Barry L. Nelso

E Kundatmns

and Methods
af of Stochastic
-2 Simulation

AFirst Course

Chapter 2.3.4 & 4: 2
VBASIm

©Barry L. Nelson
Northwestern University
December 2012



Object orientation

e Discrete-event simulations often contain multiple
instances of similar objects:

— Entities: things that come and go, like customers,
messages, jobs, events

— Queues: ordered lists of entities

— Resources: scarce quantities that entities need, like
servers, computers, machines

— Statistics: information to be recorded on all of the above

e These are more naturally treated as “objects” for
which we can have many instances.



VBASImM

e A small collection of VBA class modules
(objects) that support simulation.

— You can easily customize and add to these

e A module containing declarations and a few
useful subs.

e VBA implementations of the random-number
and random-variate generation functions
from simlib by Law & Kelton.



VBA class modules

e With VBA class modules we can define the template
for an object.

e A Class Module contains...

— Properties = “attributes” in simulation terminology
— Methods =2 instructions about how to do things

e The key benefit of objects is that we can create

multiple instances, each uniquely identified and with
its own properties and methods.



" Generic continuous-time statistics object

" Note that CTStat should be called AFTER the value of the variable changes

Area As Double
Tlast As Double
Xlast As Double
TClear As Double

Private
Private
Private
Private

copy

Private Sub Class _Initialize()
" Executes when CTStat object is created to initialize variables
Area = O
Tlast = 0
TClear = 0
Xlast = 0
End Sub

Public Sub Record(X As Double)

" Update the CTStat from last time change and keep track of previous value

Area = Area + Xlast * (Clock - Tlast)

Tlast = Clock
Xlast = X
End Sub

Function Mean() As Double
" Return the sample mean up through current time but do not update
Mean = O
IT (Clock - TClear) > 0 Then
Mean = (Area + Xlast * (Clock - Tlast)) /7 (Clock - TClear)
End If
End Function

Public Sub Clear()

* Clear statistics Called from within the

Area = 0 > simulation to reset the
Tlast = Clock CTStat
TClear = Clock

End Sub

\

>

Properties: each CTStat will have its own

Automatically called
when a New CTStat is
created

Y Called from
within your
¢ simulation to
update the
statistic

Called from within
your simulation to
report the sample
mean

CTStat object i



Anatomy of a class module

e Declarations
— Defines the attributes (Properties) the object has
— Private if only used within the object; otherwise Public
— Each instance of the object will have its own unique copy

" Generic continuous-time statistics object

" Note that CTStat should be called AFTER the value of the variable changes
Private Area As Double

Private Tlast As Double

Private Xlast As Double

Private TClear As Double




Anatomy of a class module

e Methods can be Subs, Functions, Property Let and Property Get
e To the best of my ability to tell, Property Get is the same as a Function

Dim QueuelLength As New CTStat
QueuelLength.Record(Q)
Xbar = QueuelLength.Mean

Public Sub Record(X As Double)

" Update the CTStat from last time change and keep track of previous value
Area = Area + Xlast * (Clock - Tlast)
Tlast = Clock
Xlast = X

End Sub

Function Mean() As Double
" Return the sample mean up through current time but do not update
Mean = O
IT (Clock - TClear) > 0 Then
Mean = (Area + Xlast * (Clock - Tlast)) / (Clock - TClear)
End If
End Function




Anatomy of a class module

e There are special methods that will be executed when an object is created
or destroyed.

e Torelease the object name
Set QueuelLength = Nothing

Private Sub Class_Initialize()
" Executes when CTStat object i1s created to initialize variables

Area = 0

Tlast = O

TClear = 0

Xlast = O
End Sub

Private Sub Class_Terminate()
" Termination code goes here..
End Sub




VBA Collections

e A Collection is a VBA generalization of an
array; it can store objects of the same class.

— VBA itself uses lots of collections
— Worksheets(“Sheet2”) or Worksheets(2)

e \We use these in the event calendar
management and queue management.



Collection syntax

Dim Queue As New Collection
Queue. ltem(1) < the object in position |

Queue.Count € number of objects currently in
the Queue collection

Queue.Remove(J) € remove the object In
position | of the Queue collection

Queue.Add customer, Before:=k < insert

object customer before object currently in position
k (also has option after)

10



* This class module creates an Event Calendar object VBASim Eventca|endar
Private ThisCalendar As New Collection CIaSS Module

Public Sub Schedule(addedEvent As EventNotice)
" Add EventNotice in EventTime order
Dim 1 As Integer
IT ThisCalendar.Count = 0 Then "no events in calendar
ThisCalendar .Add addedEvent
ElselTt ThisCalendar(ThisCalendar.Count) .EventTime <= addedEvent.EventTime Then
"added event after last event in calendar
ThisCalendar.Add addedEvent, After:=ThisCalendar.Count
Else "search for the correct place to iInsert the event
For 1 = 1 To ThisCalendar.Count
IT ThisCalendar(i).EventTime > addedEvent._EventTime Then
Exit For
End If
Next i
ThisCalendar.Add addedEvent, before:=i
End If
End Sub

Public Function Remove() As EventNotice
" Remove next event and return the EventNotice object
IT ThisCalendar.Count > 0 Then

set Remove = ThisCalendar.Item(1) Note: EventNotice is also a Class
ThisCalendar.Remove (1)

End If Module with two attributes:
End Function EventTime and EventType

Function N() As Integer
" Return current number of events on the event calendar
N = ThisCalendar.Count
End Function 11



M/G/1 Queue in VBASIim

" Example 1llustrating use of VBASim for
* simulation of M/G/1 Queue.

" See VBASIm module for generic declarations
" See Class Modules for the supporting VBASIm classes

" Parameters we may want to change

Public MeanTBA As Double mean time between arrivals

Public MeanST As Double " mean service time

Public Phases As Integer " number of phases iIn service distribution
Public RunLength As Double " run length

Public WarmUp As Double "warm-up' time

" Global objects needed for simulation
" These will usually be queues and statistics

Dim Queue As New FIFOQueue "customer queue

Dim Wait As New DTStat "discrete-time statistics on customer waiting
Dim Server As New Resource "server resource

12



Public Sub MG1()
Dim Reps As Integer
Dim NextEvent As EventNotice

Call Mylnit * special initializations for this simulation
For Reps = 1 To 10
Call VBASimInit “initialize VBASIm for each replication
Call Schedule("Arrival', Expon(MeanTBA, 1))
Call Schedule(EndSimulation', RunLength)
Call Schedule("Clearlt”, WarmUp)
Do
Set NextEvent = Calendar.Remove
Clock = NextEvent.EventTime
Select Case NextEvent.EventType
Case "Arrival”
Call Arrival
Case "EndOfService"
Call EndOfService
Case "Clearlit”
Call ClearStats
End Select
Loop Until NextEvent.EventType = “EndSimulation"
" Write output report for each replication
Call Report(Wait.Mean, "MG1"™, Reps + 1, 1)
Call Report(Queue.Mean, "MG1l"™, Reps + 1, 2)
Call Report(Queue.NumQueue, "MG1', Reps + 1, 3)
Call Report(Server_Mean, "MG1', Reps + 1, 4)
Next Reps
End * ends execution, closes fTiles, etc.
End Sub

13



Public Sub MyInit(Q)
" Initialize the simulation

Call InitializeRNSeed

Server.SetUnits (1) " set the number of servers to 1

MeanTBA = 1

MeanST = 0.8

Phases = 3

RunLength = 55000

WarmUp = 5000

" Add queues, resources and statistics that need to be
" initialized between replications to the global collections
3

TheDTStats .Add Wait VBASIim will reinitialize any objects in these
TheQueues.Add Queue > collections between replications; there is
TheResources.Add Server also a The CTStats collection.

J

" Write headings for the output reports
Call Report(''Average Wait", "MG1'™, 1, 1)
Call Report(“Average Number in Queue', "MG1", 1, 2)
Call Report('Number Remaining in Queue', "MG1", 1, 3)
Call Report('Server Utilization", "MG1", 1, 4)

End Sub

14



Public Sub Arrival()
" Arrival event

" Schedule next arrival
Call Schedule("Arrival', Expon(MeanTBA, 1))

" Process the newly arriving customer

Dim Customer As New Entity <« | Notethat we dima NEW Entity;

Queue .Add Customer “New” means not only declare, but
Set Customer = Nothing also create

IT server i1s not busy, start service by seizing the server

IT Server.Busy = 0 Then
Server.Seize (1)

Call Schedule("EndOf ice"”, Erlang(Phases, MeanST, 2))
End IFf

Seize is VBASIm for “make
busy this many units of the
resource”

End Sub

15



Without “New” this is only a declaration

Public Sub EndOfService()
" End of service event

" Remove dep Ing customer from queue and record wait time

Dim DepartingCustomer As Entity
Set DepartingCustomer = Queue.Remove

How did this get set?

Wart.Record (Clock - DepartingCustomer.CreateTime)
Set DepartingCustomer = Nothing "be sure to free up memory

" Check to see i1f there 1s another customer;

otherwise free the server

IT Queue.NumQueue > 0 Then

IT yes start service

Call Schedule("EndOfService', Erlang(Phases, MeanST, 2))

Else
Server.Free (1)

End If T

End Sub

Free is VBASImM for
“make idle this
many units of the
resource”

16



Using VBASIM

e VVBASIim Module

— Declarations
— Subs: VBASimInit, Schedule, SchedulePlus, Report

e VVBASIim Class Modules
— CTStat, DTStat
— Entity
— EventCalendar, EventNotice
— FIFOQueue
— Resource

e Changing and adding to VBASIm

17



VBASIim module: Delcarations

Public Clock As Double "simulation global clock
Public Calendar As New EventCalendar "event calendar

" Set up Collections to be reinitialized between replications
Public TheCTStats As New Collection " continuous-time statistics
Public TheDTStats As New Collection " discrete-time statistics
Public TheQueues As New Collection " queues

Public TheResources As New Collection " resources

e Everything in VBASIm is “Public” so that it can be
used from any module in the Workbook.

e The[..]are collections of VBASIim objects that will
be reinitialized whenever VBASImInItis called.

18




VBASIMInit

e Usage: Call VBASImINnIt

e Typically placed inside the replication loop

e Resets the Clock, Calendar, and all of
The[..] collections

19



Schedule, SchedulePlus & Report

Public Sub Schedule(EventType As String, EventTime As Double)

Public Sub SchedulePlus(EventType As String, EventTime As
Double, TheObject as Object)

Public Sub Report(Output As Variant, WhichSheet As String, Row
As Integer, Column As Integer)

Usage:

Call Schedule(*“Arrival”, Expon(2,1))

Dim Customer as New Entity
Call SchedulePlus(*“Arrival”, Expon(2,1), Customer)

Call Report(Queue.Mean, “Sheet2”, 3, 5)

Notice that EventTime is how far into the future the event is to occur, not

the absolute time.

The “Plus” version allows another object (usually an Entity) to be attached

to the EventNotice.

20



Entity class module

Usage
Dim Customer as New Entity

Delay = Clock — Customer.CreateTime

You can add as many additional attributes as you need the entities to
have to the Entity Class Module.

" This 1s a generic entity that has a single attribute CreateTime

Public CreateTime As Double

" Add additional problem specific attributes here

Private Sub Class Initialize()
" Executes when Entity object is created to initialize variables
CreateTime = Clock

End Sub
21




EventNotice class module

Usage
Dim NextEvent as EventNotice
Set NextEvent = Calendar.Remove

Clock = NextEvent.EventTime
Select Case NextEvent.EventType

Call EOS(NextEvent.WhichObject)

The EventNotices are usually created by Schedule or SchedulePlus; you use them
when advancing to the next event.

* This 1s a generic EventNotice object with EventTime, EventType
“ and WhichObject attributes

Public EventTime As Double
Public EventType As String
Public WhichObject As Object

" Add additional problem specific attributes here

22




About the other class modules

e You are unlikely to modify the other class modules

(although you may create your own variations using
them as templates).

e The most important thing is to know how to use
them.

e Remember:
Whenyou DIm X as New Object, a pointer s
created to that (perhaps very complex) object. That
pointer needs to be retained, either in a specific
name (e.g., TicketQueueStatistic) or stored
in a collection or else the object is lost.

23



CTStat

e Collects continuous-time statistics
e Methods: Record, Mean and Clear

e Usage

Dim TotalCustomerStats as New CTStat

<« Call AFTER the value
TotalCustomerStats.Record(NumCust) has changed

Call Report(TotalCustomerStats.Mean,‘“Sheetl”, 1,2)

TotalCustomerStats.Clear

24



DTStat

e Collects discrete-time statistics
e Methods: Record, Mean, StdDev, N and Clear

e Usage

Dim Wait as New DTStat
Wart.Record(Clock - Customer.CreateTime)
Call Report(Wait.Mean,“Sheetl”, 1,2)
Call Report(Wait.StdDev,“Sheetl”, 1,3)
Call Report(Wait.N, “Sheetl”, 1,4)

Wart.Clear

25



Resource

Models resources and also keeps a CTStat on
average number in use

Properties: Busy [current number in use]
Methods: SetUnits, Seize, Free, Mean

Usage

Dim Server as New Resource

Server.SetUnits(5) “ resource has capacity 5
Server.Seize(l) “ make busy 1 unit of resource
Server.Free(1l) “ make 1dle 1 unit of resource

IT Server.Busy = 5 Then ..

Call Report(Server_Mean, “Sheetl”, 5,4)

26



FIFOQueue

e Models first-in-first-out queue, and also keeps a
CTStat on average number in queue

e Methods: NumQueue, Add, Remove, Mean
e Usage

Dim Line as New FIFOQueue

Dim Shopper as New Entity
Line.Add Shopper

Dim DepartingShopper as Entity
Set DepartingShopper = Line.Remove

IT Line.NumQueue = 0 Then..

Call Report(Line.Mean, “Sheetl”, 5,10)

27



Some notes...

e The CTStat’s created by FIFOQueue and
Resource are automatically added to
TheCTStats collection, so they are
reinitialized by VBASImInit.

e The most common change you will make is to
add attributes to the Entity class.

e \VBASIim currently does not have a lot of error
checking.

28



A note on creating new objects

e Consider the following code
Dim Queue as New FIFOQueue
Dim Customer as New Entity
Customer.SomeAttribute = 10
Queue.Add Customer
Dim Customer as New Entity
Customer.SomeAttribute = 11
Queue.Add Customer

e Surprisingly, this code puts 2 of the same entity
(both with SomeAttribute = 11)inthe Queue.

e This is because DIm..New only creates a new object
if the target pointer variable (Customer here) is
currently unassigned.

29



e Correct approach:

Dim Queue as New FIFOQueue

Dim Customer as New Entity

Customer.SomeAttribute = 10
Queue.Add Customer

Set Customer = Nothing

Dim Customer as New Entity

Customer.SomeAttribute = 11
Queue.Add Customer

Set Customer = Nothing

e Note that the Customer is not lost, because it has
been placed in the Queue (a collection); that is, its
reference is being maintained in another way.

e When DiIm..New encounters an unassigned pointer
variable it creates a new object.



Using RNG

e Call InittializeRNSeed()

— Call once at the beginning of the simulation to initialize the
pseudorandom-number generator

e Icgrand(Stream)
— Pseudorandom-number generator
— Streams 1-100

e Expon, Erlang, Random integer,
Normal, Lognormal, Triangular

— Arguments are distribution parameters first, with last
argument being the stream number 1-100

— Ex: Expon(15.2, 7)

31



M/G/5 Queue

e What would we have to change to make this a
single waiting line, but multiple server queue?

e Let’s modify the M/G/1 code...

32



Do

Changes in Sub MG1

Set NextEvent = Calendar.Remove
Clock = NextEvent.EventTime
Select Case NextEvent.EventType
Case "‘Arrival”
Call Arrival
Case "'EndOfService'
Call EndOfService(NextEvent.WhichObject)
Case "Clearlit"
Call ClearStats
End Select

Loop Until NextEvent.EventType = "EndSimulation”

The key difference is that the Queue will now only contain the customers waiting for
service, but not those in service. The ones in service will be passed along with the Event

Notice.

33




Changes in Sub Arrival

Sub Arrival(Q
" Arrival event
" Schedule next arrival
Call Schedule("Arrival™, Expon(MeanTBA, 1))

" Process the newly arriving customer

Dim Customer As New Entity
IT server i1s not busy, start service by seizing the server

IT Server.Busy < NumServers Then

Server.Seize (1)

Call SchedulePlus("'EndOfService"™,
Erlang(Phases, MeanST, 2), Customer)

Else
Queue.Add Customer
End 1T
Set Customer = Nothing
End Sub

34



Changes in Sub EndOfService

Sub EndOfService(DepartingCustomer As Entity)
" End of service event

record wait time of departing customer

Wairt.Record (Clock - DepartingCustomer.CreateTime)
Set DepartingCustomer = Nothing

Check to see 1f there i1s another customer;

IT yes start service otherwise free the server
IT Queue.NumQueue > 0 Then

Dim NextCustomer As Entity

Set NextCustomer = Queue.Remove

Call SchedulePlus("'EndOfService',

Erlang(Phases, MeanST, 2), NéxtCustomer)
Set NextCustomer = Nothing

Else

Server.Free (1)
End If

End Sub

35



Changes in Sub Mylnit

NumServers = 5
Server.SetUnits (NumServers) " set the number of servers

Written in this way, the simulation can look at any number of servers simply by changing
one line of code.

36




" Parameters we may want to change

Fax Center Simulation

MeanRegular As Double
VarRegular As Double
MeanSpecial As Double
VarSpecial As Double
RunLength As Double
NumAgents As Integer
NumSpecialists As Integer
NumAgentsPM As Integer
NumSpecialistsPM As Integer

mean entry time regular faxes
variance entry time regular faxes
mean entry time special faxes
variance entry time special faxes

length
number
number
number
number

" Global objects needed for simulation

RegularQ As New FIFOQueue
SpecialQ As New FIFOQueue
RegularWait As New DTStat
SpecialWait As New DTStat
Regularl0 As New DTStat
Speciall0 As New DTStat
Agents As New Resource
Specialists As New Resource
ARate(1 To 8) As Double
MaxRate As Double

Period As Double

NPeriods As Integer

of
of
of
of
of

the working day

regular agents

special agents

regular agents after noon
special agents after noon

queue for all faxes

queue for special faxes

discrete-time statistics on fax waiting
discrete-time statistics on special fax waiting
discrete-time statistics on < 10 minutes threshold
discrete-time statistics on < 10 minutes threshold
entry agents resource

specialists resource

arrival rates

maximum arrival rate

period for which arrival rate stays constant
number of periods iIn a "day" 37



Public Sub FaxCenterSim()
Dim Reps As Integer
Dim NextEvent As EventNotice
" Read in staffing policy
NumAgents = Worksheets("'Fax').Cells(25, 5)
NumAgentsPM = Worksheets("'Fax').Cells(25, 6)
NumSpecialists = Worksheets("'Fax').Cells(26, 5)
NumSpecialistsPM = Worksheets("'Fax').Cells(26, 6)
Call Mylnit

For Reps = 1 To 10
Call VBASimInit
Agents.SetUnits (NumAgents)
Specialists.SetUnits (NumSpecialists)
Call Schedule("Arrival", NSPP_Fax(ARate, MaxRate, NPeriods, Period, 1))
Call Schedule('ChangeStaff', 4 * 60)
Do
Set NextEvent = Calendar.Remove
Clock = NextEvent.EventTime
Select Case NextEvent.EventType
Case "Arrival”
Call Arrival
Case "EndOfEntry"
Call EndOfEntry(NextEvent.WhichObject)
Case "EndOfEntrySpecial™
Call EndOfEntrySpecial (NextEvent.WhichObject)
Case ''ChangeStaff"
Agents.SetUnits (NumAgentsPM)
Specialists.SetUnits (NumSpecialistsPM)
End Select
Loop Until Calendar.N = 0 * stop when event calendar empty

38



" Write output report for each replication

Call Report(RegularWait_.Mean, "Fax"™, Reps + 1, 1)
Call Report(RegularQ.Mean, "Fax'™, Reps + 1, 2)
Call Report(Agents.Mean, "Fax', Reps + 1, 3)
Call Report(Specialwait_Mean, "Fax'"™, Reps + 1, 4)
Call Report(SpecialQ.Mean, "Fax'", Reps + 1, 5)
Call Report(Specialists.Mean, "Fax', Reps + 1, 6)
Call Report(RegularlO.Mean, "Fax', Reps + 1, 7)
Call Report(SpeciallO.Mean, "Fax', Reps + 1, 8)
Call Report(Clock, "Fax'™, Reps + 1, 9)

Next Reps

End

End Sub

Private Sub Arrival()

" Schedule next fax arrival If < 4 PM
IT Clock < RunLength Then
Call Schedule("Arrival™, NSPP_Fax(ARate, MaxRate, NPeriods, Period, 1))
Else
Exit Sub
End IT
" Process the newly arriving Fax
Dim Fax As New Entity
IT Agents.Busy < Agents.NumberOfUnits Then
Agents.Seize (1)
Call SchedulePlus("'EndOfEntry™, Normal(MeanRegular, VarRegular, 2), Fax)

Else
RegularQ.Add Fax
End IT
Set Fax = Nothing 39

End Sub



Private Sub EndOfEntry(DepartingFax As Entity)
Dim Wait As Double

" Record wait time i1f regular; move on if special

IT Uniform(0, 1, 3) < 0.2 Then
Call SpecialArrival (DepartingFax)
Else
Wait = Clock - DepartingFax.CreateTime
RegularWait.Record (Wait)
IT Wait < 10 Then
Regularl0.Record (1)

Else
Regularl0.Record (0)
End If
End If

Set DepartingFax = Nothing

" Check to see if there is another Fax; i1If yes start entry
" otherwise free the agent

IT RegularQ.NumQueue > 0 And Agents.NumberOfUnits >= Agents.Busy Then
Set DepartingFax = RegularQ.Remove
Call SchedulePlus("'EndOfEntry', Normal(MeanRegular, VarRegular, 2), DepartingFax)
Set DepartingFax = Nothing

Else
Agents._Free (1)
End IT
End Sub

40



Private Sub SpecialArrival(SpecialFax As Entity)
" ITf special agent available, start entry by seizing the special agent

IT Specialists.Busy < Specialists.NumberOfUnits Then
Specialists.Seize (1)
Call SchedulePlus("'EndOfEntrySpecial’™, Normal(MeanSpecial, VarSpecial, 4), SpecialFax)
Else
SpecialQ.Add SpecialFax
End IT
Set SpecialFax = Nothing

End Sub

41



Private Sub EndOfEntrySpecial (DepartingFax As Entity)
Dim Wait As Double

" Record wait time and indicator if < 10 minutes

Wait = Clock - DepartingFax.CreateTime
SpecialWait.Record (Wait)
IT Wait < 10 Then
Speciall0.Record (1)
Else
Speciall0.Record (0)
End IT
Set DepartingFax = Nothing

" Check to see if there is another Fax; i1If yes start entry
" otherwise free the specialist

IT SpecialQ.NumQueue > 0 And Specialists.NumberOfUnits >= Specialists.Busy Then
Set DepartingFax = SpecialQ.Remove
Call SchedulePlus(""EndOfEntrySpecial’, Normal(MeanSpecial, VarSpecial, 4), DepartingFax)
Set DepartingFax = Nothing

Else
Specialists.Free (1)
End If
End Sub

42



Private Sub MyInit()
" Initialize the simulation
Call InitializeRNSeed
MeanRegular = 2.5
VarRegular = 1#
MeanSpecial = 4
VarSpecial = 1#
RunLength = 480
" Add queues, resources and statistics that need to be
" initialized between replications to the global collections
TheDTStats.Add RegularWait
TheDTStats.Add SpecialWait
TheDTStats.Add RegularlO
TheDTStats.Add SpeciallO
TheQueues.Add RegularQ
TheQueues.Add SpecialQ
TheResources.Add Agents
TheResources.Add Specialists
" Write headings for the output reports
Call Report('Ave Reg Wait", "Fax", 1, 1)
Call Report('Ave Num Reg Q", "Fax™, 1, 2)
Call Report(“'Agents Busy", "Fax", 1, 3)
Call Report('Ave Spec Wait", "Fax', 1, 4)
Call Report('Ave Num Spec Q", "Fax", 1, 5)
Call Report('Specialists Busy'", "Fax', 1, 6)
Call Report('Reg < 10", "Fax', 1, 7)
Call Report(''Spec < 10", "Fax", 1, 8)
Call Report(End Time", "Fax', 1, 9)
" Arrival process data
NPeriods = 8

Period = 60
MaxRate = 6.24
ARate(1) = 4.37
ARate(2) = 6.24
ARate(3) = 5.29
ARate(4) = 2.97
ARate(b) = 2.03
ARate(6) = 2.79
ARate(7) = 2.36
ARate(8) = 1.04

End Sub



Private Function NSPP_Fax(ARate() As Double, MaxRate As Double, NPeriods As Integer, _
Period As Double, Stream As Integer) As Double

" This function generates interarrival times from a NSPP with piecewise constant

" arrival rate over a fixed time of Period*NPeriod time units

" ARate = array of arrival rates over a common length Period

" MaxRate = maximum value of ARate

" Period = time units between (possible) changes in arrival rate
" NPeriods = number of time periods in ARate

Dim 1 As Integer
Dim PossibleArrival As Double

PossibleArrival = Clock + Expon(l / MaxRate, Stream)
1 = WorksheetFunction.Min(NPeriods, WorksheetFunction.Ceiling(PossibleArrival / Period, 1))

Do Until Uniform(O, 1, Stream) < ARate(i) / MaxRate

PossibleArrival = PossibleArrival + Expon(l / MaxRate, Stream)

1 = WorksheetFunction_.Min(NPeriods, WorksheetFunction.Ceiling(PossibleArrival / Period, 1))
Loop
NSPP_Fax = PossibleArrival - Clock

End Function

44



