1,Z2, . . .,Zm are i.i.d.

N(0,1).
Figure 4.17 is JavaSim code that uses m = 32 steps in the approximation, and

makes 10,000 replications to estimate ν . Discrete-event structure would slow exe-

cution without any obvious benefit, so a simple loop is used to advance time. The

value of the option from each replication is written to a JTable for post-simulation

analysis.

The estimated value of ν is $2.20 with a relative error of just over 2% (recall
that the relative error is the standard error divided by the mean). As the histogram in

Fig. 4.18 shows, the option is frequently worthless (approximately 68% of the time),

but the average payoff, conditional on the payoff being positive, is approximately

$6.95.

4.6 Case Study: Service Center Simulation

This section presents a simulation case based on a project provided by a former
student. While still relatively simple, it is more complex than the previous stylized

examples, and the answer is not known without simulating. The purpose of this

section is to illustrate how one might attack simulation modeling and programming

for a realistic problem.

Example 4.1 (Fax Center Staffing).

A service center receives faxed orders throughout the day, with the rate of arrival

varying hour by hour. The arrivals are modeled by a nonstationary Poisson process
with the rates shown in Table 4.3.

A team of Entry Agents select faxes on a first-come-first-served basis from the

fax queue. Their time to process a fax is modeled as normally distributed with mean

2.5 minutes and standard deviation 1 minute. There are two possible outcomes after

the Entry Agent finishes processing a fax: either it was a simple fax and the work

on it is complete, or it was not simple and it needs to go to a Specialist for further
processing. Over the course of a day, approximately 20% of the faxes require a Spe-

cialist. The time for a Specialist to process a fax is modeled as normally distributed

with mean 4.0 minutes and standard deviation 1 minute.

Minimizing the number of staff minimizes cost, but certain service-level require-

ments much be achieved. In particular, 96% of all simple faxes should be completed
within 10 minutes of their arrival, while 80% of faxes requiring a Specialist should

4.6 Case Study: Service Center Simulation 69

public class AsianOption {

public static void main(String[] args) {

int replications = 10000;

double maturity = 1.0;

int steps = 32;

double sigma = 0.3;

double interestRate = 0.05;

double initialValue = 50.0;

double strikePrice = 55.0;

double interval = maturity / (double) steps;

double sigma2 = sigma * sigma / 2.0;

double x;

double sum;

double z;

double value;

// random number generator for the simulation

Rng generator = new Rng();

// Simulation object for the simulations

String simulationName = "Asian Option";

JavaSim simObject = new JavaSim(simulationName);

simObject.report("Option Value", 0, 0);

for(int i = 0; i < replications; i++) {

sum = 0.0;

x = initialValue;

for(int j = 0; j < steps; j++) {

z = generator.normal(0, 1, 11);

x = x * Math.exp((interestRate - sigma2)

* interval + sigma * Math.sqrt(interval) * z);

sum = sum + x;

}

value = Math.exp(-interestRate * maturity)

* Math.max(sum / (double) steps - strikePrice, 0.0);

simObject.report(value, i + 1, 0);

}

}

}

Fig. 4.17 Java Simulation of the Asian option problem.

also be completed (by both the Entry Agent and the Specialist) within 10 minutes

of their arrival.

The service center is open from 8 AM to 4 PM daily, and it is possible to change
the staffing level at 12 PM. Thus, a staffing policy consists of four numbers: the num-

ber of Entry Agents and Specialists before noon, and the number of Entry Agents

70 4 Simulation Programming with JavaSim

0 10 20 30 40

0
2
0
0
0

4
0
0
0

6
0
0
0

Asian

Fig. 4.18 Histogram of the realized value of the Asian option from 10,000 replications.

Table 4.3 Arrival rate of faxes by hour.

Time Rate (faxes/minute)

8 AM–9 AM 4.37

9 AM–10 AM 6.24
10 AM–11 AM 5.29

11 AM–12 PM 2.97
12 PM–1 PM 2.03

1 PM–2 PM 2.79
2 PM–3 PM 2.36

3 PM–4 PM 1.04

and Specialists after noon. Any fax that starts its processing before noon completes

processing by that same agent before the agent goes off duty; and faxes in the queues
at the end of the day are processed before the agents leave work and therefore are

not carried over to the next day.

The first step in building any simulation model is deciding what question or ques-

tions that the model should answer. Knowing the questions helps identify the system

performance measures that the simulation needs to estimate, which in turn drives the

scope and level of detail in the simulation model.

The grand question for the service center is, what is the minimum number of

Entry Agents and Specialists needed for both time periods to meet the service-level
requirements? Therefore, the simulation must at least provide an estimate of the

percentage of faxes of each type entered within 10 minutes, given a specific staff

assignment.

4.6 Case Study: Service Center Simulation 71

Even when there seems to be a clear overall objective (minimize the staff re-

quired to achieve the service-level requirement), we often want to consider trade

offs around that objective. For instance, if meeting the requirement requires a staff

that is so large that they are frequently underutilized, or if employing the minimal
staff means that the Entry Agents or Specialists frequently have to work well past

the end of the day, then we might be willing to alter the service requirement a bit.

Statistics on the number and the time spent by faxes in queue, and when the last fax

of each day is actually completed, provide this information. Including additional

measures of system performance, beyond the most critical ones, makes the simula-
tion more useful.

Many discrete-event, stochastic simulations involve entities that dynamically

flow through some sort of queueing network where they compete for resources.

In such simulations, identifying the entities and resources is a good place to start

the model. For this service center the faxes are clearly the dynamic entities, while

the Entry Agents and Specialists are resources. The fax machines themselves might
also be considered a resource, especially if they are heavily utilized or if outgoing

as well as incoming faxes use the same machines. It turns out that for this service

center there is a bank of fax machines dedicated to incoming faxes, so it is reason-

able to treat the arrival of faxes as an unconstrained external arrival process. This

fact was not stated in the original description of the problem; follow-up questions
are often needed to fully understand the system of interest.

Whenever there are scarce resources, queues may form. Queues are often first-

in-first-out, with one queue for each resource, as they are in this service center.

However, queues may have priorities, and multiple queues may be served by the

same resource, or a single queue may feed multiple resources. Queueing behavior
is often a critical part of the model.

When the simulation involves entities flowing through a network of queues, then

there can be two types of arrivals: arrivals from outside of the network and arrivals

internal to the network. Outside arrivals are like those we have already seen in the

M(t)/M/∞ and M/G/1 examples. Internal arrivals are departures from one queue

that become arrivals to others. How these are modeled depends largely on whether
the departure from one queue is an immediate arrival to the next—in which case the

departure and arrival events are effectively the same thing—or whether there is some

sort of transportation delay—in which case the arrival to the next queue should be

scheduled as a distinct event. For the service center the arrival of faxes to the Entry

Agents is an outside arrival process, while the 20% of faxes that require a Specialist
are internal arrivals from the Entry Agents to the Specialists.

Critical to experiment design is defining what constitutes a replication. Repli-

cations should be independent and identically distributed. Since the service center

does not carry faxes over from one day to the next, a “day” defines a replication.

If faxes did carry over, but all faxes are cleared weekly, then a replication might be
defined by a work week. However, if there is always significant carry over from one

day to the next, then a replication might have to be defined arbitrarily.

The work day at the service center is eight hours; however the staff does not leave

until all faxes that arrive before 4 PM are processed. If we defined a replication to be

72 4 Simulation Programming with JavaSim

exactly eight hours then we could be fooled by a staffing policy that allows a large

queue of faxes to build up toward the end of the day, since the entry of those faxes

would not be included in our statistics. To model a replication that ends when there

is no additional work remaining, we will cut off the fax arrivals at 4 PM and then
end the simulation when the event calendar is empty. This works because idle Entry

Agents and Specialists will always take a fax from their queue if one is available.

Rather than walk through the JavaSim code line by line, we will point out some

highlights to facilitate the reader’s understanding of the code.

Figure 4.19 shows the class declarations for the service center simulation. Of par-
ticular note are the twoDTStat statements definingregular10 and special10.

These will be used to obtain the fraction of regular and special faxes that are pro-

cessed within the 10-minute requirement by recording a 1 for any fax that meets the

requirement, and a 0 otherwise. The mean of these values is the desired fraction.

4.6 Case Study: Service Center Simulation 73

/**

* FaxCenter Simulation

*/

// parameters we may want to change

private double meanRegular; // mean entry time regular faxes

private double varRegular; // variance entry time regular faxes

private double meanSpecial; // mean entry time special faxes

private double varSpecial; // variance entry time special faxes

private double runLength; // length of the working day

private int numAgents; // number of regular agents

private int numSpecialists; // number of special agents

private int numAgentsPM; // number of regular agents after noon

private int numSpecialistsPM; // number of special agents after noon

// class objects needed for simulation

private FIFOQueue regularQ; // queue for all faxes

private FIFOQueue specialQ; // queue for special faxes

private DTStat regularWait; // discrete-time statistics on fax waiting

private DTStat specialWait; // discrete-time statistics on special fax

// waiting

private DTStat regular10; // discrete-time statistics on < 10

// minutes threshold

private DTStat special10; // discrete-time statistics on < 10

// minutes threshold

private Resource agents; // entry agents resource

private Resource specialists; // specialists resource

private double[] aRate; // arrival rates

private double maxRate; // maximum arrival rate

private double period; // period for which arrival rate stays

// constant

private int nPeriods; // number of periods in a "day"

// simulation object and the random number generator

private JavaSim javaSim;

private Rng generator;

Fig. 4.19 Class declarations for service center simulation.

74 4 Simulation Programming with JavaSim

The main program for the simulation is in Fig. 4.20. Of particular importance is

the condition that ends the main simulation loop:

while(javaSim.calendarN() > 0)

The calendarN() method of JavaSim returns the current number of pending

events. When the event calendar is empty, then there are no additional faxes to pro-

cess, and no pending arrival of a fax. This condition will only hold after 4 PM and

once all remaining faxes have been entered.

Also notice the event changeStaff, which is scheduled to occur at noon (240
minutes). Here we use the setUnits method of the Resource to change the

staffing levels. The reader should look at the JavaSim Resource class and con-

vince themselves that even if we reduce the number of staff at noon the faxes in

process will not be affected.

The staffing policy to be simulated is set in the myInitmethod of FaxCenter.

The method nsppFax generates the interarrival times for faxes with the desired
time-varying rate; this method will be described in Chap. 6.

4.6 Case Study: Service Center Simulation 75

/**

* Run FaxCenter simulation

*/

private void runSimulation() {

EventNotice nextEvent;

for(int reps = 0; reps < 10; reps++) {

javaSim.javaSimInit();

agents.setUnits(numAgents);

specialists.setUnits(numSpecialists);

javaSim.schedule

("Arrival", nsppFax(aRate, maxRate, nPeriods, period, 0));

javaSim.schedule("ChangeStaff", 4.0 * 60.0);

do {

nextEvent = javaSim.calendarRemove();

javaSim.setClock(nextEvent.getEventTime());

if (nextEvent.getEventType() == "Arrival") {

arrival();

} else if (nextEvent.getEventType() == "EndOfEntry") {

endOfEntry((Entity) nextEvent.getWhichObject());

} else if (nextEvent.getEventType() == "EndOfEntrySpecial") {

endOfEntrySpecial((Entity) nextEvent.getWhichObject());

} else if (nextEvent.getEventType() == "ChangeStaff") {

agents.setUnits(numAgentsPM);

specialists.setUnits(numSpecialistsPM);

}

} while(javaSim.calendarN() > 0); // stop when event calendar

// empty

javaSim.report(regularWait.mean(), reps + 1, 0);

javaSim.report(regularQ.mean(javaSim.getClock()), reps + 1, 1);

javaSim.report(agents.mean(javaSim.getClock()), reps + 1, 2);

javaSim.report(specialWait.mean(), reps + 1, 3);

javaSim.report(specialQ.mean(javaSim.getClock()), reps + 1, 4);

javaSim.report(specialists.mean(javaSim.getClock()), reps + 1, 5);

javaSim.report(regular10.mean(), reps + 1, 6);

javaSim.report(special10.mean(), reps + 1, 7);

javaSim.report(javaSim.getClock(), reps + 1, 8);

}

}

Fig. 4.20 Main program for service center simulation.

76 4 Simulation Programming with JavaSim

Figure 4.21 contains the arrival and end-of-entry events for faxes at the En-

try Agents. The next arrival is scheduled only if javaSim.getClock() <

runLength; in this way we cut off fax arrivals after 4 PM. The endOfEntry

event passes 20% of the faxes directly and immediately to the Specialists by exe-
cuting specialArrival(departingFax) and passing the departingFax

entity. Equivalently, we could have scheduled a specialArrival event to occur

zero time units into the future (or nonzero time units if it takes time to transport the

fax).

The record method of the DTStat regular10 is used to collect a 0 or 1
depending on whether the total wait was less than 10 minutes.

The arrival and end-of-entry events for the Specialists, shown in Fig. 4.22, work

similarly to those of the Entry Agents.

Initializations that occur once are shown in Fig. 4.23.

Ten replications of this simulation with a staffing policy of 15 Entry Agents in

the morning and 9 in the afternoon, and 6 Specialists in the morning and 3 in the
afternoon, gives 0.98±0.02 for the fraction of regular faxes entered in 10 minutes

or less, and 0.81±0.06 for the special faxes. The “±” are 95% confidence intervals.

This policy appears to be close to the requirements, although if we absolutely insist

on 80% for the special faxes then additional replications are needed to narrow the

confidence interval.

4.6 Case Study: Service Center Simulation 77

private void arrival() {

// Schedule next fax arrival if < 4 PM

if (javaSim.getClock() < runLength) {

javaSim.schedule

("Arrival", nsppFax(aRate, maxRate, nPeriods, period, 0));

} else {

return;

}

// Process the newly arriving Fax

Entity fax = new Entity(javaSim.getClock());

if (agents.getBusy() < agents.getUnits()) {

agents.seize(1, javaSim.getClock());

javaSim.schedulePlus("EndOfEntry",

generator.normal(meanRegular, varRegular, 1), fax);

} else {

regularQ.add(fax, javaSim.getClock());

}

}

private void endOfEntry(Entity departingFax) {

double wait;

// record wait time of regular; move in if special

if (generator.uniform(0, 1, 2) < 0.2) {

specialArrival(departingFax);

} else {

wait = javaSim.getClock() - departingFax.getCreateTime();

regularWait.record(wait);

if (wait < 10) {

regular10.record(1);

} else {

regular10.record(0);

}

}

// Check to see if there is another Fax; if yes start entry

// otherwise free the agent

if (regularQ.numQueue() > 0

&& agents.getUnits() >= agents.getBusy()) {

departingFax = (Entity) regularQ.remove(javaSim.getClock());

javaSim.schedulePlus

("EndOfEntry", generator.normal(meanRegular, varRegular, 1), departingFax);

} else {

agents.free(1, javaSim.getClock());

}

}

Fig. 4.21 Events for Entry Agents.

78 4 Simulation Programming with JavaSim

private void specialArrival(Entity specialFax) {

// if special agent available, start entry by seizing the special agent

if (specialists.getBusy() < specialists.getUnits()) {

specialists.seize(1, javaSim.getClock());

javaSim.schedulePlus

("EndOfEntrySpecial", generator.normal(meanSpecial, varSpecial, 3), specialFax);

} else {

specialQ.add(specialFax, javaSim.getClock());

}

}

private void endOfEntrySpecial(Entity departingFax) {

double wait;

// record wait time and indicator if < 10 minutes

wait = javaSim.getClock() - departingFax.getCreateTime();

specialWait.record(wait);

if (wait < 10) {

special10.record(1);

} else {

special10.record(0);

}

// check to see if there is another Fax; if yes start entry

// otherwise free the specialist

if (specialQ.numQueue() > 0

&& specialists.getUnits() >= specialists.getBusy()) {

departingFax = (Entity) specialQ.remove(javaSim.getClock());

javaSim.schedulePlus

("EndOfEntrySpecial", generator.normal(meanSpecial, varSpecial, 3), departingFax);

} else {

specialists.free(1, javaSim.getClock());

}

}

Fig. 4.22 Events for Specialists.

4.6 Case Study: Service Center Simulation 79

4.6.1 Issues and Extensions

1. There are many similarities between the programming for this simulation and

the event-based simulation of the M/G/1 queue. However, there is an important

difference that is due to having multiple agents. For the M/G/1 queue, a single

FIFOQueue object held both the customer in service (who is at the front of

the queue) and the customers waiting for service. This approach does not work
for the Fax Center because when there are multiple agents the faxes need not

complete entry in the same order in which they arrive. To accommodate this,

the FIFOQueue holds only those faxes waiting for entry, and the Entity rep-

resenting a fax that is being entered is stored with the EventNotice for the

end-of-entry event. This is accomplished by the statement

javaSim.schedulePlus

("EndOfEntry",generator.normal(meanRegular, varRegular, 1), fax);

schedulePlus allows an object (departingFax in this case) to be assigned

to the .whichObject field of the EventNotice. The Entity can then be

passed to the event using the statement

endOfEntry((Entity) nextEvent.getWhichObject());

2. The fax entry times were modeled as being normally distributed. However, the

normal distribution admits negative values, which certainly does not make sense.

What should be done about this? Consider mapping negative values to 0, or gen-
erating a new value whenever a negative value occurs. Which is more likely to

be realistic and why?

Exercises

1. For the hospital problem, simulate the current system in which the receptionist’s

service time is well modeled as having an Erlang-4 distribution with mean 0.6
minutes. Compare the waiting time to the proposed electronic kiosk alternative.

2. Simulate an M(t)/G/∞ queue where G corresponds to an Erlang distribution
with fixed mean but try different numbers of phases. That is, keep the mean

service time fixed but change the variability. Is the expected number if queue

sensitive to the variance in the service time?

3. Modify the SAN simulation to allow each activity to have a different mean time

to complete (currently they all have mean time 1). Use a Java collection (or one
of its an implementing classes, such as ArrayList) to hold these mean times.

4. Try the following numbers of steps for approximating the value of the Asian

option to see how sensitive the value is to the step size: m = 8,16,32,64,128.

5. In the simulation of the Asian option, the sample mean of 10,000 replications

was 2.198270479, and the standard deviation was 4.770393202. Approximately

80 4 Simulation Programming with JavaSim

private void myInit() {

String simulationName = "Fax Center";

javaSim = new JavaSim(simulationName);

// initialize the random number generator

generator = new Rng();

meanRegular = 2.5;

varRegular = 1.0;

meanSpecial = 4.0;

varSpecial = 1.0;

runLength = 480.0;

numAgents = 15;

numAgentsPM = 9;

numSpecialists = 6;

numSpecialistsPM = 3;

// Add queues, resources and statistics that need to be

// initialized between replications to the global collections

regularWait = new DTStat();

specialWait = new DTStat();

regular10 = new DTStat();

special10 = new DTStat();

regularQ = new FIFOQueue(javaSim);

specialQ = new FIFOQueue(javaSim);

agents = new Resource(javaSim);

specialists = new Resource(javaSim);

javaSim.addDTStat(regularWait);

javaSim.addDTStat(specialWait);

javaSim.addDTStat(regular10);

javaSim.addDTStat(special10);

javaSim.addQueue(regularQ);

javaSim.addQueue(specialQ);

javaSim.addResource(agents);

javaSim.addResource(specialists);

javaSim.report("Ave Reg Wait", 0, 0);

javaSim.report("Ave Num Reg Q", 0, 1);

javaSim.report("Agents Busy", 0, 2);

javaSim.report("Ave Spec Wait", 0, 3);

javaSim.report("Ave Num Spec Q", 0, 4);

javaSim.report("Specialists Busy", 0, 5);

javaSim.report("Reg < 10", 0, 6);

javaSim.report("Spec < 10", 0, 7);

javaSim.report("End Time", 0, 8);

// Arrival process data

nPeriods = 8;

period = 60.0;

maxRate = 6.24;

aRate = new double[8];

aRate[0] = 4.37;

aRate[1] = 6.24;

aRate[2] = 5.29;

aRate[3] = 2.97;

aRate[4] = 2.03;

aRate[5] = 2.79;

aRate[6] = 2.36;

aRate[7] = 1.04;

}

Fig. 4.23 Initializations for service center simulation.

4.6 Case Study: Service Center Simulation 81

how many replications would it take to decrease the relative error to less than

1%?

6. For the service center, increase the number of replications until you can be con-

fident that that suggested policy does or does not achieve the 80% entry in less
than 10 minutes requirement for special faxes.

7. For the service center, find the minimum staffing policy (in terms of total number

of staff) that achieves the service-level requirement. Examine the other statistics

generated by the simulation to make sure you are satisfied with this policy.

8. For the service center, suppose that Specialists earn twice as much as Entry
Agents. Find the minimum cost staffing policy that achieves the service-level

requirement. Examine the other statistics generated by the simulation to make

sure you are satisfied with this policy.

9. For the service center, suppose that the staffing level can change hourly, but once

an Agent or Specialist comes on duty they must work for four hours. Find the

minimum staffing policy (in terms of total number of staff) that achieves the
service-level requirement.

10. For the service center, pick a staffing policy that fails to achieve the service level

requirements by 20% or more. Rerun the simulation with a replication being de-

fined as exactly 8 hours, but do not carry waiting faxes over to the next day. How

much do the statistics differ using the two different ways to end a replication?
11. The method nsppFax is listed below. This method implements the thinning

method described in Sect. 4.2 for a nonstationary Poisson process with piecewise-

constant rate function. Study it and describe how it works.

/**

* This function generates interarrival times from a NSPP

* with piecewise constant arrival rate over a fixed time

* of Period*NPeriod time units

*

* @param aRate

* array of arrival rates over a common length Period

* @param maxRate

* maximum value of ARate

* @param nPeriods

* number of time periods in ARate

* @param period

* time units between (possible) changes in arrival rate

* @param stream

* seed for random number generator

* @return

* an interarrival time from a non-stationary Poisson process

*/

private double nsppFax(double[] aRate, double maxRate,

int nPeriods, double period, int stream) {

double possibleArrival = javaSim.getClock() +

generator.expon(1.0 / maxRate, stream);

int i = Math.min(nPeriods,

(int) Math.ceil(possibleArrival / period));

82 4 Simulation Programming with JavaSim

while(generator.uniform(0, 1, stream) >=

aRate[i - 1] / maxRate) {

possibleArrival += generator.expon(1.0 / maxRate, stream);

i = Math.min(nPeriods, (int) Math.ceil(possibleArrival / period));

}

return possibleArrival - javaSim.getClock();

}

12. Beginning with the event-based M/G/1 simulation, implement the changes nec-

essary to make it an M/G/s simulation (a single queue with any number of

servers). Keeping λ = 1 and τ/s = 0.8, simulate s = 1,2,3 servers and com-

pare the results. What you are doing is comparing queues with the same service

capacity, but with 1 fast server as compared to two or more slower servers. State

clearly what you observe.
13. Modify the Java event-based simulation of the M/G/1 queue to simulate an

M/G/1/c retrial queue. This means that customers who arrive to find c customers

in the system (including the customer in service) leave immediately, but arrive

again after an exponentially distributed amount of time with mean meanTR.

Hint: The existence of retrial customers should not affect the arrival process for
first-time arrivals.

14. This problem assumes a more advanced background in stochastic processes. In

the simulation of the M(t)/M/∞ queue there could be a very large number of

events on the event calendar: one “Arrival” and one “Departure” for each car

currently in the garage. However, properties of the exponential distribution can
reduce this to no more than two events. Let β = 1/τ be the departure rate for a car

(recall that τ is the mean parking time). If at any time we observe that there are

N car in the garage (no matter how long they have been there), then the time until

the first of these cars departs is exponentially distributed with mean 1/(Nβ). Use

this insight to build an M(t)/M/∞ simulation with at most two pending events,

next arrival and next departure. Hint: Whenever an arrival occurs the distribution
of the time until the next departure changes, so the scheduled next departure time

must again be generated.

15. The phone desk for a small office is staffed from 8 AM to 4 PM by a single oper-

ator. Calls arrive according to a Poisson process with rate 6 per hour, and the time

to serve a call is uniformly distributed between 5 and 12 minutes. Callers who
find the operator busy are placed on hold, if there is space available, otherwise

they receive a busy signal and the call is considered “lost.” In addition, 10% of

callers who do not immediately get the operator decide to hang up rather than go

on hold; they are not considered lost, since it was their choice. Because the hold

queue occupies resources, the company would like to know the smallest capacity
(number of callers) for the hold queue that keeps the daily fraction of lost calls

under 5%. In addition, they would like to know the long-run utilization of the

operator to make sure he or she will not be too busy. Use JavaSim to simulate

this system and find the required capacity for the hold queue. Model the callers

as class Entity, the hold queue as class FIFOQueue and the operator as class

Resource. Use the Rng methods expon and uniform for random-variate

4.6 Case Study: Service Center Simulation 83

generation. Use class DTStat to estimate the fraction of calls lost (record a 0

for calls not lost, a 1 for those that are lost so that the sample mean is the fraction

lost). Use the statistics collected by class Resource to estimate the utilization.

16. Software Made Personal (SMP) customizes software products in two areas: fi-
nancial tracking and contact management. They currently have a customer sup-

port call center that handles technical questions for owners of their software from

the hours of 8 AM to 4 PM Eastern Time.

When a customer calls they the first listen to a recording that asks them to select

among the product lines; historically 59% are financial products and 41% contact
management products. The number of customers who can be connected (talking

to an agent or on hold) at any one time is essentially unlimited. Each product line

has its own agents. If an appropriate agent is available then the call is immediately

routed to the agent; if an appropriate agent is not available, then the caller is

placed in a hold queue (and listens to a combination of music and ads). SMP has

observed that hang ups very rarely happen.
SMP is hoping to reduce the total number of agents they need by cross-training

agents so that they can answer calls for any product line. Since the agents will

not be experts across all products, this is expected to increase the time to process

a call by about 5%. The question that SMP has asked you to answer is how many

cross-trained agents are needed to provide service at the same level as the current
system.

Incoming calls can be modeled as a Poisson arrival process with a rate of 60 per

hour. The mean time required for an agent to answer a question is 5 minutes,

with the actual time being Erlang-2 for financial calls, and Erlang-3 for con-

tact management calls. The current assignment of agents is 4 for financial and 3
for contact management. Simulate the system to find out how many agents are

needed to deliver the same level of service in the cross-trained system as in the

current system.

