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Simulation output

Suppose we make n = 1000 replications of Y, the time
to complete the SAN. Let Y(;) < --- < Y{;,) be the order
statistics.

What performance measures might be relevant?

e Mean time to complete the project, u = E(Y) esti-
mated by the sample mean Y = 3"V ¥;/1000.

e Probability we complete the project in 5 days
0 = Fy(5), estimated by F'(5) = #{Y; < 5}/1000.

e The 0.95 quantile ¥ = F},'(0.95), which is the date we
can promise and be 95% sure of making it, estimated

by ﬁ_1(095) — Y'(950).



Visualization

Visualizing means, probabilities and quantiles using the his-
togram and empirical cdf of 1000 SAN project completion
times.
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What measures are relevant?

For project planning, i really does not make much sense.

The project will almost certainly not complete in exactly u
days, and it may not even be the most likely value.

If we think of the mean as the “long-run average,” then it
Is most relevant when the long-run average is what we will
see rather than a one-time outcome.

For the hospital information kiosk (M/G/1 queue), the
long-run average waiting time is meaningful because the
kiosk will serve many patients and visitors.

Q: Is S(Y') relevant for the SAN? What about S(Y)/+/10007



Measures of error

No matter what performance measure we estimate, we need
a measure of error (MOE) to establish how good it is.

Without an MOE, we cannot know if any of the digits in
the estimate can be believed.

MOEs are also useful for experiment design: What number
of replications and/or runlength is needed to attain an ac-
ceptable level of error?

Here we will talk about MOEs for i.i.d. (replication) data
and do steady-state simulation (where run length matters)
later.



95% Cl for the SAN measures

A confidence interval is a measure of error; the wider it is
the less certain we are about the true value.

Mean E(Y): € 3.46 + 0.11 days
Probability Fy(5) = Pr{Y <5}: 6 € 0.17 + 0.02
Quantile F31(0.95): ¢ € [6.43,7.05] days (J = 6.71)

The large sample Cls for 1 and 6 are justified by the CLT;
the Cl for 7% is nonparametric.

Notice that we should not display more digits in the estimate
than can be justified by the Cl.



Cl for the mean
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The second expression allows S? to be computed in one pass
through the data. Error decreases as 1//n.



Cl for the probability

The estimator of 6 is still a sample mean
~ ] —

F(y) = EZI(YQ <y)
i=1

Careful algebra gives

S = (n:)ﬁ(y) (1—16(3/))

When n is large the ratio n/(n — 1) is often treated as 1.

Remember that relative error is unbounded as 6 — 0.



Cl for the quantile
The ¢ quantile ¥ = F, '(q) implies that Pr{Y < 9} = ¢.
Suppose we observe i.i.d. Y7,Ys,....Y,,. Then
#{Y; <9} ~ Binomial(n, g)

Therefore

Pr{Yy < ¥} = Pr{at least £ Y;'s < J} = Z (n) ¢ (1—q)""
0

1=0

To get a Cl we look for 0 < ¢/ < u < n such that

u—1

n ) n—1

Pf{Y<e>SW9<Y<u>}—Z(Z.)Q(1—q) ~1-a
i=(



Normal approximation

A

In general ¥ = F~1(q) = Y{fnq)) with Cl [Y{p), Y(w]

A large n normal approximation to the binomial gives ap-
proximations for £ and wu:

Z = |nq — Zl—a/z\/nQ(l — Q)

u = anFZl—a/m/nQ(l—Q)

For ¢ = 0.95, n = 1000 and zpg975 = 1.96, we have 95%
confidence interval for the 0.95 quantile of [Y(g36), Y(964)).

Notice that £ and u are completely independent of the data.
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How hard is quantile estimation?

Just as probability estimation is relatively more difficult as
6 — 0, we should expect extreme quantiles to be more dif-
ficult to estimate.

Although they are not means, sample quantiles do satisfy a
CLT:

If Fy is strictly increasing and has a density fy, then

A(-0) = (o )

Recall that ¥ = Y(nq)-
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Example: Extreme quantiles
Suppose fy(y) =e Y,y > 0. Then ¥ = —In(1 — ¢q) so

= q(1 —q) _ q
o (7) = \/n exp (n(1— @)° \/ (1 —q)

This increases dramatically as ¢ approaches 1.

For example, the standard error of J for estimating the 0.99
quantile is roughly ten times larger than the standard error
for estimating the the median for the same n.

Q: Why don't we use the CLT to get a Cl for 97
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Proof sketch

Pr{\/ﬁ(ﬁ—ﬁ)gy} = Pr{§§ﬁ+y/\/ﬁ}
= Pr{F(@+y/vn) > q]

because U = Y(tng) < v if and only if ﬁ(y) > q.
Pr{F(+y/vn) > qf
= Pr {\/ﬁ (ﬁ(l9 +y/vn) — Qn) > /n(q — qn)}

where ¢, = Fy (4 + y/+/n).



LHS: As n — o0
Vn (ﬁ(ﬁ +y/vn) - qn) = Vn (F(ﬁ) - q) = NO4(1-0)

RHS: As n — o¢

Silg—an) — [Fy (0 + y/v/n) — Fy(9))]

NG » =y fy (V)

Combining we get

< =P Clee) <)




Risk vs. Error

One of the biggest areas of confusion in statistics is the
difference between risk and error.

e Measures of risk directly support decision making: Should
we bid this project, make this investment, deploy this
system design?

Risk is a property of the system that we cannot change
by doing simulation.

e Measures of error directly support experiment design.
Have we run enough simulation (e.g., replications) to
be confident in our estimates of system performance?

Error is a property of the experiment which we can
change by doing more or better simulation.

15



Y(ina))

Measure of Risk and Error Plot

UNLIKE LKiLY

UNLIKELY

=

7

[
\

< [Y(fl)ﬂ Y(’ul)] Y + ZS/\/E

Y(inga1)

S [Y(fz)v Yv(?m)]

16



n =100 - 500 - 1000 replications
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error, but not risk since it
is a property of the
system. Changing risk
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Input uncertainty: What is it?

Consider an M /M /oo queue with arrival rate A and mean
service time 7, and let Y be the steady-state number of
customers in the system.

Suppose A and 7 are not known, so we observe m i.i.d.
interarrival times A;, As,..., A,, and i.i.d. service times
X1, Xa,...,X,, from the “real world” and use them to fit

input models:
(1
- \m

24
>

=)

1
m
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Stylized experiment

Simulate and record an observation of Y in steady state on
each of n replications Y7, Y5, ....Y,,.

Estimate the steady-state mean by the sample mean

Y:lZY@-

n
=1
Then we can show that
E(Y) = — Ar
m — 1
_ A 2(\1)?
Var(Y) = all (A7)
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Postmortem

* The need to estimate the input parameters
introduces both bias and variance.

— The bias diminishes quickly, and this is often the
case.

— But the variance due to "input uncertainty" can
overwhelm the simulation variance.

* |n areal problem we can't derive the effect.

* The impact is even more vexing if we don't
know the model family, or we have no data.



Input uncertainty: What to do

Represent the output of the simulation on replication 7, us-
ing estimated input distribution F', as

AN

Yj = pu(F) +¢;

where the {¢,} are i.i.d. (0,0%) representing the simulation
variability from replication to replication.

The mean term, u(ﬁ) depends on what input model we ac-

tually used in the simulation. Its variability, o7, represents
Input uncertainty.

Remark: We should expect o% to depend on F (why?), so
this is clearly an approximation.
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ldea: Bootstrap

1. Given real-world data { X1, X>,..., X,,}, do:
2. For i from 1 to b

(a) Generate the bootstrap sample X7, X%, ..., X7
by sampling m times with replacement from

{X1, X, ..., X}

(b) Fit F* to Xz*lez*27 D, G
If more than one mput model do Steps 2(a)-2(b)
for each.

(c) Simulate n replications Y;;,7 = 1,2,...,n using
input model(s) F7.

3. Estimate 0% using equations on the next slide.
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Random-effects model

For a random effects model an estimator of o7 is

~9 A9
~2 Op —O0g
o7 =
n
where
b
n _ — .2
0 _—E Y
T p_1+4 ' )
1=1
and
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Example M/M /o0

Suppose A = 5, 7 = 1, we observe m = 100 real-world

interarrival and service times, and make n = 10 replications.
Then

_ Ao 2(AT)* 5 50 or
Var(V) ~ —/ = —+— = ,
ar(Y) —+ 70 + 00~ + 07

Running the procedure with b = 100 bootstrap samples gave
0% = 5.321 and o7 = 0.546.

Since 6Z/10 = 0.5321, we see that input uncertainty is
approximately as large as estimation error.
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M/M/o0: More details

We have { A, ..., Ao} interarrival times and { X7, ..., Xi00}
service times from the “real world.” Nominal simulation fits
exponential distributions with A\ = 1/4 and 7 = X and
makes n replications to get Y.

Next we do the following i = 1,2,....b times:

Resample { A7, ..., Ay} and { X7, ..., X7y}, fit exponen-
tial distributions with A\* = 1/A* and 7* = X* and make n
replications to get Y;;,7 =1,2,...,n.

Analysis is based on {Y;}.
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The good, the bad & the ugly

* This procedure is approximate, but easy to use;
you don't even have to fit distributions since the
simulation can be driven by the empirical
distributions.

* What do we do with this information?

— In many applications increasing m (amount of real-
world data) is not possible. So all this tells you is how
confident you can be in your results

— If you could collect more real-world data, it does not
indicate which input models account for the most
uncertainty.



