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Abstract

Moment robust optimization models formulate a stochastic problem with an uncer-
tain probability distribution of parameters described by its moments. In this paper
we study a two-stage stochastic convex programming model using moments to define
the probability ambiguity set for the objective function coefficients in both stages. A
decomposition based algorithm is given. We show that this two-stage model can be
solved to any precision in polynomial time. We consider a special case where the prob-
ability ambiguity sets are described by the exact information of the first two moments
and the convex functions are piece-wise linear utility functions. A two-stage stochastic
semidefinite programming formulation is given of this problem and we provide com-
putational results on the performance of this problem using a portfolio optimization
application. Results show that the two stage modeling is effective when forecasting
models have predictive power.

1 Introduction

Moment robust optimization models specify information on the distribution of the uncertain
parameters using moments of the probability distribution of these parameters. The probabil-
ity distribution is not known. Scarf [16] proposed such a model for the newsvendor problem.
In his problem the given information is the mean and variance of the distribution. Recently,
different forms of the distributional ambiguity sets have been considered. Bertsimas et al. [2]
studied a piece-wise linear utility model with exact knowledge of the first two moments. Two
cases are considered in [2]: (i) the uncertain coefficients are in the objective function, and
(ii) the uncertain coefficients are in the right-hand side of the constraints. For the first case,
Bertsimas et al. [2] give an equivalent semidefinite programming (SDP) formulation. When
the uncertain coefficients are in the right-hand side of the constraints, they show that their
robust model is NP-complete. The uncertain parameters only appear in the second stage
problem, hence their model can be considered as a single stage moment robust optimization
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problem. Delage and Ye [5] also considered such a single stage moment robust convex opti-
mization program with the ambiguity set defined by a confidence region for both first and
second moments. They show that this problem can be formulated as a semi-infinite convex
optimization problem. It is then solved by the ellipsoid method in polynomial time. Alter-
natives to using moments to specify the distribution uncertainty have been proposed. Pflug
and Wozabal [14] analyzed the portfolio selection problem with the ambiguity set defined
by a confidence region over a reference probability measure using the Kantorovich distance.
Shapiro and Ahmed [17] analyzed a class of convex optimization problem with ambiguity set
defined by general moment constraints and bounds over the probability measures. Mehrotra
and Zhang [13] give conic reformulations of ambiguity models in [5, 14, 17] for the distribu-
tionally robust least-squares problem.

In this paper we consider a two-stage moment robust stochastic convex optimization problem
given as:

min
x∈X

f(x) +G(x), (1.1)

G(x) =
K∑
k=1

πkGk(x), (1.2)

Gk(x) := min
wk∈Wk(x)

gk(wk). (1.3)

The objective functions f(x) and gk(wk) are defined as:

f(x) := max
P∈P1

EP[ρ1(x, p̃)], (1.4)

gk(wk) := max
P∈P2,k

EP[ρ2(wk, q̃)], (1.5)

where ρ1(·) and ρ2(·) are two general functions and the expectations in (1.4) and (1.5) are
taken for the random vectors p̃ and q̃. S1 and S2 are first and second stage sample spaces.
Note that P2,k may depend on k. Let M1 and M2 be the measures defined on S1 and S2

with the Borel σ-algebra. The probability ambiguity sets P1 and P2,k are defined as:

P1 := {P : P ∈M1,EP[1] = 1, (EP[p̃]− µµµ1)TΣΣΣ−1
1 (EP[p̃]− µµµ1) ≤ α1, (1.6)

EP[(p̃− µµµ1)(p̃− µµµ1)T ] � β1ΣΣΣ1},
P2,k := {P : P ∈M2,EP[1] = 1, (EP[q̃]− µµµ2,k)

TΣΣΣ−1
2,k(EP[q̃]− µµµ2,k) ≤ α2,k, (1.7)

EP[(q̃− µµµ2,k)(q̃− µµµ2,k)
T ] � β2,kΣΣΣ2,k},

where µµµ1, ΣΣΣ1, µµµ2,k, ΣΣΣ2,k are moment parameters used to define ambiguity sets P1 and P2,k.
This definition is same as the one used in Delage and Ye [5]. The feasible set X is a convex
compact set and the second stage feasible set Wk(x) is defined as:

Wk(x) := {Wkwk = hk −Tkx,wk ∈ W}, (1.8)

where W is a nonempty convex compact set in Rn2 , x ∈ Rn1 and wk ∈ Rn2 . The situation
leading to modeling framework (1.1)-(1.8) is one where the current parameters of a decision
problem are uncertain, and this uncertainty propogates through a known stochastic process,
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leading to future uncertain parameters. For example, the estimated current returns of stocks
are ambiguous, and the portfolio needs to be balanced at a future step where the returns
are also ambiguous. In (1.1)-(1.3), we have moment robust problems in both stages and
the parameter estimations of the moments for the second stage problem (1.3) are uncertain
when the decision makers optimize the first-stage problem (1.1). Note that although the
parameter Wk, Tk and hk are random in this model, in view of the NP-completeness results
for the single stage case [2], in the current paper we do not define an ambiguity set for
these parameters. Only the parameters of the convex objective function for the first and the
second stage problem are defined over an ambiguity set.

In this paper we develop a decomposition based algorithm to solve (1.1)-(1.8). We show
that (1.1)-(1.8) can be solved in polynomial time under suitable, yet general assumptions.
For the single stage moment robust problem in [5], a key requirement is that a semi-infinite
constraint is verified, or an oracle gives a cut in polynomial time. Since the constraint can
only be verified to ε-precision in our case, we need further development to prove the polyno-
mial solvability of (1.1)-(1.8). The ε-precision only allows an ε-precision verification of the
constraint feasibility. Also, we can only generate an approximate cut to separate infeasible
points. Both facts suggest that we need to use approximate separation oracles to prove
the polynomial solvability. We also study a two-stage moment robust portfolio optimiza-
tion model and empirical results suggests that the two-stage modeling framework is effective
when we have forecasting power.

This paper is organized as follows. In Section 2 we give additional notations, the necessary
definitions, and assumptions for (1.1)-(1.8). In Section 3 we develop an equivalent formula-
tion of the two-stage framework (1.1)-(1.3). In Section 4, we present some results for convex
optimization problem needed to calculate ε-sub and supergradients. Section 5 gives analysis
of an ellipsoidal decomposition algorithm for (1.1)-(1.8). In Section 6 a two-stage moment
robust portfolio optimization model is considered. We use data to study the effectiveness
of the two-stage model. We compare our two-stage model with two other models and ex-
perimental results suggest that our two-stage model has better performance when we have
forecasting power.

2 Definitions and Assumptions

In this section we summarize several definitions and assumptions used in the rest of this
paper. Throughout we use the phrase “polynomial time” to refer to computations performed
using number of elementary operations that are polynomial in problem dimension, size of
the input data, and log(1

ε
), using exact arithmetric. Here ε is the desired precision for the

optimization problem (1.1)-(1.8).

Definition 1 Let us consider variables x with dim(x) = n. For any set C ⊆ Rn and a
positive real number ε, the set Bx(C, ε) is defined as:

Bx(C, ε) := {x ∈ Rn : ||x− y|| ≤ ε for some y ∈ C}.

Bx(C, ε) is the ε-ball covering of C. In particular, when C is a singleton, i.e. C = {x̄}, we
set Bx(C, ε) = Bx(x̄, ε), which is the ε-ball around x̄.
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Definition 2 Let us consider an optimization problem (P): minx∈C h(x), where C ⊆ Rn is
a full dimensional closed convex set and h(x) is a convex function of x. We say that (P) is
solved to ε-precision if we can find a feasible x̄ ∈ C, such that h(x̄) ≤ h(x) + ε for all x ∈ C.

Definition 3 For a convex function f(x) defined on Rn, d ∈ Rn is an ε-subgradient at x if
for all z ∈ Rn, f(z) ≥ f(x) + dT (z − x) − ε. For a concave function f(x) defined on Rn,
d ∈ Rn is an ε-supergradient at x if for all z ∈ Rn, f(z) ≤ f(x) + dT (z− x) + ε.

Definition 4 Let us consider the convex optimization problem

min f(x) (2.1)

s.t. g(x) ≤ 0

h(x) = 0

x ∈ X ,

where f : Rn → R, g : Rn → Rm are convex component-wise, h : Rn → Rl is affine, and X
is a nonempty convex compact set. For any µµµ ∈ Rm+ , λλλ ∈ Rl, we define the Lagrangian dual
as:

θ(µµµ,λλλ) := min
x∈X
{f(x) + µµµTg(x) + λλλTh(x)}. (2.2)

Let γ∗ be the optimal objective value of (2.1). We call µ̄µµ ∈ Rm+ and λ̄λλ ∈ Rl to be an ε optimal
Lagrange multipliers of the constraints g(x) ≤ 0 and h(x) = 0 if 0 ≤ γ∗ − θ(µ̄µµ, λ̄λλ) < ε.

Note that because of weak duality γ∗ − θ(µµµ,λλλ) ≥ 0 for any µµµ ∈ Rm+ and λλλ ∈ Rl. For the
two-stage moment robust problem (1.1)-(1.3), we make the following assumptions:

Assumption 1 For α1 ≥ 0, β1 ≥ 1, and ΣΣΣ1 � 0, ρ1(x, p̃) is P-integrable for all P ∈P1.

Assumption 2 The sample space S1 ⊂ Rm1 is convex and compact (closed and bounded),
and it is equipped with an oracle that for any p ∈ Rm1 can either confirm that p ∈ S1 or
provide a hyperplane that separates p from S1 in polynomial time.

Assumption 3 The set X ⊂ Rn1 is convex, compact, and full dimensional (closed and
bounded with nonempty interior). There exists an x0 ∈ X and r1

0, R
1
0 ∈ R+, such that

Bx(x0, r
1
0) ⊆ X ⊆ Bx(0, R1

0). In the context of the ellipsoid method we assume that x0, r1
0

and R1
0 are known. X is equipped with an oracle that for any x ∈ Rn1 can either confirm

that x̄ ∈ X or provide a vector d ∈ Rn1 with ||d||∞ ≥ 1 such that dT x̄ < dTx for ∀x ∈ X in
polynomial time.

Assumption 4 The function ρ1(x,p) is concave in p. In addition, given a pair (x,p), it
is assumed that in polynomial time, one can:

1. evaluate the value of ρ1(x,p);

2. find a supergradient of ρ1(x,p) in p.

Assumption 5 The function ρ1(x,p) is convex in x. In addition, it is assumed that one
can find in polynomial time a subgradient of ρ1(x,p) in x.
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Assumption 6 For any k ∈ {1, . . . , K}, α2,k ≥ 0, β2,k ≥ 1, and ΣΣΣ2,k � 0, ρ2(w,q) is
P-integrable for all P ∈P2,k.

Assumption 7 The sample space S2 ⊂ Rm2 is convex and compact (closed and bounded),
and it is equipped with an oracle that for any q ∈ Rm2 can either confirm that q ∈ S2 or
provide a hyperplane that separates q from S2 in polynomial time.

Assumption 8 The set W ⊂ Rn2 is convex, compact, and full dimensional. There exists
known w0 ∈ W and r2

0, R
2
0 ∈ R+, such that Bw(w0, r

2
0) ⊆ W ⊆ Bw(0, R2

0). It is equipped
with an oracle that for any w ∈ Rn2 can either confirm that w ∈ W or provide a hyperplane,
i.e. a vector d ∈ Rn2 with ||d||∞ ≥ 1 that separates w from W in polynomial time.

Assumption 9 For any k ∈ {1, . . . , K}, x ∈ X , Wk(x) := {wk : Wkwk = hk −Tkx,wk ∈
W} 6= ∅.

Assumption 9 implies that Wk(x) is nonempty and compact for any k ∈ {1, . . . , K}. This is
a standard assumption in stochastic programming. It may be ensured by using an artificial
variable for each scenario.

Assumption 10 The function ρ2(w,q) is concave in q. In addition, given a pair (w,q),
we assume that we can in polynomial time:

1. evaluate the value of ρ2(w,q);

2. find a supergradient of ρ2(w,q) in q.

Assumption 11 The function ρ2(w,q) is convex in w. In addition, we assume that we can
find in polynomial time a subgradient of ρ2(w,q) in w.

Assumptions 1-2 are to guarantee that the first stage ambiguity set (1.6) is well defined.
Assumption 3 requires that the first stage feasible region is compact, and a separating hy-
perplane with enough norm can be generated for any infeasible point. Assumptions 4-5 make
sure that the objective function is convex/conave and its sub and supergradients can be com-
puted efficiently. Assumptions 1-5 are similar as the assumptions in [5]. Assumptions 6-11
are similar to Assumptions 1-5. These assumptions ensure that the second stage problem is
a well-defined convex program for each scenario.

3 Equivalent Formulation of Two-Stage Moment Ro-

bust Problem

In this section we give an equivalent formulation of the two stage moment robust problem
(1.1)-(1.3). The next theorem gives such a reformulation for a single stage problem.

Theorem 1 (Delage and Ye 2010 [5]). Let v := (Y,y, y0, t) and define:

c(v) : = y0 + t (3.1)

V(h,x) : = {v : y0 ≥ h(x,q)− qTYq− qTy, ∀q ∈ S , (3.2)

t ≥ (βΣΣΣ0 + µ0µ0µ0µ0µ0µ0
T ) •Y + µµµT0 y +

√
α
∣∣∣∣∣∣ΣΣΣ 1

2
0 (y + 2Yµµµ0)

∣∣∣∣∣∣ ,
Y � 0}.
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Consider the moment robust problem

min
x∈X

(max
P∈P

EP[h(x, q̃)]) (3.3)

with probability ambiguity set P defined as

P := {P : P ∈M,EP[q̃] = 1, (EP[q̃]− µµµ0)TΣΣΣ−1
0 (EP[q̃]− µµµ0) ≤ α, (3.4)

EP[(q̃− µµµ0)(q̃− µµµ0)T ] � βΣΣΣ0}.

Consider the following assumptions:

(i) α ≥ 0, β ≥ 1, ΣΣΣ � 0, and h(x,q) is P-integrable for all P ∈P.

(ii) The sample space S ⊂ Rm is convex and compact, and it is equipped with an oracle that
for any q ∈ Rm can either confirm that q ∈ S or provide a hyperplane that separates
q from S in polynomial time.

(iii) The feasible region X is convex and compact, and it is equippend with an oracle that
for any x ∈ Rn can either confirm that x ∈ X or provide a hyperplane that separates
x from X in polynomial time.

(iv) The function h(x,q) is concave in q. In addition, given a pair (x,q), it is assumed
that one in polynomial time can:
1. evaluate the value of h(x,q);
2. find a supergradient of h(x,q) in q.

(v) The function h(x,q) is convex in x. In addition, it is assumed that one can find in
polynomial time a subgradient of h(x,q) in x.

If assumption (i) is satisfied, then for any given x ∈ X , the optimal value of the inner
problem maxP∈P EP[h(x, q̃qq)] in (3.3) is equal to the optimal value c(v∗) of the problem:

min
v∈V(h,x)

c(v). (3.5)

If assumptions (i)-(v) are satisfied, then (3.3) is equivalent to the following problem

min
v∈V(h,x),x∈X

c(v). (3.6)

Problem (3.6) is well defined, and can be solved by the ellipsoid method to any precision ε in
polynomial time.

Applying Theorem 1 to (1.4) and (1.5), we have an equivalent two-stage semi-infinite pro-
gramming formulation of (1.1)-(1.8) as stated in the following theorem.

Theorem 2 Suppose that Assumptions 1-11 are satisfied. Then the two-stage moment robust
problem (1.1)-(1.8) is equivalent to

min
x∈X ,v1∈V(ρ1,x)

c(v1) +G(x) (3.7)

G(x) =
K∑
k=1

πkGk(x), (3.8)

Gk(x) := min
wk∈Wk(x),v2,k∈V(ρ2,wk)

c(v2,k), (3.9)
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where:

v1 := (Y1,y1, y
0
1, t1), (3.10)

c(v1) := y0
1 + t1, (3.11)

V1(ρ1,x) := {v1 : y0
1 ≥ ρ1(x,p)− pTY1p− pTy1, ∀p ∈ S1 (3.12)

t1 ≥ (β1ΣΣΣ1 + µµµ1µµµ
T
1 ) •Y1 + µµµT1 y1 +

√
α1

∣∣∣∣∣∣ΣΣΣ 1
2
1 (y1 + 2Y1µµµ1)

∣∣∣∣∣∣
Y1 � 0},

and for any k ∈ {1, . . . , K},

v2,k := (Y2,k,y2,k, y
0
2,k, t2,k), (3.13)

c(v2,k) := y0
2,k + t2,k, (3.14)

V2,k(ρ2,wk) := {v2,k : y0
2,k ≥ ρ2(wk,q)− qTY2,kq− qTy2,k, ∀q ∈ S2, (3.15)

t2,k ≥ (β2ΣΣΣ2,k + µµµ2,kµµµ
T
2,k) •Y2,k + µµµT2,ky2,k

+
√
α2

∣∣∣∣∣∣ΣΣΣ 1
2
2,k(y2,k + 2Y2,kµµµ2,k)

∣∣∣∣∣∣ ,Y2,k � 0}.

Problem (3.7)-(3.9) is a two-stage stochastic program, where both stages are semi-infinite
programming problems. We will develop a decomposition algorithm to prove the polynomial
solvability of (3.7)-(3.9) in Section 5.

4 Subgradient Calculation and Polynomial Solvability

In this section, we summarize some known results on convex optimization. We also present
a basic result for computing an ε-subgradient for general convex optimization problem. The
following theorem from Grotschel, Lovasz and Schrijver [7] shows that a convex optimization
problem and the separation problem of a convex set are polynomially equivalent.

Theorem 3 (Grotschel et al. [7, Theorem 3.1]). Consider a convex optimization problem
of the form

min
z∈Z

cTz

with a linear objective function and a convex closed feasible set Z ⊂ Rn. Assume that there
are known constants a0, r and R such that Bz(a0, r) ⊆ Z ⊆ Bz(0, R). Assume that we have
an oracle such that given a vector z̄ and a number δ > 0, we can conclude with one of the
following:

1. z̄ passes the test of the oracle, i.e., ensure that z̄ ∈ Bz(Z , δ) in polyhnomial time.

2. z̄ does not pass the test of the oracle and it can generate a vector d ∈ Rn with ||d||∞ ≥ 1
such that dT z̄ ≤ dTz + δ for every z ∈ Z in polynomial time.

Then, given an ε > 0, we can find a vector y satisfying the oracle with some δ ≤ ε such that
cTy − ε ≤ cTz for ∀z ∈ Z in polynomial time by using the ellipsoid method.

The following proposition tells us that the average ofN ε-subgradients is still an ε-subgradient
of the average of the N convex functions.
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Proposition 1 (Hiriart-Urruty and Lemarechal [8, Theorem 3.1.1]). If h1(x), . . . , hN(x)
are N convex functions w.r.t. x and ∇hε1(x̄), . . . ,∇hεN(x̄) are ε-subgraduents of these N
convex function at x̄, then for any π1, . . . , πN ∈ R+ with

∑N
i=1 πi = 1,

∑N
i=1 πi∇hεi(x̄) is a

ε-subgradient of
∑N

i=1 πihi(x) at x̄.

The following lemma shows that the ε-optimal solutions of the Lagrangian may be used to
obtain an ε-supergradient of the Lagrangian w.r.t. the Lagrange multipliers.

Lemma 1 Consider the convex programming problem defined in (2.1), where f : Rn → R,
g : Rn → Rm is convex, h : Rn → Rl is affine, and X is a nonempty convex compact set.
Assume that {x : g(x) < 0} ∩ {x : h(x) = 0} ∩ X 6= ∅. For any given µ̄µµ ∈ Rm+ , λ̄λλ ∈ Rl and
ε > 0, if x̄ is an ε-optimal solution of θ(µ̄µµ, λ̄λλ), i.e,

−ε < θ(µ̄µµ, λ̄λλ)− (f(x̄xx) + µ̄µµTg(x̄) + λ̄λλ
T
h(x̄) < 0,

then (g(x̄); h(x̄)) is an ε-supergradient of θ(·, ·) at (µ̄µµ, λ̄λλ), where θ(·, ·) is the Lagrangian dual
defined in (2.2).

Proof It is well known that θ(µµµ,λλλ) is a concave function w.r.t. (µµµ,λλλ) [3, Sec. 5.1.2]. Since
f , g are convex, h is affine and X is nonempty and compact, we know that θ(µµµ,λλλ) is finite
for ∀(µµµ;λλλ) ∈ Rm+l. Therefore,

θ(µµµ,λλλ) = min
x∈X
{f(x) + µµµTg(x) + λλλTh(x)}

≤ f(x̄) + µµµTg(x̄) + λλλTh(x̄)

= f(x̄) + [(µµµ;λλλ)− (µ̄µµ; λ̄λλ)]T (g(x̄); h(x̄)) + (µ̄µµ; λ̄λλ)T (g(x̄); h(x̄))

≤ θ(µ̄µµ, λ̄λλ) + [(µµµ;λλλ)− (µ̄µµ; λ̄λλ)]T (g(x̄); h(x̄)) + ε

The following strong duality theorem is from Bazaraa, Sherali and Shetty [1, Theorem 6.2.4].

Theorem 4 Consider the convex optimization problem (2.1). Let X be a nonempty convex
set in Rn. Let f : Rn → R, g : Rn → Rm be convex, and let h : Rn → Rl be affine;
that is, h is of the form h(x) = Ax − b. Suppose that the Slater constraint qualification
holds, i.e, there exists an x̂ ∈ X such that g(x̂) < 0, h(x̂) = 0, and 0 ∈ int(h(X )), where
h(X ) = {h(x) : x ∈ X} and int(·) is the interior of a set. Then,

inf{f(x) : g(x) ≤ 0,h(x) = 0,x ∈ X} = sup{θ(µµµ,λλλ) : µµµ ≥ 0}.

Furthermore, if the inf is finite, then sup{θ(µµµ,λλλ) : µµµ ≥ 0} is achieved at (µ̄µµ; λ̄λλ) with µ̄µµ ≥ 0.
If the inf is achieved at x̄, then µ̄µµTg(x̄) = 0.

The following theorem states that the ε-optimal Lagrangian multipliers can be used as an
ε-subgradient of the perturbed convex optimization problem (4.1) at the origin.

Theorem 5 Consider the convex optimization problem (2.1). Let X be a nonempty convex
set in Rn, let f : Rn → R, g : Rn → Rm be convex, and h : Rn → Rl be affine. Assume that
the Slater constaint qualification as in Theorem 4 holds. Assume that µ̄µµ ∈ Rm+ , λ̄λλ ∈ Rl are
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ε-optimal Lagrangian multipliers for the constraints g(x) ≤ 0 and h(x) = 0. Now consider
the perturbed problem:

π(u,v) := minf(x) (4.1)

s.t. g(x) ≤ u

h(x) = v

x ∈ X ,

with u ∈ Rm and v ∈ Rl. Then, π(u,v) is convex and (µ̄µµ; λ̄λλ) is an ε-subgradient of π(u,v)
at (0,0) w.r.t. (u; v).

Proof The convexity of π(u,v) is known from [3, Sec. 5.6.1]. For any µµµ ∈ Rm+ , λλλ ∈ Rl, the
Lagrangian function of the original problem π(0,0) is written as

L(x,µµµ,λλλ) = f(x) + µµµTg(x) + λλλTh(x).

Slater constraint qualification conditions ensure that the strong duality holds. For given
µµµ ∈ Rm+ , λλλ ∈ Rl, consider the dual problem: θ(µµµ,λλλ) := infx∈X L(x,µµµ,λλλ). For any u ∈ Rm,
v ∈ Rl, let

Y(u,v) := {x : x ∈ X ,g(x) ≤ u,h(x) = v}.
If Y(u,v) 6= ∅, since θ(µµµ,λλλ) = infx∈X{f(x) + µµµTg(x) + λλλTh(x)}, for any x̄ ∈ Y(u,v), we
can have:

θ(µ̄µµ, λ̄λλ) = inf
x∈X
{f(x) + µ̄µµTg(x) + λ̄λλ

T
h(x)}

≤ f(x̄) + µ̄µµTg(x̄) + λ̄λλ
T
h(x̄)

≤ f(x̄) + µ̄µµTu + λ̄λλ
T
v.

The first inequality follows from the definition of inf and the second inequality follows from
µ̄µµ ∈ Rm+ . Since x̄ is an arbitrary point in Y(u,v), we can take the infimum of the right-hand
side over the set Y(u,v) to get:

θ(µ̄µµ, λ̄λλ) ≤ π(u,v) + µ̄µµTu + λ̄λλ
T
v.

Since 0 < π(0,0)− θ(µ̄µµ, λ̄λλ) < ε, we know that:

π(0,0)− ε ≤ θ(µ̄µµ, λ̄λλ) ≤ π(u,v) + µ̄µµTu + λ̄λλ
T
v. (4.2)

Inequality (4.2) holds when Y(u,v) = ∅ because π(u,v) = ∞ in this case. Therefore, we
can conclude that (µ̄µµ; λ̄λλ) is an ε-subgradient of π(u,v) at (0,0) with respect to (u; v).

5 A Decomposition Algorithm for a General Two-Stage

Moment Robust Optimization Model

In Section 3 we presented an equivalent formulation (3.7)-(3.9) of the two-stage moment
robust program (1.1)-(1.3) as a semi-infinite program. In this section we propose a decom-
position algorithm to show that this equivalent formulation can be solved to any precision
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in polynomial time. A key ingredient of the decomposition algorithm is the construction of
an ε-subgradient of the function Gk(x) defined in (3.9). Theorem 5 will be useful for this
purpose. First, observe that we can apply Theorem 1 to the second stage problem (3.9) to
solve them in polynomial time. This is stated in the following corollary.

Corollary 1 For ∀k ∈ {1, . . . , K}, let Assumptions 6-10 be satisfied. The second stage
problem Gk(x) defined as (3.9) can be solved to any precision ε in polynomial time.

Proof Given k ∈ {1, . . . , K}, consider the moment robust problem:

min
wk∈Wk(x)

max
P∈P2,k

E[ρ2(wk, q̃)].

Assumption 8 guarantees that for k ∈ {1, . . . , K} and x ∈ X , the setWk(x) is nonempty and
bounded. This verifies condition (iii) in Theorem 1. Assumption 6, 7, 9, 10 verify conditions
(i), (ii), (iv), (v).

For any given k ∈ {1, . . . , K}, define the Lagrangian function Lk(λλλ,x) of (3.9) as:

Lk(λλλ,x) := min
wk,Y2,k,y2,k,y

0
2,k,t2,k

y0
2,k + t2,k + λλλT (Wkwk − hk + Tkx) (5.1a)

s.t. y0
2,k ≥ ρ2(wk,q)− qTY2,kq− qTy2,k, ∀q ∈ S2 (5.1b)

t2,k ≥ (β2,kΣΣΣ2,k + µµµ2,kµµµ
T
2,k) •Y2,k + µµµT2,ky2,k

+
√
α2,k

∣∣∣∣∣∣ΣΣΣ 1
2
2,k(y2,k + 2Y2,kµµµ2,k)

∣∣∣∣∣∣ (5.1c)

Y2,k � 0, wk ∈ W . (5.1d)

We now give a summary of the remaining analysis in this section. In Proposition 2, we show
that for any given λ, the Lagrangian problem Lk(λ,x) can be evaluated to any precision
polynomially. In Proposition 3, the ε approximate solution of Lk(λ,x) can be used to gen-
erate an ε-subgradient to prove the polynomial time solvability of the second stage problem
for each given first stage solution x, as stated in Lemma 2 and 3. Based on this result, we
further prove the polynomial solvability of the two-stage semi-infinite problem (3.7)-(3.9) in
Theorem 6.

The following proposition states that (5.1) can be solved to any precision in polynomial time.

Proposition 2 Let Assumptions 6-10 be satisfied. Then, for ∀λλλ ∈ Rl2, Lk(λλλ,x) can be
evaluated and a solution (wk,v2,k) can be found to any precision ε in polynomial time.

Proof Given k ∈ {1, . . . , K}, x ∈ X , and λλλ ∈ Rl2 , consider the optimization problem:

min
wk∈W

max
P∈P2,k

EP[φk(x,λλλ,wk,q)], (5.2)

where φk(x,λλλ,wk,q) := ρ2(wk,q) + λλλT (Wkwk − hk + Tkx). Since λλλT (Wkwk − hk + Tkx)
is linear w.r.t. wk, Assumptions 10 and 11 are also satisfied for φk(x,λλλ,w

ξξξ,q). Therefore,
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by using Theorem 1, (5.2) is equivalent to

min
wk,Y2,k,y2,k,y

0
2,k,t2,k

y0
2,k + t2,k (5.3)

s.t. y0
2,k ≥ φk(x,λλλ,wk,q)− qTY2,kq− qTy2,k, ∀q ∈ S2

t2,k ≥ (β2,kΣΣΣ2,k + µµµ2,kµµµ
T
2,k) •Y2,k + µµµT2,ky2,k

+
√
α2,k

∣∣∣∣∣∣ΣΣΣ 1
2
2,k(y2,k + 2Y2,kµµµ2,k)

∣∣∣∣∣∣
Y2,k � 0, wk ∈ W ,

and (5.3) is polynomially solvable. By substituting for y2,k, t2,k in the objective, it is easy to
see that (5.3) is equivalent to (5.1), which implies that (5.1) can be solved to any precision
ε in polynomial time.

The following proposition shows that the ε-optimal solution of the Lagrangian problem (5.1)
gives an ε-supergradient of Lk(λλλ,x) w.r.t. λλλ.

Proposition 3 For any k ∈ {1, . . . , K}, x ∈ X , λ̄λλ ∈ Rl2, let (w̄k, v̄2,k) := (w̄k, Ȳ2,k, ȳ2,k,
ȳ0

2,k, t̄2,k) be an ε-optimal solution of the Lagrangian problem defined in (5.1) for λλλ = λ̄λλ.

Then, Wkw̄k − hk −Tkx is an ε-supergradient of Lk(λλλ,x) w.r.t. λλλ at λ̄λλ.

Proof Since (5.1) is the Lagrangian dual problem of (3.9), we apply Lemma 1 and the result
follows.

From Assumption 8, for each x ∈ X and k ∈ {1, . . . , K},

Gk(x) := sup
λλλ∈Rl2

{Lk(λλλ,x)}. (5.4)

We make the following additional assumption on the knowledge of the bounds on the optimal
Lagrange multipliers and the optimum value of the Lagrangian. Note that the existence of
these bounds is implied by Assumption 8.

Assumption 12 There exists known constants Rλλλ > 1, s̄ and s such that, for ∀x ∈ X and
k ∈ {1, . . . , K}, the optimal objective value of (5.4) is in [s, s̄] and the interestion of the
optimal solution of (5.4) and Bλλλ(0, Rλλλ) is nonempty.

The following lemma guarantees the polynomial time solvability of (5.4).

Lemma 2 Suppose that Assumption 12 is satisfied. Given x ∈ X and k ∈ {1, . . . , K}, we
can find λ̄λλ ∈ Rl2, so that Lk(λ̄λλ,x) ≥ Gk(x)− ε in polynomial time.

Proof Given δ > 0, denote δ̂ = δ
2

and consider the problem

Θk(x) := min − s (5.5a)

s.t. s ≤ Lk(λλλ,x) (5.5b)

s ≤ s ≤ s̄ (5.5c)

λλλ ∈ Bλλλ(0, Rλλλ). (5.5d)

Since Lk(λλλ,x) is a concave function w.r.t. λλλ, the feasible region of (5.5) is convex. From
Assumption 12, (5.5) is equivalent to (5.4). Let Ck(x) := {(s;λλλ) : s ≤ Lk(λλλ,x), s ≤ s ≤
s̄, λ ∈ Bλλλ(0, Rλλλ)} be the feasible region of (5.5). For (ŝ; λ̂λλ) /∈ Bs,λλλ(Ck(x), δ), either:
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(i) ŝ− δ > Lk(λ̂λλ,x) or

(ii) (ŝ, λ̂λλ) violates at least one of (5.5c) and (5.5d).

If (ŝ, λ̂λλ) satisfies none of (i) and (ii), i.e., ŝ− δ ≤ Lk(λ̂λλ,x) and (5.5c) and (5.5d) are satisfied,

then obviously, (ŝ, λ̂λλ) ∈ Bs,λλλ(Ck(x), δ). Let Lδ̂k(λ̂λλ,x) be the δ̂-precision value of Lk(λ̂λλ,x)

evaluated from Proposition 2 in polynomial time. Lδ̄k(λ̂λλ,x) < ŝ because Lk(λ̂λλ,x) − δ̂ ≤
Lδ̂k(λ̂λλ,x) ≤ Lk(λ̂λλ,x) + δ̂. For condition (ii), it is trivial to check the exact feasibility of (ŝ, λ̂λλ)
in polynomail time. Therefore, we get an oracle as:

(1) Lδ̂k(λ̂λλ,x) < ŝ;

(2) ŝ < s or ŝ > s̄;

(3) λ̂λλ /∈ Bλλλ(0, Rλλλ).

Any (ŝ, λ̂λλ) /∈ Bs,λλλ(Ck(x), δ) will satisfy at least one of (1)-(3). Consequently, if (ŝ, λ̂λλ) passes

the oracle (1)-(3), (ŝ, λ̂λλ) ∈ Bs,λλλ(Ck(x), δ). Now, we prove that for a given (ŝ, λ̂λλ) not passing
the oracle (1)-(3), we can generate a δ-cut, i.e, we can find a vector (ds; dλλλ) such that

(ds; dλλλ)
T (ŝ, λ̂λλ) < (ds; dλλλ)

T (s,λλλ) + δ for ∀(s,λλλ) ∈ Ck(x). For a given (ŝ, λ̂λλ), if (1) is satisfied,

then according to Proposition 3, we can generate a δ̂-supergradient of Lk(λλλ,x) at λ̂λλ. Let g
denote this δ̂-supergradient. Since

Lk(λλλ,x) ≤ Lk(λ̂λλ,x) + gT (λλλ− λ̂λλ) + δ̂ for ∀λλλ ∈ Rl2 ,

inequality s ≤ Lk(λ̂λλ,x) + gT (λλλ − λ̂λλ) + δ̂ is valid for ∀λλλ ∈ Rl2 . We combine this inequality

with Lδ̂k(λ̂λλ,x) < ŝ and Lk(λ̂λλ,x)− δ̂ ≤ Lδ̂k(λ̂λλ,x), and get a valid inequality:

s ≤ ŝ+ gT (λλλ− λ̂λλ) + 2δ̂ for ∀λλλ ∈ Rl2 .

It implies that:

(−1; g)T (ŝ; λ̂λλ) ≤ (−1; g)T (s;λλλ) + δ for ∀(s;λλλ) ∈ Ck(x).

Obviously, ||(−1; g)||∞ ≥ 1. If (2) is satisfied, either ŝ < s or ŝ > s̄. The valid separat-

ing inequality for the first case is: (1; 0)T (ŝ; λ̂λλ) < (1; 0)T (s;λλλ) and for the second case is:

(−1; 0)T (ŝ; λ̂λλ) < (−1; 0]T (s;λλλ) for ∀(s;λλλ) ∈ Ck(x). If (3) is satisfied, a valid separating in-

equality is: (0;−γλ̂λλ)T (ŝ; λ̂λλ) < (0;−γλ̂λλ)T (ŝ;λλλ) for ∀(s;λλλ) ∈ Ck(x), where γ > 0 is a constant

that ensures
∣∣∣∣∣∣(0,−γλ̂λλ)

∣∣∣∣∣∣
∞
≥ 1. Let ε̂ = 2

3
ε and s∗ be an optimal solution of max(s,λλλ)∈Ck(x) s.

From Theorem 3 we have a (ŝ; λ̂λλ) ∈ Bs,λλλ(Ck(x), ε) satisfying the oracle (1)-(3) with some
δ ≤ ε̂ in polynomial time in log(1

ε
), such that ŝ ≥ s∗− ε̂. According to the definition of Ck(x),

we know that s∗ is the optimal objective value of (5.4). On the other hand, since (ŝ; λ̂λλ) sat-

isfies the oracle (1)-(3) with some δ < ε̂, we have that s∗ − ε̂ ≤ ŝ ≤ Lδ̂k(λ̂λλ,x) ≤ Lk(λ̂λλ,x) + δ̂.

Therefore, s∗ < Lk(λ̂λλ,x) + 3
2
ε̂ = Lk(λ̂λλ,x) + ε. We conclude that (5.4) can be solved to any

precision ε in polynomial time.
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According to Proposition 2, for ∀x ∈ X and k ∈ {1, . . . , K}, the second stage problem Gk(x)
can be solved to any precision in polynomial time. The next lemma claims that the recourse
function G(x) can be evaluated to any precision in polynomial time.

Lemma 3 Suppose that Assumption 12 is satisfied. Let x ∈ X , and the recourse function
G(x) be defined in (1.2). Then, (i) G(x) can be evaluated to any precision ε; (ii) an ε-
subgradient of G(x) can be obtained in time polynomial in log(1

ε
) and K.

Proof For a given ε > 0, from Lemma 2, Gk(x) can be obtained to ε̂ = ε
2
-precision in

polynomial time. Let sk ε̂, λλλ
ε̂
k be an ε̂-optimal solution of (5.4). Since −ε̂ < Gk(x) − sε̂k < ε̂,

sε̂k + ε̂ ≥ Lk(λλλε̂k,x) ≥ sε̂k − ε̂, we see that −ε < Gk(x) − Lk(λλλε̂k,x) < ε. We can apply
Theorem 5 to conclude that −TT

kλλλ
ε̂
k is an ε-subgradient of Gk(x) at x. Therefore, with

Gk(x) :=
∑K

k=1 πkGk(x), we have:

−ε < G(x)−
K∑
k=1

πks
ε̂
k < ε,

which implies that G(x) can be evaluated to ε-precision in polynomial time. From Theorem
1, −

∑K
k=1 πiT

T
kλλλ

ε̂
k is an ε-subgradient of G(·) at x.

The following Lemma shows that the feasibility of the semi-infinite constraint (5.6b) can be
verified to any precision in polynomial time.

Lemma 4 (Delage and Ye 2010). Assume the support set S ⊆ Rm is convex and compact,
and it is equipped with an oracle that for any ξξξ ∈ Rm can either confirm that ξξξ ∈ S or
provide a hyperplane that separates ξξξ from S in time polynomial in m. Let function h(x, ξξξ)
be concave in ξξξ in time polynomial in m. Then, for any x, Y � 0, and y, one can find a
solution ξξξ∗ that is ε-optimal with respect to the problem

max
t,ξξξ

t (5.6a)

s.t. t ≤ h(x, ξξξ)− ξξξTYξξξ − ξξξTy (5.6b)

ξξξ ∈ S (5.6c)

in time polynomial in log(1
ε
) and the dimension of ξξξ.

The next theorem shows the solvability of the two-stage problem (3.7)-(3.9) with recourse
function G(x).

Theorem 6 Let Assumptions 1-12 be satisfied. Problem (3.7)-(3.9) can be solved to any
precision ε in time polynomial in log(1

ε
) and the size of the problem (3.7)-(3.9).

Proof We want to apply Theorem 3 to show the polynomial solvability. The proof is divided
into 5 steps. The first step is to verify that the feasible region is convex. Secondly, we prove
the existence of an optimal solution of problem (3.7)-(3.9). In step 3 and 4, we establish the
weak feasibility and weak separation oracles. We then verify the polynomial solvability of
(3.7)-(3.9) by applying Theorem 3 in step 5.
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Step 1. Verification of the Convexity of the Feasible Region

Let z := (x,Y1,y1, y
0
1, t1, τ) and rewrite (3.7) as:

min
z

y0
1 + t1 + τ (5.7a)

s.t. τ ≥ G(x) (5.7b)

y0
1 ≥ ρ1(x,p)− pTY1p− pTy1, ∀p ∈ S1 (5.7c)

t1 ≥ (β1ΣΣΣ1 + µµµ1µµµ
T
1 ) •Y1 + µµµT1 y1 +

√
α1

∣∣∣∣∣∣ΣΣΣ 1
2
1 (y1 + 2Y1µµµ1)

∣∣∣∣∣∣ (5.7d)

Y1 � 0 (5.7e)

x ∈ X . (5.7f)

From Proposition 2, for ∀k ∈ {1, . . . , K}, Gk(x) can be evaluated to any precision in poly-
nomial time. Since Gk(x) is a convex function w.r.t. x, G(x) is a convex function w.r.t. x.
It implies that (5.7b) is a convex contraint. According to Assumption 5, (5.7e) and (5.7c)
are convex, (5.7d) is a second order cone constraint, which is convex. Constraints (5.7e) and
(5.7f) are obviously convex. Therefore, the feasible region of (5.7) is convex.

Step 2. Existence of an Optimal Solution of (3.7)-(3.9).

Let x̄ ∈ X and z̄ := (x̄, Ȳ1, ȳ1, ȳ
0
1, t̄1, τ̄) be defined as: τ̄ = G(x̄), Ȳ = I, ȳ = 0, ȳ0

1 =

supp∈S1
{ρ1(x̄,p)− pT Ȳ1p}, t̄1 = trace(β1ΣΣΣ1 +µµµ1µµµ

T
1 ) + 2

√
α1

∣∣∣∣∣∣ΣΣΣ 1
2
1µµµ1

∣∣∣∣∣∣. Then z̄ is a feasible

solution of (5.7). Note that ȳ0
1 exists because S1 is compact. Therefore, the feasible region

of (5.7) is nonempty. On the other hand, from Theorem 1 and Assumptions 1-5, the set of
optimal solutions of the problem:

min
x,Y1,y1,y01 ,t1

y0
1 + t1 (5.8)

s.t. y0
1 ≥ ρ1(x,p)− pTY1p− pTy1, ∀p ∈ S1,

t1 ≥ (β1ΣΣΣ1 + µµµ1µµµ
T
1 ) •Y1 + µµµT1 y1 +

√
α1

∣∣∣∣∣∣ΣΣΣ 1
2
1 (y1 + 2Y1µµµ1)

∣∣∣∣∣∣ ,
Y1 � 0, x ∈ X ,

is nonempty. Let us assume that the optimal objective value of (5.8) equals γ1. From Lemma
2, the recourse function G(x) is finite for ∀x ∈ X . Since X is compact, γ2 := minx∈X G(x)
is finite. Since the optimal objective value of (5.7) is no less than γ1 + γ2, we conclude that
(5.7) has a finite objective value and the set of optimal solutions is nonempty.

Step 3. Establishment of the Weak Feasibility Oracle

According to Assumption 3, we know that Bx(x0, r
1
0) ⊂ X ⊂ Bx(0, R1

0). Let x = x0. Y1 = I
and y

1
= 0. Let 0 < r0 < r1

0 be a constant such that Y1 + S � 0 for ∀ ||S||F ≤ r0, where
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||·||F is the Frobenius norm of matrices. Let

y0

1
= sup
||Y1−I||F≤r0,||y1||≤r0,||x−x0||≤r0,p∈S1

{ρ1(x,p)− pTY1p− pTy1}+ r0

t1 = sup
||Y1−I||F≤r0,||y1||<r0

{(β1ΣΣΣ1 + µµµ1µµµ
T
1 ) •Y1 + µµµT1 y1 +

√
α1

∣∣∣∣∣∣ΣΣΣ 1
2
1 (y1 + 2Y1µµµ1)

∣∣∣∣∣∣}+ r0

τ = sup
x∈Bx(x0,r0)

G(x) + r0.

z := (x,Y1,y1
, τ , y0

1
, t1).

Then, the feasible region of problem (5.7) contains the ball Bz(z, r0). On the other hand,
let R0 > r0 + ||z|| be a constant such that the intersection of the set of optimal solutions of
problem (5.7) and the ball Bz(0, R0) is nonempty. Consequently, solving (5.7) is equivalent
to (5.7) with the additional constraint z ∈ Bz(0, R0). Let the feasible region of problem
(5.7) with this additional constraint be C. From the above discussion, we have Bz(z, r0) ⊂
C ⊂ Bz(0, R0). Given δ > 0, let δ̂ = δ

2
. Let ẑ := (x̂, Ŷ1, ŷ1, τ̂ , ŷ

0
1, t̂1) /∈ Bz(C, δ). The point

ẑ satisfies at least one of the following three conditions.

(i) τ̂ + δ̂ < G(x̂);

(ii) ŷ0
1 + δ̂ < supp∈S1

{ρ1(x̂,p)− pT Ŷ1p− pT ŷ1};

(iii) ẑ at least violates one of (5.7d)-(5.7f).

If none of the conditions (i)-(iii) is satisfied, then ẑ ∈ Bz(C, δ). If (i) is satisfied, since G(x)

can be evaluated to precision ε
2

in polynomial time for ∀x ∈ X , we have that τ̂ < Gδ̂(x̂),

where Gδ̂(x̂) is the δ̂-optimal objective value of G(x̂) according to Proposition 2. Assume
that (ii) is satisfied. According to Lemma 4, supp∈S1

{ρ1(x̂,p) − pT Ŷ1p − pT ŷ1} can be

found to δ̂ precision polynomially. Let p̂ be the corresponding δ̂ optimal solution. Then
condition (ii) implies that ŷ0

1 < ρ1(x̂, p̂)− p̂T Ŷ1p̂− p̂T ŷ1. We have an oracle system as:

τ̂ < Gδ̂(x̂); (5.9)

ŷ0
1 < ρ1(x̂, p̂)− p̂T Ŷ1p̂− p̂T ŷ1; (5.10)

t̂1 < (β1ΣΣΣ1 + µµµ1µµµ
T
1 ) • Ŷ1 + µµµT1 ŷ1 +

√
α1

∣∣∣∣∣∣ΣΣΣ 1
2
1 (ŷ1 + 2Ŷ1µµµ1)

∣∣∣∣∣∣ ; (5.11)

Ŷ1 � 0; (5.12)

x̂ /∈ X . (5.13)

We need to show that the system (5.9)-(5.13) can be verified in polynomial time. Condition
(5.9) can be verified in polynomial time by using Lemma 3. Condition (5.10) can be veri-
fied in polynomial time by using Lemma 4. Condition (5.11) can be verified by verifing the
feasibility of (5.7d). Condition (5.12) can be verified using matrix factorization in O(m3

1)
arithmetic operations. Condition (5.13) can be verified in polynomial time according to As-
sumption 3. In addition from the above discussion, if ẑ does not satisfy any of (5.9)-(5.13),
then ẑ ∈ Bz(C, δ).
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Step 4. Establishment of the Weak Separation Oracle

In Step 3, we showed that the oracle system (5.9)-(5.13) can find any ẑ /∈ Bz(C, δ) and can
be verified in polynomial time. If any of (5.9)-(5.13) are satisfied, we will prove that we can
generate an inequality which separates ẑ from the feasibility region C with δ-tolerence, i.e.
satisfy the condition 2 described in Theorem 3. Assume that a point ẑ is given. If (5.9)
is satisfied, from Lemma 3 we can obtain a δ̂-subgradient of G(x) at x̂. Let us denote this
δ̂-subgradient as g. Since G(x) ≥ G(x̂) + gT (x − x̂) − δ̂ for ∀x ∈ X , we generate a valid

inequality: τ ≥ G(x̂) + gT (x− x̂)− δ̂. Combining with Gδ̂(x̂)− δ̂ ≤ G(x̂) ≤ Gδ̂(x̂) + δ̂ and

Gδ̂(x̂) > τ̂ , we get the separating hyperplane (5.14):

(−g; 0; 0; 1; 0; 0)Tvec(z) + δ ≥ (−g; 0; 0; 1; 0; 0]Tvec(ẑ) (5.14)

for ∀z ∈ C, where vec(z) := (x; vec(Y1); y1; y0
1; t1; τ) and vec(·) vectorizes a matrix. It is

clear that: ||(g; 0; 0; 1; 0; 0)||∞ ≥ 1.

If (5.10) is satisfied, assume p̂ be the δ̂-optimal solution of problem (5.6) w.r.t. ẑ. Then, we
can generate the separating hyperplane:

−(∇xρ1(x̂, p̂); vec(p̂p̂T ); p̂; 0; 1; 0)Tvec(z) ≥ −(∇xρ1(x̂, p̂); vec(p̂p̂T ); p̂; 0; 1; 0)Tvec(ẑ),
(5.15)

for ∀z ∈ C, where ∇xρ1(x,p) is a subgradient of ρ1(x,p) w.r.t. x (Assumption 4). Note

that:
∣∣∣∣∣∣(∇xρ1(x̂, p̂); vec(p̂p̂δ̂

T
); p̂; 0; 1; 0)

∣∣∣∣∣∣
∞
≥ 1.

If (5.11) is satisfied, a valid inequality can be generated as: (β1ΣΣΣ1 +µµµ1µµµ
T
1 + Ĝ) •Y1 + (µµµ1 +

ĝ)Ty1 − t1 ≤ ĝT ŷ1 + Ĝ • Ŷ1 − g(Ŷ1, ŷ1), where ĝ = ∇y1g(Ŷ1, ŷ1), Ĝ = mat(∇Y1g(Ŷ1, ŷ1)),

g(Y1,y1) :=
∣∣∣∣∣∣ΣΣΣ 1

2
1 (y1 + 2Y1µµµ1)

∣∣∣∣∣∣, and ∇Y1g(Y1,y1); ∇y1g(Y1,y1) are the gradients of

g(Y1,y1) in Y1 and y1 respectively. Note that mat(·) puts a vector to a symmetric square
matrix. It implies that:

− (0; vec(β1ΣΣΣ1 + µµµ1µµµ
T
1 + Ĝ); (µµµ1 + ĝ); 0; 1)Tvec(ẑ) <

− (0; vec(β1ΣΣΣ1 + µµµ1µµµ
T
1 + Ĝ); (µµµ1 + ĝ); 0; 1)Tvec(z)

for ∀z ∈ C. Obviously,∣∣∣∣∣∣(0; vec(β1ΣΣΣ1 + µµµ1µµµ
T
1 + Ĝ); (µµµ1 + ĝ); 0; 1)

∣∣∣∣∣∣
∞
≥ 1.

If (5.12) is satisfied, a separating hyperplane can be generated based on the eigenvector
corresponding to the lowest eigenvalue. The vector to represent this nonzero separating hy-
perplane can be scaled to satisfy the requirement ||·||∞ ≥ 1. If (5.13) is satisfied, a separating
hyperplane with ||·||∞ ≥ 1 can be generated in polynoial time according to Assumption 3.

Step 5. Verification of the Polynomial Solvability

According to the analysis in steps 1-4, we can apply Lemma 3 to conclude that for a given
ε > 0 and ε̂ = ε

3
, we can find a ẑ := (x̂, Ŷ1, ŷ1, ŷ

0
1, t̂1, τ̂) in time polynomial in log(1

ε
), such
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that ẑ satisfies the oracle (5.9)-(5.13) with some δ < ε̂ and ŷ0
1 + t̂1 + τ̂ < η∗ + ε̂, where η∗

is the true optimal value of the problem (3.7). Since ẑ satisfies the oracle (5.9)-(5.13) with
δ < ε̂, the solution ẑ∗ = (x̂, Ŷ1, ŷ1, ŷ

0
1 + ε̂, t̂1, τ̂ + ε̂) ∈ C and the objective value associated

with ẑ∗ is no greater than η∗ + 3ε̂ = η∗ + ε.

In summary, we have shown that problem (3.7)-(3.9) can be solved to any precision in
polynomial time.

Remark: Delage and Ye [5] use Lemma 4 to verify the feasibility of the constraint (5.6b). For
infeasibility point, a separating hyperplane can be generated by using the optimal solution
of (5.6). The assumption they make is that an exact solution of (5.6) can be found. Lemma
4 can only claim that the problem can be solved to ε-precision for the two-stage moment
robust model. In the proof of Theorem 6, we show that it is enough to use the δ̂ optimal
solution to verify the feasibility of (5.6) and generate a separating hyperplane.

6 A Two-Stage Moment Robust Portfolio Optimiza-

tion Model

In this section we analyze a two-stage moment robust model with piecewise linear objectives.
In Section 6.1 we show that when (1) the probability ambiguity sets P1 an P2,k are described
by (1.6)-(1.7) or exact moment information; (2) the support S1 and S2 are the full space
Rn1 ,Rn2 or described by ellipsoids, the two stage moment robust problem can be reformulated
as a semidefinite program. Note that the single stage moment robust model with piecewise
linear objective and probability ambiguity set described by exact moments are discussed
by Bertsimas et al. [2]. In Section 6.2 we study a two-stage moment robust portfolio
optimization application with practical data. Our numerical results suggest that the two-
stage modeling is effective when we have forecasting power.

6.1 A Two-Stage Moment Robust Optimization Model with Piece-
wise Linear Objectives

Consider the two-stage moment robust optimization model:

min
x∈X

max
P∈P1

EP[U(p̃Tx)] +G(x), (6.1)

G(x) :=
K∑
k=1

πkGk(x), (6.2)

Gk(x) := min
wk∈Wk(x)

max
P∈P2,k

[U(q̃Twk)], (6.3)

where X andWk(x) are described by linear, second-order cone and semidefinite constraints,
and the ambiguity sets P1 and P2,k are defined in (1.6)-(1.7). The utility function U(·)
is piecewise linear convex and defined as: U(z) = maxi=1,...,M{ciz + di}, where ck, dk, k =
1, . . . ,M are given. Let Assumption 1 and Assumption 6 be satisfied. By applying Theorem
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1, problem (6.1)-(6.3) is equivalent to:

min
x,Y1,y1,y01 ,t1

y0
1 + t1 +G(x), (6.4)

s.t. y0
1 ≥ cip

Tx + di − pTY1p− pTy1, ∀p ∈ S1, i = 1, . . . ,M,

t1 ≥ (β1ΣΣΣ1 + µµµ1µµµ
T
1 ) •Y1 + µµµT1 y1 +

√
α1

∣∣∣∣∣∣ΣΣΣ 1
2
1 (y1 + 2Y1µµµ1)

∣∣∣∣∣∣ ,
Y1 � 0, x ∈ X ,

where

G(x) :=
K∑
k=1

πkGk(x), (6.5)

Gk(x) := min
wk,Y2,k,y2,k,y

0
2,k,t2,k

y0
2,k + t2,k, (6.6)

s.t. y0
2,k ≥ ciq

Twk + di − qTY2,kq− qTy2,k, ∀q ∈ S 2, i = 1, . . . ,M,

t2,k ≥ (β2ΣΣΣ2,k + µµµ2,kµµµ
T
2,k) •Y2,k + µµµT2,ky2,k,

+
√
α2

∣∣∣∣∣∣ΣΣΣ 1
2
2,k(y2,k + 2Y2,kµµµ2,k)

∣∣∣∣∣∣ ,
Y2,k � 0, wk ∈ Wk(x).

The piecewise utility function U can be understood as a convex utility on the linear objective
pTx and qTkwk. Now we discuss three subcases: (i) Assume that S1 and S2 are convex and
compact; (ii)S1 = Rn1 and S2 = Rn2 , where n1 = dim(x) and n2 = dim(wk); (iii) S1

and S2 are described by some ellipsoids, i.e. S1 = {p : (p − p0)TQ1(p − p0) ≤ 1},
S2 = {q : (q − q0)TQ2(q − q0) ≤ 1}, where p0, Q1, q0 and Q2 are given and matrices Q1

and Q2 have at least one strictly positive eigenvalue. For case (i), problem (6.1)-(6.3) will
be a special case of the general model analyzed in Section 5. For cases (ii) and (iii), we give
two-stage semidefinite reformulations of (6.4)-(6.6). The next lemma from Delage and Ye [5]
provide an equivalent reformulation of the semi-infinite constraints in (6.4)-(6.6).

Lemma 5 (Delage and Ye 2012 [5]). The semi-infinite constraints

ξξξTYξξξ + ξξξTy + y0 ≥ ciξξξ
Tx + di,∀ξξξ ∈ S , i = 1, . . . ,M, (6.7)

can be reformulated as the following semidefinite constraints.

(1) If S = Rn, we can reformulate (6.7) as:(
Y 1

2
(y − cix)

1
2
(y − cix)T y0 − di

)
� 0,∀i = 1, . . . ,M. (6.8)

(2) If S = {ξξξ : (ξξξ − ξξξ0)TΘΘΘ(ξξξ − ξξξ0) ≤ 1}, we can reformulate (6.7) as:(
Y 1

2
(y − cix)

1
2
(y − cix)T y0 − di

)
� τi

(
ΘΘΘ −ΘΘΘθθθ0

−θθθT0 ΘΘΘ θθθT0 ΘΘΘθθθ0 − 1

)
, τi ≥ 0,∀i = 1, . . . ,M, (6.9)

where θθθ0 is given and ΘΘΘ � 0 has at least one strictly positive eigenvalue.

18



By the following theorem applying Lemma 5 to (6.4)-(6.6), we can reformulate (6.1)-(6.3) as
a two-stage semidefinite program.

Theorem 7 Let Assumption 1 and Assumption 6 be satisfied. If (i) S1 = Rn1 and S2 =
Rn2; or (ii) S1 = {p : (p − p0)TQ1(p − p0) ≤ 1}, S2 = {q : (q − q0)TQ2(q − q0) ≤ 1},
where p0, Q1, q0 and Q2 are given and matrices Q1 and Q2 have at least one strictly
positive eigenvalue, then the two-stage moment robust problem (6.1)-(6.3) is equivalent to
the two-stage semidefinite programming problem:

min
x,Y1,y1,y01 ,t1

y0
1 + t1 +G(x), (6.10)

s.t.

(
Y1

y1−cix
2

(y1−cix)T

2
y0

1 − di

)
� τiB1, for i = 1, . . . ,M,

t1 ≥ (β1ΣΣΣ1 + µµµ1µµµ
T
1 ) •Y1 + µµµT1 y1 +

√
α1

∣∣∣∣∣∣ΣΣΣ 1
2
1 (y1 + 2Y1µµµ1)

∣∣∣∣∣∣ ,
Y1 � 0,x ∈ X ,

where

G(x) :=
K∑
k=1

πkGk(x), (6.11)

Gk(x) := min
wk,Y2,k,y2,k,y

0
2,k,t2,k

y0
2,k + t2,k, (6.12)

s.t.

(
Y2,k

y2,k−ciwk

2
(y2,k−wk)T

2
y0

2,k − di

)
� τiB2 for i = 1, . . . ,M,

t2,k ≥ (β2ΣΣΣ2,k + µµµ2,kµµµ
T
2,k) •Y2,k + µµµT2,ky2,k

+
√
α2

∣∣∣∣∣∣ΣΣΣ 1
2
2,k(y2,k + 2Y2,kµµµ2,k)

∣∣∣∣∣∣ ,
Y2,k � 0,wk ∈ X ,

where

(1) B1 = B2 = 0 if S1 = Rn1 , S2 = Rn2 ;

(2) B1 =

(
Q1 −Q1p0

−pT0 Q1 pT0 Q1p0 − 1

)
, B2 =

(
Q2 −Q2q0

−qT0 Q2 qT0 Q2q0 − 1

)
, if S1 = {p : (p −

p0)TQ1(p− p0) ≤ 1}, S2 = {q : (q− q0)TQ2(q− q0) ≤ 1}.

Equations (6.10)-(6.12) are standard two-stage linear semidefinite programming problem.
Two-stage linear semidefinite programs can be solved using interior decomposition methods
in [11, 12, 10]. The performance will be demonstrated in our context in Section 6.2.

Another interesting case of model (6.1)-(6.6) is to assume that the ambiguity sets P1 and
P2,k are described by the exact mean vector and covariance matrix, i.e. P1 and P2,k are
given as:

P1 :={P : P ∈M1,EP[1] = 1,EP[p̃] = µ1,EP[p̃p̃T ] = Σ1 + µ1µ
T
1 , p̃ ∈ S1}, (6.13)

P2,k :={P : P ∈M2,EP[1] = 1,EP[q̃] = µ2,k,EP[q̃q̃T ] = Σ2,k + µ2,kµ
T
2,k, q̃ ∈ S2}. (6.14)
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We continue to assume that Σ1,Σ2,k � 0. We now analyze the two-stage moment robust
model with piecewise linear objective and ambiguity sets P1 and P2,k defined in (6.13)-
(6.14), and focus on the cases (i) S1 = Rn1 and S2 = Rn2 , where n1 = dim(x) and
n2 = dim(wk); (ii) S1 and S2 are described by some ellipsoids, i.e. S1 = {p : (p −
p0)TQ1(p − p0) ≤ 1}, S2 = {q : (q − q0)TQ2(q − q0) ≤ 1}, where p0, Q1, q0 and Q2 are
given and matrices Q1 and Q2 have at least one strictly positive eigenvalue. We provide an
equivalent two-stage semidefinite reformulation in the following theorem.

Theorem 8 Assume Σ1,Σ2,k � 0 for ∀k. Consider the cases (i) S 1 = Rn1 and S 2 = Rn2;
or (ii) S1 = {p : (p − p0)TQ1(p − p0) ≤ 1}, S2 = {q : (q − q0)TQ2(q − q0) ≤ 1}, where
p0, Q1, q0 and Q2 are given and matrices Q1 and Q2 have at least one strictly positive
eigenvalue. Then, the two-stage moment robust problem (6.1)-(6.3) is equivalent to the
two-stage semidefinite programming problem:

min
x,Y1,y1,y01

(Σ1 + µ1µ
T
1 ) •Y1 + µT

1 y1 + y0
1 +G(x), (6.15)

s.t.

(
Y1

y1−cix
2

(y1−cix)T

2
y0

1 − di

)
� τiB1, for i = 1, . . . ,M,

x ∈ X ,

where

G(x) :=
K∑
k=1

πkGk(x), (6.16)

Gk(x) := min
wk,Y2,k,y2,k,y

0
2,k

(Σ2,k + µ2,kµ
T
2,k) •Y2,k + µT

2,ky2,k + y0
2,k, (6.17)

s.t.

(
Y2,k

y2,k−ciwk

2
(y2,k−wk)T

2
y0

2,k − di

)
� τiB2 for i = 1, . . . ,M,

wk ∈ Wk(x),

where B1 and B2 are defined in Theorem 7.

Proof Given x ∈ X , the dual of the inner problem (6.18)

max
P∈P1

EP[U(p̃Tx)] (6.18)

can be written as:

min
Y1,y1,y01

(Σ1 + µ1µ
T
1 ) •Y1 + µT

1 y1 + y0
1, (6.19)

s.t. pTY1p + pTy1 + y0
1 ≥ U(qTx) for ∀q ∈ S1. (6.20)

Since U(z) = maxi=1,...,M{ciz + di}, constraint (6.20) is equivalent to:

pTY1p + pTy1 + y0
1 ≥ ciq

Tx + di for ∀q ∈ S1, i = 1, . . . ,M. (6.21)
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Applying Theorem 5 to (6.21), we know that the inner problem (6.18) is equivalent to the
semidefinite programming problem

min
Y1,y1,y01

(Σ1 + µ1µ
T
1 ) •Y1 + µT

1 y1 + y0
1, (6.22)

s.t.

(
Y1

y1−cix
2

(y1−cix)T

2
y0

1 − di

)
� τiB1, for i = 1, . . . ,M. (6.23)

Similarly, we can prove that for each given x ∈ X , k = 1, . . . ,M , wk ∈ Wk(x), the inner
problem

max
P∈P2,k

EP[U(q̃Twk)] (6.24)

is equivalent to the semidefinite programming problem

min
Y2,k,y2,k,y

0
2,k

(Σ2,k + µ2,kµ
T
2,k) •Y2,k + µT

2,ky2,k + y0
2,k, (6.25)

s.t.

(
Y2,k

y2,k−ciwk

2
(y2,k−ciwk)T

2
y0

2,k − di

)
� τiB2, for i = 1, . . . ,M. (6.26)

We can get the desired equivalent two-stage semidefinite programming reformulation (6.10)-
(6.12) by combining the equivalent reformulations (6.22)-(6.23) and (6.25)-(6.26) with the
outer problem.

6.2 A Two-Stage Portfolio Optimization Problem

In this section we study a two-stage portfolio optimization problem based on model (6.1)-
(6.3). The problem is described as follows. An investor needs to plan a portfolio of n assets
for two periods. In the first period, the first two moments, µ1 and Σ1 + µ1µ

T
1 are the

known information of the probability distribution of the return vector p = (p1, . . . , pn)T .
The probability distribution of the return vector p can be any probability measure in the
ambiguity set P1 defined in (6.13). The magnitude of the variation between the investment
strategy x and initial strategy x0 should not excede δ, i.e. ||x− x0|| ≤ δ, to maintain
investment stability and reduce trading costs. The investor reinvests in the n assets at the
beginning of the second period. Similarly, the deviation between the investment strategy
of this period and the strategy x of the last period should not exceed δ. The probability
distribution of the return vector of the second period depends on some scenario ξξξ drawn
from distribution D. Assume that the sample space of distribution D consists of K scenarios
ξξξ1, . . . , ξξξK . Let the probability distribution of the return vector q = (q1, . . . , qn)T be in the
ambiguity set P2,k defined in (6.13). We assume that the investor is risk-averse and use a
piecewise linear concave utility function as: u(y) = mini∈{1,...,M} a

T
i y + bi. The total utility

of the investor is the sum of utilities from both stages. We consider two options for the
choices of S1 and S2: either S1 = S2 = Rn or S1 = {p : (p − p0)TQ1(p − p0) ≤ 1},
S2 = {q : (q − q0)TQ2(q − q0) ≤ 1}, where matrices Q1 and Q2 have at least one strictly
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positive eigenvalue. Therefore, we model this investor’s problem as:

min
x

max
P∈P1

EP[max
i
−aip̃Tx− bi] +G(x), (6.27)

s.t. ||x− x0|| ≤ δ,

eTx = 1, xl ≤ x ≤ xu,

G(x) :=
K∑
k=1

πkGk(x), (6.28)

Gk(x) := min
wk

max
P∈P2,k

EP[max
i
−aiq̃Twξξξ − bi], (6.29)

s.t. ||x− x0|| ≤ δ,

eTwk = 1, wk,l ≤ wk ≤ wk,u,

where e is the n-dimensional vector with 1 in each entry, and xl, xu, wk,l, wk,u are bounds
on the investments. A direct application of Theorem 8 results in the following theorem.

Theorem 9 Assume Σ1, Σ2,k � 0 for k = 1, . . . ,M . The two stage portfolio optimiza-
tion problem (6.27)-(6.29) is equivalent to the two-stage stochastic semidefinite programming
problem:

min
x,Y1,y1,y01

(Σ1 + µ1µ
T
1 ) •Y1 + µT

1 y1 + y0
1 +G(x), (6.30)

s.t.

(
Y1

1
2
(y1 + aix)

1
2
(y1 + aix)T y0

1 + bi

)
� τiB1, i = 1, . . . ,M,

||x− x0|| ≤ δ,

eTx = 1,xl ≤ x ≤ xu,

τi ≥ 0,∀i = 1, . . . ,M,

G(x) =
K∑
k=1

πkGk(x), (6.31)

Gk(x) := min
wk,Y2,k,y2,k,y

0
2,k

(Σ2,k + µ2,kµ
T
2,k) •Y2,k + µT

2,ky2,k + y0
2,k, (6.32)

s.t.

(
Y2,k

1
2
(y2,k + aiwk)

1
2
(y2,k + aiwk)T y0

2,i + bi

)
� ηi,kB2, i = 1, . . . ,M,

||wk − x|| ≤ δ,

eTwk = 1, wk,l ≤ wk ≤ wk,u,

ηi,k ≥ 0,∀i = 1, . . . ,M,

where

(1) B1 = B2 = 0 if S = Rn;

(2) B1 =

(
Q1 −Q1p0

−pT0 Q1 pT0 Q1p0 − 1

)
, B2 =

(
Q2 −Q2q0

−qT0 Q2 qT0 Q2q0 − 1

)
, if S1 = {p : (p −

p0)TQ1(p− p0) ≤ 1}, S2 = {q : (q− q0)TQ2(q− q0) ≤ 1}.
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6.3 Computational Study

In this section the two stage model (6.27)-(6.29) is numerically studied with practical data.
We first choose a multivariate AR-GARCH model to forecast the second stage mean vector
µ2,k and covariance matrix Σ2,k from the first stage moments µ1 and Σ1. Then we compare
the performance of our two stage moment robust model with the other two models, i.e. (1)
stochastic programming model and (2) single stage moment robust model. Our empirical
results suggest that our two-stage moment robust modeling framework performs better when
we have predictive power.

6.3.1 Establishing Parameters of the Two-Stage Portfolio Optimization Model

In the numerical example, the vectors p and q in (6.27)-(6.29) are return vectors in period t
and t+1. The return process rt is described by a multivariate AR-GARCH model as follows:

rt = φ0 + φ1rt−1 + εt, εt ∼ N(0,Qt), (6.33)

Qt = CCT + ATεt−1ε
T
t−1A

T + BTQt−1B. (6.34)

The expected return rt is predicted by using a multivariate AR model and the covariance is
predicted by a multivariate BEKK GARCH model. The data set is a historical data set of
3 assets over a 7-year horizon (2006-2013), obtained from Yahoo! Finance website. The 3
assets are: AAR Corp., Boeing Corp. and Lockheed Martin. The basic calibration strategy
is to use least squares to solve the multivariate AR model to get the residuals ε and then use
ε as an input for the BEKK GARCH model [9]. The return model is described as follows. At
the beginning of a certain day t, we estimate the expected return rt and covariance matrix
Qt of the current day by using the data of the last 30 days. We then use the AR-GARCH
model (6.33)-(6.34) to forecast Qt+1 and then rt+1 follow the distribution N(φ0 +φ1rt,Qt+1).
We start by generating (rt + 1) using an n-dimensional Sobol’ sequence [4, 6]. We start to

generate a set of K n-dimensional Sobol’ points (S1, . . . ,SK). Then we set εi = Q
1/2
t+1Φ−1(Si),

i = 1, . . . , K, where Φ is the cumulative normal distribution function. Finally, we generate
K samples of rt+1, i.e. rt+1,1, . . . , rt+1,K by using (6.35).

rt+1,i = φ0 + φ1rt + εi, i = 1, . . . , K. (6.35)

At the beginning of day t, we optimize the investment strategy x by considering the forecasts
of day t+1. We will use the data from t−750 to t−1 (around 3 year) to calibrate the model
(6.33)-(6.34). We re-calibrate the model at the beginning of each day. The two-stage linear
conic programming model (6.30)-(6.32) is solved by using SeDuMi [18]. In particular, the
parameters are chosen as follows, S1 = S2 = Rn, δ = 1, xl = wk,l = −e and xu = wk,u = e
for ∀k. Note that the lower bounds xl and wk,u are negative since the investor is allowed to
take a short position. We start from 2009 and solve the problem for each day in 2009-2012.
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6.3.2 Static Models

We compare our two-stage model (6.27)-(6.29) with the single stage moment robust model
which is described as:

min
x

max
P∈P1

EP[U(pTx)],

s.t. ||x− x0|| ≤ δ,

eTx = 1,

xl ≤ x ≤ xu,

where U(·) is the piecewise-linear concave function described in Section 6.1 and P1 is the
probability ambiguity set defined in (6.13).

6.3.3 Evaluating the Significance of the Two-Stage Moment Robust Model

Computational results for the two stage robust model and the static models are shown in
Figures 1 and 2 for a three asset and a ten asset problem. These results show that in the
case of the three asset problem the returns from the two-stage model are better than those
from the static model. However, in the case of the ten asset problems the returns are not
significantly different. This is because in the two-case model the AR-GARCH model appears
to have greater predictability of returns on this subset of assets than in the case of the ten
asset problem. Nevertheless, this example illustrates that the two-stage robust model can
out-perform the static robust model when we have future predictive ability in the system.
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Figure 1: The summary of comparison in 2009-2012 (3 assets, i.e. AAR Corp., Boeing Corp.,
Lockheed Martin).
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Figure 2: The summary of comparison in 2009-2012 (10 assets, i.e. AAR Corp., Boeing
Corp., Lockheed Martin, United Technologies, Intel Corp., Hitachi, Texas Instruments, Dell,
Hewlett Packard and IBM Corp).

6.3.4 Algorithmic Performance

We summarize the computational performance of the two-stage model for both 3-asset and
10-asset problems by generating K = 100; 200; 500; 1000 samples for the second stage prob-
lem. The results are summarized in Table 1. We find that that the average number of IPM
iterations do not change with the number of second stage scenarios. We also find that the
average runtime increases linearly with the second stage sample size. Both facts implies that
our two-stage moment robust model can be solved efficiently by applying the interior point
method.

Table 1: Summary of Computational Results.

Sample Size
Avg Num of IPM Iterations Average Runtime (sec)
3-Asset 10-Asset 3-Asset 10-Asset

100 10.7088 15.2821 2.1780 12.9273
200 9.9468 12.8203 3.4871 12.7866
500 9.4116 11.4237 6.8157 33.8398
1000 8.6606 11.0743 13.1113 79.8326
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7 Conclusion

In this paper, we propose a two-stage moment robust optimization model. We show that
under certain general assumptions, this model can be solved to any ε precision in polynomial
time. New analysis was required because the second stage problem could only be solved to
ε precision. The weak version of the polynomial solvablity theorem of Grotschel and Lovasz
[7] for convex programs was needed to prove the polynomial solvability. Although the second
stage problem has a discrete support, it can be generalized to the continuous support case
by the Sample Average Approximation technique, whose convergence is guaranteed (see
[15] for details). A two-stage portfolio optimization model with piecewise linear objective
is presented and practical data are used to prove the effectiveness and solvability of the
two-stage moment robust model.
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