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Abstract

We develop an algorithm for solving the stochastic convex program (SCP)
by combining Vaidya’s volumetric center interior point method (VCM) for solv-
ing non-smooth convex programming problems with the Monte-Carlo sampling
technique to compute a subgradient. A near-central cut variant of VCM is
used, and for this method an approach to perform bulk cut translation, and
adding multiple cuts is given. We show that by using near-central VCM the
SCP can be solved to a desirable accuracy with any given probability. For the
two-stage SCP the solution time is independent of the number of scenarios.
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1 Introduction

In this paper we develop an algorithm for solving the general stochastic convex prob-
lem [73, 15] (SCP):

min c0(x) ≡ E[r0(x, ξ̃)]

s.t. ci(x) ≡ E[ri(x, ξ̃)] ≤ 0, i = 1, . . . m,
x ∈ X ⊆ <n,

where ξ̃ is a random vector defined on the probability space (Ξ,F , P ). F is a σ−algebra
of subsets of Ξ, and P is a probability measure on F . The set X is a compact con-
vex set, and we assume that it is given explicitly by a set of deterministic convex
inequality constraints whose subgradient can be calculated. Additional assumptions
are made at appropriate places. A particular realization of ξ̃ is represented by ξ. The
functions ri : <n × Ξ → <, i = 0, . . .m are proper normal convex integrands, i.e.,
ri(·, ξ) is proper and the epigraph of ri(·, ξ): {(x, α)|ri(x, ξ) ≤ α, x ∈ <n, α ∈ <}
is closed, measurable in ξ and convex. Moreover, we assume that for any ξ ∈ Ξ
−∞ < ri(x, ξ) < ∞, i.e., ri(x, ξ) are finite valued for i = 0, . . .m. The expected value
function is given by

E[ri(x, ξ̃)] ≡
∫

Ξ

ri(x, ξ)P (dξ)

for i = 0, . . . m, and it is also finite. We are interested in problems for which a
subgradient of E[·] can be computed either exactly or stochastically. In an important
class of two-stage SCP we will show how this can be accomplished. We will study
this problem in more details. Next we briefly summarize the developments for solving
SCP and background for the work presented in this paper to give it a context.

1.1 Background Review

The SCP has been studied extensively since it’s linear case was first introduced by
Dantzig [23] and Beale [10] in 1955. Studies in the 60’s focused primarily on the linear
stochastic program [43, 44, 75, 69]. These years also saw simultaneous development
of the theory of subdifferention and integration of convex functions [51, 39, 49, 52].
Subsequent to this development, in the seventies, Rockafellar and Wets [54, 55, 53, 56]
developed extended duality theory for SCP and gave conditions under which SCP is
well defined. Hiriart-Urruty [34] and Rockafellar and Wets [56] studied the proper-
ties of the mean value function E[r(·)] and its subdifferential set, ∂E[r(·)]. These
works and several additional theoretical properties of SCP and general stochastic
programming problem together with several applications are well surveyed in Wets
[73]. A comprehensive reference list of books and collections of papers on Stochastic
Programming appear in [74].
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It is easy to see that in general ci(x) are (non-smooth) convex functions [73,
Proposition 2.1]. Hence methods for non-smooth convex optimization are immedi-
ately applicable for solving SCP provided that an exact subgradient of ci(·) can be
computed. This is well recognized in the case of two-stage stochastic linear pro-
gramming problems with finite number of scenarios (SLPF). For this problem several
algorithms are designed that directly or indirectly use the subgradient information
[69, 7, 17, 60]. Lemma 1 gives a way to compute a subgradient of ci(x) for the two
stage SCP. As a result all known methods for solving non-smooth convex programs
become available to solve this problem. The use of non-smooth techniques have re-
ceived greater attention for handling coupling constraints in the multi-stage SCP (for
example see Chun and Robinson [20]) or stabilizing traditional cutting plane meth-
ods (for example see Ruszczyński [60]). The interested reader can find methods for
non-smooth convex optimization in the literature. Here we mention main methods
and some recent references.

Methods for non-smooth convex optimization can be broadly classified in the fol-
lowing six categories: (i) subgradient methods, (ii) ellipsoid method, (iii) classical
cutting plane methods, (iv) bundle methods, (v) proximal point methods and (vi)
volumetric and analytic center (interior-point) methods. Subgradient and ellipsoid
method are described in Shor [67]. An excellent survey of ellipsoid method is by
Bland, Goldfarb and Todd [18]. Zangwill [77] gives a unified treatment of classical
cutting plane methods. The book by Hiriart-Urruty and Lemaréchal [35] is a com-
prehensive source for bundle methods. For more recent developments on proximal
point and bundle methods see Mifflin [45], Birge, Qi and Wei [17], and Güler [28].
Convergence results of analytic and volumetric center cutting plane methods are more
recent. For development of methods based on analytic center recent references are
Andersen, Mitchell, Roos and Terlaky [2], Goffin, Luo and Ye [29] and Nesterov and
Vial [47]. A good source for developments on volumetric center method of Vaidya
[68] is Anstreicher [5].

For SLPF the non-smooth convex optimization approach has lead to the devel-
opment of cutting plane algorithms using decomposition. These include the widely
used L-shaped method of Van Slyke and Wets [69], which can also be seen as an ap-
plication of Bender’s decomposition method. Regularization of the L-shaped method
using ideas of the bundle method for non-smooth convex optimization have been sug-
gested and implemented (see for example, Ruszczyński [59, 60]). Ariyawansa and
Jiang [7] have given algorithms for SLPF based on the ellipsoid method, Vaidya’s [68]
volumetric center method, and the analytic center method [29]. In particular, they
have shown that the complexity of volumetric center method grows only linearly with
the number of scenarios, K.

In addition to methods based on non-smooth convex programming, several ad-
ditional approaches have been proposed to solve SLPF. The SLPF problem can be
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formulated as a large linear program [71], and methods for large scale linear program-
ming are considered (Wets [72]). Although the initial attempts were to specialize
simplex method to exploit the structure of the problem[72], more recently primal-
dual interior point methods have been applied (Carpenter, Lustig and Mulvey [19])
to the deterministic equivalent. The interior point methods have been found to be
more efficient than the simplex based methods [19]. An interior point method was
also analyzed by Birge and Qi [16], showing that the block-angular structure of SLPF
can be exploited to get an interior point algorithm for the deterministic equivalent
whose complexity grows as O(K1.5). In practice the computational time for primal-
dual interior point method to solve the deterministic equivalent grows only linearly
in the number of scenarios (Czyzyk, Fourer and Mehrotra [21]). Parallel implementa-
tions show a near linear reduction in computing time with the number of processors
(Czyzyk, Fourer and Mehrotra [22] and Yang and Zenios [76]).

An important property of non-smooth methods using subgradient calculation is
that computation of subgradient for SCP decomposes in scenarios. A subgradient can
be computed by solving a linear (convex) program for each of the scenario. This is
important because it allows for subgradient computation in a distributed computing
environment, where individual processing nodes may be unreliable. We note that
decomposition is also possible in interior point methods that solve the deterministic
equivalent, however, here the decomposition is in matrix factorization.

Scenarios in stochastic programs are generated as an approximation to some un-
derlying distribution. The number of scenarios quickly get very large even when the
distribution of each random data element is determined by just a small number of
discrete points. For example, with 80 random data elements with each taking 3 possi-
ble values we get approximately 1038 scenarios (Infanger [38, Section 2.3]). Problems
of such size can not be handled by deterministic decomposition algorithms. This has
lead to the development of stochastic subgradient and decomposition algorithms. For
a discussion on stochastic subgradient methods see Ermoliev [27], Ruszczyński and
Syski [61], and Au, Higle and Sen [9]. Stochastic decomposition algorithms embed
sampling into the cutting plane methods. There are two such approaches. First
approach is based on using large samples to compute ‘accurate’ subgradients which
are used to generate cuts. Dantzig and Glenn [24], Dantzig and Infanger [25] and
Infanger [38] give such an algorithm based on the L-shaped method of Van Slyke and
Wets [69]. The other approach is based on using samples whose size grow as the
algorithm progress. Algorithms based on this approach are developed by Higle and
Sen [30, 31, 33]. In Higel and Sen decomposition algorithms information from a new
scenario is added at each iteration and previously added cuts are updated using this
information progressively.

An alternative approach for problems with very large number of scenarios is to
directly approximate the stochastic programs using Monte-Carlo samples. In par-
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ticular, ci(x) ≈ 1
N

∑N
j=1 ri(x, ξj) for i = 0, . . . m, and N is the sample size. This

approach is called the sample average method. For the sample average method the
rate of convergence of the distance of an optimal solution of the approximate prob-
lem, x̂N , to an optimal solution of the true problem are given in King and Rockafel-
lar [41] and Shapiro [62]. Under certain regularity, twice differentiability assumption
on the Lagrangian function associated with SCP, and second order sufficiency condi-
tion (implies uniqueness of the optimal solution) at the optimal solution, King and
Rockafellar [41] show that the rate of convergence is Op(N

1/2), where Op(.) notation
means that the bound is in probability. A similar bound is achieved by Shapiro [62]
under different assumptions. For this approach using the large deviation principle
Kaniovski, King and Wets [40] have shown that the probability of an event where
‖x̂N , x∗‖ ≥ ρ > 0, x∗ ∈ C∗ tends to zero exponentially fast as N → ∞. Here C∗ is
the set of optimal solutions. More recently, Shapiro and Homem-de-Mello [65] have
shown that in the sample average method the approximate stochastic program gives
an optimal solution of SCP for sufficiently large N . Using the large deviation prin-
ciple Shapiro and Homem-de-Mello have shown that the probability of not finding
this solution goes to zero exponentially fast with N . Kleywegt and Shapiro [?] and
Ahmed and Shapiro [1] have developed this approach for stochastic discrete optimiza-
tion. Linderoth, Shapiro and Wright [42] and Verweij, Ahmed, Kleywegt, Nemhauser
and Shapiro, [70] have given empirical evidence showing that the sample average
method finds an excellent approximation of the stochastic continuous and discrete
optimization problems while using only a very small number of scenarios.

1.2 Contributions of this paper

The algorithm of this paper combines the ‘accurate subgradient’ approach with a
variant of VCM. We call this variant a near-central cut VCM. This algorithm is
analyzed using the large deviation principle. In the context of convex feasibility
problems we show that near-central cut VCM allows for addition of multiple cuts and
bulk cut translation with relative ease. The development of near-central cut VCM
is motivated primarily because of its suitability for solving SCP. Using this variant
we develop an algorithm for SCP that generates cuts using sampling. An important
aspect of the proposed algorithm is that it gives performance bounds for finding an
optimal solution of SCP with any desirable probability. This type of performance
guarantee is not currently known for other cutting plane methods. The developed
algorithm enjoys all the properties of a decomposition algorithm. In particular, this
algorithm is naturally suitable for distributed computing environment and gives a
linear speed up in subgradient computation for two-stage SCP. As a result one can
find a solution of two-stage SCP with any desirable probability in ‘polynomial time’,
possibly using exponential number of processors.
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1.3 Organization of this paper

In order to motivate our subsequent development, in the next section we introduce the
two stage stochastic convex program, describe its various properties and show how a
subgradient can be computed for this problem. In Section 3 we develop near-central
cut VCM. The VCM is designed for solving a convex feasibility problem. After an
introduction and review of the VCM this section is divided into seven subsections. We
summarize various properties of the volumetric barrier function and the volumetric
center and some technical results in Section 3.1. We use these properties to analyze
the progress in near-central cut VCM. In Section 3.2 we give a result on the progress
towards computing volumetric center after a damped Newton-like step is computed.
In Section 3.3 we analyze the change in the value of volumetric barrier after a cut is
added. In Section 3.4 we analyze the change in the value of volumetric barrier after a
constraint is dropped. This is sufficient to complete the analysis of a basic version of
near-central cut VCM. We analyze this method in Section 3.5. In Sections 3.6 and 3.7
we give conditions that allow bulk constraint translation and multiple cut addition
while maintaining the overall computational complexity of the algorithm.

We return to the two-stage SCP in Section 4. In this section we adapt the near-
central cut VCM for solving two-stage SCP. In Section 4.1 we give an algorithm
for solving two-stage SCP with finite number of scenarios using exact subgradient
computation. In Section 4.2 we give an analysis for two-stage SCP, where subgradient
computations are performed using sampling. Here we also discuss some practical ways
of estimating the number of samples. In Section 5 we state the extension of the method
for two-stage SCP to the general SCP under the assumption that subgradients can
be computed in SCP. The two subsequent short sections contain concluding remarks
and acknowledgements. The notation and abbreviations scattered through out the
paper are summarized below.

1.4 Notation

Abbreviations: Stochastic Convex Program (SCP), Volumetric Center Method (VCM),
two-stage Stochastic Linear Program with Finite number of scenarios (SLPF), Second
Stage Problem (SSP), two-stage SCP (TSSCP). k/0, k > 0 is taken to be ∞ for any
k ≥ 0. All vectors are column vectors, and T denotes the transpose of a vector. The
convex objective function is given by c(·) and c0(·) which are used interchangeably.
∂c(x) denotes the subdifferential set of c(·) at x. ‖x‖ represents two-norm of a vector
x and ‖x‖Q represent the norm with respect to a positive definite matrix Q, i.e.,
‖x‖Q ≡

√
xT Qx. S(x̂, α) ≡ {x | ‖x− x̂‖ ≤ α}. Exp denotes the exponential function.

Prob(·) denotes the probability of an event. E[·] represents the expected value of a
random variable. det(·) represents the determinant of a matrix. diag(x) denotes a
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matrix whose diagonal elements are xi. The notation Q ¹ V mean that V − Q is a
positive definite matrix. C denotes a general convex set, C1 denotes the first stage
feasible set in TSSCP, C2(x, ξ) denotes the second stage feasible set for a given x

and ξ. C∗ denotes the set of optimal solutions and Cρ denotes the set of ρ−optimal
solutions. g(·) is used to denote the gradient of volumetric barrier in Section 3 and
it represents a subgradient of an appropriate function in other sections. Additional
notation is defined at appropriate places.

2 Two Stage Stochastic Convex Program

2.1 Problem Definition

The two-stage SCP (TSSCP) with recourse is described as:

min c0(x) ≡ c̃(x) + E[r(x, ξ̃)]
s.t. x ∈ C1 ≡ {x|ci(x) ≤ 0}, i = 1, . . . m,

where x ∈ <n, ci(x) : <n → <, i = 0, . . .m are finite valued convex functions. The
variables x are called first stage decision variables. The random vector ξ̃ is defined on
the probability space (Ξ,F , P ) defined as in the introduction. A particular realization
of ξ̃ is represented by ξ. The objective is to minimize the sum of first stage costs
and the expected recourse costs of taking a decision. For a given x̄ and ξ a recourse
action is found by solving a second stage problem SSP(x̄,ξ), which is given as:

r(x, ξ) ≡ min f 0(x, y, ξ)
s.t. y ∈ C2(x, ξ) ≡ {y|f i(x, y, ξ) ≤ 0, i = 1, . . . m2, x̄− x = 0},

where y ∈ <n2 and for any ξ, f i(x, y, ξ) : <n+n2 → <, i = 0, . . . m2, are finite valued
normal convex integrands. Variables y are second stage variables which give a recourse
action taken after a value of the random parameters is realized. We associate Lagrange
multipliers π(x̄, ξ) ∈ <m2

+ with inequality constraints in SSP(x̄, ξ), and a(x̄, ξ) ∈
<n with the equality constraints x̄ − x = 0. The reason for including ‘x̄ − x = 0’
constraints, instead of removing x variables from SSP(x̄,ξ), becomes clear in Lemma 1
below. We discuss the possibility of explicit substitution of x = x̄ after this lemma.
An optimal solution of SSP(x̄,ξ) is denoted by y∗(x̄, ξ), and the corresponding optimal
Lagrange multipliers are denoted by π∗(x̄, ξ) and a∗(x̄, ξ), respectively. Note that for
convenience we have taken constraints in both first and second stage problems in
equality form. The linear equality constraints can be incorporated in the first and
second stage problems. However, the presence of linear equality constraints requires
a modification to the description of volumetric barrier method.
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2.2 Technical Assumptions

We make following additional assumptions on the problem:

A0. The set Ξ is compact.

A1. The set C1 is compact, and it has a non-empty interior. Furthermore, C1 ⊂ B ≡
{x|xl

i ≤ xi ≤ xu
i , i = 1, . . . n}, where xl

i and xu
i are known. More explicitly we

assume that xu
i = −xl

i = 2L̂, and C1 contains a sphere of radius 2−L.

A2. The set C2(x, ξ) is non-empty and bounded for all x in an open set, C1
o , contain-

ing C1.

A3. Lagrange multipliers π∗(x̄, ξ), a∗(x̄, ξ) satisfying KKT conditions are available
together with y∗(x̄, ξ) while solving SSP(x̄, ξ). Furthermore, |a∗i (x̄, ξ)| ≤ ν for
all x̄, ξ, i = 1, . . .m2. Also, the same optimum solution and Lagrange multipliers
become available if a scenario is repeatedly generated.

Assumption A0 is needed to ensure that scenarios of the second stage problem
remain well defined. Assumption A1 is needed in the volumetric center method.
In practice, the feasibility assumption can be ensured by introducing an artificial
variable with large cost in the first and second stage problems. Also, boundedness
can be ensured by introducing a large bound on the first and second stage variables.
Assuming that C1 is bounded, the bounds for the set B can be obtained by solving
2n first stage convex optimization problems minx∈C1 xi and maxx∈C1 xi for i = 1, . . . n.

The assumption that xu
i = −xl

i can be ensured by a simple shift of origin, and xu
i =

−xl
i = 2L̂, i = 1, . . . n, can be ensured by a simple scaling after the origin is shifted.

Assumption A2 requires that for all possible first stage decisions a recourse action is
always possible. This type of assumption is common in the stochastic programming
literature even for the linear and quadratic case (for example, Rockafellar and Wets
[57] and Higle and Sen [31, 33]).

Assumption A3 is needed for subgradient calculations in the proposed method.
An optimum solution and lagrange multipliers are available when the second stage
problems are linear and quadratic programs. For more general problems we can only
expect to obtain good approximations of these quantities. We will discuss in Section 4
required modifications to our algorithm when exact multipliers are not available. The
boundedness of Lagrange multipliers can be ensured by putting an explict bound on
their value, or assuming that C2(x, ξ) has a non-empty interior. In general, this bound
depends on the size of the second stage problem scenarios, and it may be exponentially
large in the worst case.
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2.3 Properties of the Recourse Function

From Proposition 4 in [54] we know that r(x, ξ) is also a normal convex integrand.
Hence, for any x ∈ C1

o , we write the expected recourse cost of taking a decision as:

R(x) ≡ E[r(x, ξ̃)] ≡
∫

Ξ

r(x, ξ)P (dξ).

Note R(x) is a convex function [73]. We call g to be a subgradient of convex function
f(x, ξ) at x̄ ∈ C1 if

f(x̄, ξ) ≤ f(x̂, ξ)− gT (x̂− x̄) (1)

for all x̂ ∈ C1. Furthermore, from Rockafellar and Wets [56] and Hiriart-Urruty
[34, II.4.3] ([73, Proposition 2.10]), under Assumption A2 for all x ∈ C1, ∂R(x) =
E[∂r(x, ξ)]. The following lemma gives a way to compute an element of (a subgradi-
ent) ∂R(x).

Lemma 1 Let π∗(x̄, ξ) ∈ <m2
+ and a∗(x̄, ξ) ∈ <n be optimal Lagrange multipliers

associated with inequality and equality constraints (x̄− x = 0) in SSP(x̄,ξ). Let u =
(x, y), and by gi(u, ξ) denote a subgradient vector of f i(·, ξ) at u, for i = 0, . . . , m2.

Then, a subgradient of r(x, ξ) and R(x) at x̄ ∈ C1 is given by a∗(x̄, ξ) and∫
Ξ

a∗(x̄, ξ)P (dξ), respectively. Also, if the number of scenarios is finite (say K) and
%i is the probability for scenario ξi, i = 1, . . . K, then a subgradient of R(x) at x̄ can
be computed as

∑K
i=1 %ia∗(x̄, ξi).

Proof. For x̄, x̂ ∈ C1, let ū = (x̄, y∗(x̄, ξ)) and û = (x̂, y∗(x̂, ξ)). For SSP(x̄, ξ) the
optimal multipliers π∗(x̄, ξ) ≥ 0 and a∗(x̄, ξ) satisfy

g0(ū, ξ) +

m2∑
i=1

π∗i (x̄, ξ)gi(ū, ξ) +

( −a∗(x̄, ξ)
0

)
= 0 (2)

for some gi(ū, ξ) ∈ ∂f i(ū, ξ), and

π∗i (x̄, ξ)f i(ū, ξ) = 0, i = 1, . . . m2. (3)
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Now,

r(x̄, ξ) = f 0(ū, ξ)

= f 0(ū, ξ) +

m2∑
i=1

π∗i (x̄, ξ)f i(ū, ξ) (using (3))

≤ f 0(û, ξ)− g0(ū, ξ)T (û− ū) +

m2∑
i=1

π∗i (x̄, ξ)
(
f i(û, ξ)− gi(ū, ξ)T (û− ū)

)
(using (1))

= f 0(û, ξ) +

m2∑
i=1

π∗i (x̄, ξ)f i(û, ξ)− a∗(x̄, ξ)T (x̂− x̄) (using (2))

≤ f 0(û, ξ)− a∗(x̄, ξ)T (x̂− x̄) (since f i(û, ξ) ≤ 0)

= r(x̂, ξ)− a∗(x̄, ξ)T (x̂− x̄).

This shows that a∗(x̄, ξ) ∈ ∂r(x̄, ξ). Now to see
∫

Ξ
a∗(x̄, ξ)P (dξ) ∈ ∂R(x) note that

R(x̄) =

∫

Ξ

r(x̄, ξ)P (dξ)

≤
∫

Ξ

(r(x̂, ξ)− a∗(x̄, ξ))T (x̂− x̄)P (dξ)

=

∫

Ξ

r(x̂, ξ)P (dξ)−
∫

Ξ

a∗(x̄, ξ)T (x̂− x̄)P (dξ)

=

∫

Ξ

r(x̂, ξ)P (dξ)−
(∫

Ξ

a∗(x̄, ξ)P (dξ)

)T

(x̂− x̄).

Here the last equality follows because a∗(x̄, ξ), a subgradient of r(x̄, ξ), is a measurable
function of ξ (Rockafellar [50, Corollary 4.6]), and for measurable vector functions
the equality above holds ([36, Section 3.42]). The case where the number of scenarios
is finite is just a special case. 2

We note that if f i(x, y, ·) are differentiable convex functions, then x = x̄ can be
explicitly substituted in the second stage problem definition. The vector a∗(x̄, ξ) is
recovered from (2), by computing the gradients of f i(x, y, ·) at (x̄, y∗(x̄), ξ) and using
non-negative multipliers from the reduced problem. This can also be done in the non-
differentiable case if there is a way to extend a subgradient of f i(x̄, y, ·) at y∗(x̄, ξ) to a
subgradient of f i(x, y, ·) at (x̄, y∗(x̄, ξ)) while keeping the components corresponding
to y variable unchanged.

Assumption A3 implies that the subgradient of R(x) computed in Lemma 1 is
bounded by ν component-wise.

In the case where Ξ has finitely many elements, Lemma 1 gives a way to compute
an exact subgradient of R(x). This means that any method for finding a solution of
non-smooth convex program can be used to solve TSSCP. However, for many practical
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situations either the number of elements in Ξ is very large, or Ξ is continuous. In
such situations we resort to Monte-Carlo sampling to estimate R(x) and ∂R(x) (see
discussion in [38, Section 2.3]). We will study the use of Monte-Carlo sampling in
Section 4.2. In this approach the calculated subgradient will be approximate. For
this reason in the next section we develop a near-central cut variant of volumetric
center method.

3 Volumetric Center Cutting Plane Method

The volumetric center cutting plane method of Vaidya [68] is designed for the convex
feasibility problem. Assuming that a convex set C is contained in a hypercube ‖x‖∞ ≤
2L̂, the convex feasibility problem is to find a point in C or conclude that the volume
of C is less than that of a n-dimensional sphere of radius 2−L for some given L > 0.
Unless a point in C is found, VCM maintains a polyhedral set containing C.

Let P = {x ∈ <n|Ax ≥ b}, where A ∈ <m×n, and b ∈ <m. Let s(x) = Ax− b, and
S(x) = diag(s(x)) be a diagonal matrix whose diagonal elements are si(x). Let aT

i

represent the ith row of A. The volumetric barrier for P is the function

V (x) ≡ 1

2
ldet(H(x)), where H(x) ≡ AT S−2(x)A =

m∑
i=1

1

s2
i (x)

aia
T
i ,

and ldet(·) ≡ ln(det(·)). The matrix H(x) is the Hessian of the log-barrier function:∑m
i=1 ln(aT

i x − bi). The volumetric barrier function is strictly convex and its unique
minimizer is called the volumetric center of P .

Vaidya’s VCM method has three ingredients: (i) Newton-like steps used to reduce
the value of the volumetric barrier and find an approximate volumetric center, (ii)
Addition of a cut at approximate volumetric center to reduce the region of uncer-
tainty, and (iii) Deletion of a constraint if it is no longer desirable, and it satisfies
certain criterion. The volumetric center method stops with an iterate when the value
of the volumetric barrier is sufficiently large. Vaidya’s main result is that the com-
plexity of his volumetric cutting plane method is O(n(L+ L̂)T +n4(L+ L̂)) compared
to O(n2(L + L̂)T + n4(L + L̂)) arithmetic operations for the ellipsoid method [18].
Here T is the cost of computing a cut (an oracle). Vaidya showed that his method
will terminate in O(n(L+ L̂)) iterations, while each iteration requiring O(n3) floating
point computation. In theory, the work at each iteration of Vaidya’s method can
be reduced to O(n2.38) using fast matrix multiplications, which can not be applied
to ellipsoid method. The total number of outer iterations of Vaidya’s algorithm are
inversely proportional to a quantity ∆V , which is the difference of the minimum in-
crease in the value of the volumetric barrier when a cut is added and the maximum
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decrease in the value when a constraint is removed. Inner iterations in Vaidya’s algo-
rithm are performed using Newton-like steps. At a point near the volumetric center,
the method generates a cut and backs off this cut by a significant amount. Such
cuts are called shallow cuts. In addition, his analysis results in very large constants
hidden in O(·) notation (see Anstreicher [4, Section 7] and [5, Section 1] for detailed
discussion). Ramaswamy and Mitchell [48] analyze a central-cut variant of volumetric
center algorithm, where the new cut is passed through the point at which it is gen-
erated, while an affine step is used to generate a new iterate to start recomputation
of the volumetric center of the new polytope. In Ramaswamy and Mitchell’s central
cut variant analysis the order of outer iterations remain the same, while it requires
O(
√

n) Newton-type iterations to recompute the volumetric center. The central cut
variant is preferable because, instead of O(

√
n), in practice one expects it to take very

few Newton-type iterations for recomputing the volumetric center, while the number
of outer iterations is reduced by a larger factor.

Another aspect of Vaidya’s algorithm is the maximum number of constraints it
carries. Very careful analysis by Anstreicher [4, 5] has reduced the number from 107n

in Vaidya’s analysis for the shallow cut version to 25n for the central cut version of
the algorithm. Moreover, Anstreicher’s analysis [5] has shown that ∆V in Vaidya’s
algorithm can be increased from 1.3× 10−7 to 1.4× 10−3, a gain of more than 104.

The volumetric method proposed and analysed in this section is a method in which
the amount by which we back off a cut is much smaller. We call this a near-central
cut version. Our main reason for proposing this variant is our context of stochas-
tic programming problems. As seen in the previous section, the subgradient used
to generate the cut at a given point can be computed only approximately when the
number of scenarios is large (infinite). By backing off we can absorb the error in sub-
gradient computation. In particular, we increase the probability of not cutting away
the optimum solution. Although the cuts in the near-central cut variant do not go
through the current iterate, they are still deep. For example, the slack at the current
iterate in the added cut is about the same as the slack at the iterate obtained by
moving along the affine direction in the central cut version of the algorithm analyzed
by Anstreicher [5]. An important aspect of the near-central version of the algorithm
is that it naturally allows for addition of multiple cuts, a feature that seems difficult
to get for the central cut version (see Anstreicher [5, Conclusions]).

We now study these aspects of near-central cut variant of VCM. The next sec-
tion collects several known results obtained by Vaidya[68] and Anstreicher[3, 4, 5].
The first time reader may jump ahead to Section 3.5 and then return to next four
subsections.

12



3.1 Properties of the Volumetric Barrier

The volumetric barrier function V (x) is a strictly convex function, and we denote its
unique minimizer by w. Let x be such that s(x) > 0,

P (x) ≡ S−1(x)A(AT S−2(x)A)−1AT S−1(x)

and

σi(x) ≡ aT
i (AT S−2(x)A)−1ai

s2
i (x)

=
aT

i H(x)−1ai

s2
i (x)

, i = 1, . . . m,

where ai
T is the ith row of A. Let D(x) = diag(σ(x)). The gradient and Hessian of

V (·) at x are given by (see Anstreicher [3, Lemma A.2,A.3] or Vaidya [68, Lemma 1,2])

g(x) ≡ ∇V (x) = −AT S−1(x)σ(x) = −
m∑

i=1

σi(x)

si(x)
ai,

∇2V (x) ≡ AT S−1(x)(3D(x)− 2P (2)(x))S−1(x)A,

where P (2) denotes the Hadamard product of P with itself, i.e., P
(2)
ij = (Pij)

2. Let

Q(x) ≡ AT S−2(x)D(x)A =
m∑

i=1

σi(x)

s2
i (x)

aiai
T .

The matrix Q(x) is positive definite, which gives a good approximation of ∇2V (x).
In particular,

Q(x) ¹ ∇2V (x) ¹ 3Q(x). (4)

The notation Q ¹ V means that V −Q is a positive semi-definite matrix. The above
bound is due to Anstreicher [3, Lemma A.4]. A weaker bound was proved in Vaidya
[68, Lemma 3].

In order to measure progress in VCM we need to know (i) the amount of reduction
in V (·) after a Newton-like step is taken, (ii) the change (increase) in V (·) after a cut
is added, (iii) the change (decrease) in V (·) after an undesirable constraint is deleted.
The difference in the V (·) while adding and dropping cuts measures the convergence
of the algorithm. The Newton-like step analysis ensures that worst case complexity
for recentering after cuts are added or dropped. For this purpose, in Anstreicher’s
analysis [5], the following expansion of V (·) plays a fundamental role. Let x, x+p ∈ P ,

for some p ∈ <n, then

V (x̄) = V (x) + gT (x)p +

∫ 1

0

∫ α

0

pT∇2V (x + βp)p dβdα. (5)

Anstreicher showed [5] that if ‖S−1(x)Ap‖∞ ≤ δ ≤ 1, then

pT Q(x)p

2(1 + δ)2
≤

∫ 1

0

∫ α

0

pT∇2V (x + βp)p dβdα ≤ 3 + δ2

2(1− δ)2
pT Q(x)p. (6)
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The following proposition gives a condition which ensures boundedness of a polyhedral
set.

Proposition 2 [5, Theorem 2.4 and Corollary 2.5] Let x ∈ P, s(x) > 0, suppose
that column of A are linearly independent and p is given by Q(x)p = g(x). Then,
‖S−1(x)Ap‖∞ < 1 implies that P is bounded. Furthermore, if µ(x)‖g(x)‖Q−1(x) < 1,
then P is bounded. 2

Proposition 3 shows that ‖p‖Q can be used to bound ‖S−1Ap‖∞ and ‖S−1Ap‖2. The
first bound in Proposition 3 is due to Anstreicher [4, Lemma 2.3] and [3, Theorem 3.3].
The proof of the second bound is straight forward and it appears during the analysis
in [3, 4, 5, 68].

Proposition 3 Let x ∈ P , and s(x) > 0, σmin(x) ≡ mini{σi(x)},

µ(x) ≡ (2
√

σmin(x)− σmin(x))−1/2, and µ̂(x) ≡ min{[(1 +
√

m)/2]1/2, µ(x)}.

Then for any p ∈ <n,
‖S−1(x)Ap‖∞ ≤ µ̂(x)‖p‖Q(x). (7)

Also,

‖p‖H(x) = ‖S−1(x)Ap‖2 ≤ 1√
σmin(x)

‖p‖Q(x) 2 (8)

Proposition 4 bounds the change in various quantities as we move from x in some
direction p. In particular, (9) is proved by Vaidya[68, Claim 3] and in Anstreicher[3,
Lemma A.1]. The bounds in (10–11) are proved in Vaidya [68, Lemma 5] and in
Anstreicher[3, Lemma 2.2]. Inequalities (12) and (13) follow from noting that µ̂(·) is
a decreasing function of σmin.

Proposition 4 Let x ∈ P, and s(x) > 0. Then,

0 ≤ σi(x) ≤ 1, i = 1, . . .m, and
m∑

i=1

σi(x) = n. (9)

Let x̄ = x + p, with ‖S−1(x)Ap‖∞ ≤ δ ≤ 1. Then,

1− δ ≤ si(x̄)

si(x)
≤ 1 + δ,

(1− δ)2

(1 + δ)2
≤ σi(x̄)

σi(x)
≤ (1 + δ)2

(1− δ)2
, i = 1, . . . ,m, (10)

and
(1− δ)2

(1 + δ)4
Q(x) ¹ Q(x̄) ¹ (1 + δ)2

(1− δ)4
Q(x). (11)

14



Furthermore, if x = w and x̄ = w + p, ‖S−1(w)Ap‖∞ ≤ δ ≤ 1, then


2

√
σmin(x̄)

(
1 + δ

1− δ

)2

− σmin(x̄)

(
1 + δ

1− δ

)2


−1/2

≤ µ(w), (12)

µ(w) ≤

2

√
σmin(x̄)

(
1− δ

1 + δ

)2

− σmin(x̄)

(
1− δ

1 + δ

)2


−1/2

2 (13)

The following lemmas show that the ellipsoidal norm ‖.‖Q used to measure distance
from the volumetric center is related to the difference in the value of the volumetric
barrier to its optimal value. In addition, the next lemma shows that if the gradient at
the current point is small, then we are sufficiently close to the volumetric center. The
first statement in Lemma 5 is a bit stronger when compared with the restatement in
Anstreicher [5, Theorem 2.6], however, its proof is essentially the same.

Lemma 5 Let x ∈ P , s(x) > 0, and m̂u(x)‖g(x)‖Q−1(x) ≤ γ ≤ 1/6. Then,

‖w − x‖Q(x) ≤ 6‖g(x)‖Q−1(x), (14)

and

V (w)− V (x) ≥ min
0≤α≤1

1

(m̂u(x))2

(
−γα +

α2

2(1 + α)2

)
. 2

The following lemma shows that if the value of the volumetric barrier at a point is
close to its optimal value, then this point should be close to the volumetric center in
Q-norm.

Lemma 6 Let x ∈ P, s(x) > 0, and w be the volumetric center of P . Let 0 <

V (x)− V (w) ≤ δ2

2(1+δ)2(m̂u(w))2
, 0 ≤ δ ≤ 1, then µ(w)‖w − x‖Q(w) ≤ δ. 2

Proof. Assume that µ̂(w)‖w − x‖Q(w) > δ. Then, we have x̄ = x + λ(w −
x) = λw + (1 − λ)x, 0 < λ < 1, for which µ̂(w)‖w − x̄‖Q(w) = δ. Due to the
convexity of V (·), V (x̄) ≤ λV (w)+(1−λ)V (x), hence V (x̄)−V (w) ≤ (1−λ)(V (x)−
V (w)) < V (x) − V (w) ≤ δ2

2(1+δ)2(µ̂(w))2
. Let p = x̄ − w. From Proposition 3 we have

‖S−1(w)Ap‖∞ ≤ µ̂(w)‖p‖Q(w) = δ. In (5) using g(w) = 0, we get

V (x̄)− V (w) =

∫ 1

0

∫ α

0

pT∇2V (w + βp)p dβdα

≥ pT Q(w)p

2(1 + δ)2
(using (6))

=
δ2

2(1 + δ)2(µ̂(w))2
(using ‖p‖Q(w) = δ/µ̂(w)).
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This is a contradiction, hence the claim follows. 2

Before we conclude this section we give a result on the property of the volumetric
center which is used in Section 4 while analyzing our method for two-stage SCP. This
lemma gives an ellipsoid that contains the set P .

Lemma 7 Let w be the volumetric center of P. Then for any x ∈ P

(i)

‖w − x‖Q(w) ≤ n√
σmin(w)

. (15)

Furthermore, for x̄ ∈ P such that µ̂(w)‖w − x̄‖Q(w) ≤ δ ≤ 1, we have

(ii)

‖x̄− x‖Q(x̄) ≤ (1 + δ)

(1− δ)2

(
n√

σmin(w)
+ δ

)
. (16)

In particular, for δ ≤ .01, σmin(x̄) ≥ .04, we have σmin(w) ≥ .0384, and

(iii)
‖x̄− x‖Q(x̄) ≤ 5.3n and ‖x̄− x‖H(x̄) ≤ 26.5n. (17)

Proof. In order to show (15) first note that g(w) = 0, i.e.,
∑m

i=1
σi(w)
si(w)

ai = 0 which
for all x ∈ P implies that

m∑
i=1

σi(w)

si(w)
aT

i (x− w) = 0 and
m∑

i=1

σi(w)si(x)

si(w)
=

m∑
i=1

σi(w) = n, (18)

where the last equality follows from (9). For any x ∈ P ,

m∑
i=1

σi(w)(aT
i (x− w))2

s2
i (w)

=
m∑

i=1

σi(w)

(
si(x)

si(w)
− 1

)2

=
m∑

i=1

σi(w)− 2
m∑

i=1

σi(w)si(x)

si(w)
+

m∑
i=1

σi(w)s2
i (x)

s2
i (w)

= n− 2n +
m∑

i=1

σi(w)s2
i (x)

s2
i (w)

(using 18)

≤ −n +
1

σmin(w)

m∑
i=1

σ2
i (w)s2

i (x)

s2
i (w)

(using σi(w) ≥ 0)

≤ −n +
1

σmin(w)

(
m∑

i=1

σi(w)si(x)

si(w)

)2

= −n +
n2

σmin(w)
.
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This proves (15). Now observe that

‖x̄− x‖Q(x̄) = ‖x̄− w + w − x‖Q(x̄) ≤ ‖x̄− w‖Q(x̄) + ‖w − x‖Q(x̄). (19)

Under the hypothesis and using Proposition 3 we have ‖S−1(w)Ap‖∞ ≤ δ, hence from
(10) in Proposition 4 we have

1− δ ≤ si(x̄)

si(w)
≤ 1 + δ, and

(1− δ)2

(1 + δ)2
≤ σi(x̄)

σi(w)
≤ (1 + δ)2

(1− δ)2
,

hence

‖w − x‖2
Q(x̄) =

m∑
i=1

σi(x̄)(aT
i (w − x))2

s2
i (x̄)

≤ (1 + δ)2

(1− δ)4

m∑
i=1

σi(w)(aT
i (w − x))2

s2
i (w)

,

which gives ‖w − x‖Q(x̄) ≤ (1+δ)
(1−δ)2

‖w − x‖Q(w). Similarly,

‖w−x̄‖2
Q(x̄) =

m∑
i=1

σi(x̄)(aT
i (w − x̄))2

s2
i (x̄)

≤ (1 + δ)2

(1− δ)4

m∑
i=1

σi(w)(aT
i (w − x̄))2

s2
i (w)

≤ (1 + δ)2

(1− δ)4

δ2

µ̂2(w)
,

which implies ‖w− x̄‖Q(x̄) ≤ (1+δ)δ
(1−δ)2µ̂(w)

≤ (1+δ)δ
(1−δ)2

, since µ̂(w) ≥ 1. By using the last two

inequalities in (19), and using (15) we obtain

‖x̄− x‖Q(x̄) ≤ (1 + δ)

(1− δ)2

(
n√

σmin(w)
+ δ

)
,

which gives the desired result in (16). Also from (8) in Proposition 3 we have ‖x̄ −
x‖H(x̄) ≤ ‖x̄ − x‖Q(x̄)/

√
σmin(x̄). This together with the choice of constants in (16)

gives the desired bounds in (17). 2

3.2 Newton-like Steps

At a given point x ∈ P , s(x) > 0, the search direction d is computed by solving

Q(x)d = − 1

µ̂(x)‖g(x)‖Q(x)−1

g(x), (20)

and a new iterate is generated as

x(α) = x + αd, (21)

here α is a step length parameter. We would like to know the improvement in V (·) at
the new iterate x(α) for a specific choice of α. The following theorem accomplishes
this. The bound in (22) in this theorem was proved in Anstreicher[5, Lemma 2.8].
Bounds based on specific parameter choices are straight forward and we omit them
here.
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Theorem 8 If d is computed from (20) and x(α) is given by (21), then,

V (x(α))− V (x) ≤ 1

µ2(x)

(
−αµ(x)‖g(x)‖Q(x)−1 +

(3 + α2)α2

2(1− α)2

)
. (22)

Furthermore, if µ̂(x)‖g(x)‖Q(x)−1 ≥ 1, then for α = .2 we have V (x(α)) − V (x) ≤
−.1/

√
m. Otherwise, µ̂(x)‖g(x)‖Q(x)−1 ≤ 1, and for α = .2µ̂(x)‖g(x)‖Q(x)−1 we have

V (x(α))− V (x) ≤ −.1‖g(x)‖2
Q(x)−1 . 2

Corollary 9 Let d be computed as in (20) and x(α) be given by (21). Also let
α be chosen as in Theorem 8. Then, starting from a x ∈ P , s(x) > 0, satisfying
V (x) − V (w) = O(1), we can obtain a x̄ satisfying µ̂(x̄)‖g(x̄)‖Q−1(x̄) ≤ .01/6 in
O(
√

m) iterations.

Proof. Let ḡ = g(x̄), Q̄ = Q(x̄), and ¯̂µ = µ̂(x̄), where x̄ is an iterate after O(
√

m)
Newton-like iterations. If ‖ḡ‖Q̄−1 ≥ 10−2

6m1/4 , then from Theorem 8 we know that at all

Newton-like iterations V (·) is decreased by at least 10−5

36m1/2 , and we can not have more
than O(

√
m) iterations like this. Otherwise, ¯̂µ‖ḡ‖Q̄−1 ≤ .01/6, since ¯̂µ ≤ m1/4. Hence

the corollary follows. 2 We point out that in Theorem 8 we have used values of α

that would give good choices in practice. This is important since evaluation of V (·)
is expensive, which makes performing line searches expensive.

3.3 Adding A Cut

Let P̃ ≡ {x|x ∈ P , aT
m+1x ≥ bm+1} be the new region obtained after adding an

inequality to P . Let Ã ≡
(

A
aT

m+1

)
, b̃ ≡

(
b

bm+1

)
. Note that x ∈ P̃ ⇒ x ∈ P . For

x ∈ P̃ , let s̃(x) ≡ Ãx − b̃, and S̃(x) ≡ diag(s̃(x)). Clearly, s̃(x) = (s(x), sm+1(x)),
where sm+1(x) = aT

m+1x− bm+1. Let

τ(x) ≡ aT
m+1(A

T S(x)−2A)−1am+1

s2
m+1(x)

=
aT

m+1H(x)−1am+1

s2
m+1(x)

. (23)

Let Ṽ (.) be the volumetric barrier function for P̃ and w̃ be its volumetric center. Let
H̃(x) ≡ ÃT S̃(x)−2Ã. For x ∈ P̃ ,

Ṽ (x) =
1

2
ldet(H̃(x))

=
1

2
ldet(H(x) +

1

s2
m+1(x)

am+1a
T
m+1)

=
1

2
ldet

(
H(x)

[
I +

1

s2
m+1(x)

H(x)−1am+1a
T
m+1

])

= V (x) +
1

2
ln

(
1 +

aT
m+1H(x)−1am+1

s2
m+1(x)

)
, (24)
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where the last equality uses the fact that det(I + uvT ) = 1 + vT u.

The following theorem shows that the quantity Ṽ (w̃)−V (w) has a constant lower
bound, i.e., the value of volumetric barrier increases by sufficiently large amount
after adding a cut. We use it in establishing the global convergence of the volumetric
method.

Theorem 10 Let x ∈ P, s(x) > 0 be such that µ̂(x)‖g(x)‖Q−1(x) ≤ δ̂/6, 0 ≤ δ̂ < 1,
and τ(x) be given by (23). Then,

Ṽ (w̃)−V (w) ≥ min
0≤δ̃≤1

{
δ̃2

2(1 + δ̃)2(µ(w))2
+

1

2
ln

(
1 + τ(x)

(1− δ̃)2(1− δ̂)2

(1 + δ′)2

)}
, (25)

where δ′ is defined in (33) below.

Proof. From (24) we have

Ṽ (w̃) = V (w̃) +
1

2
ln

(
1 +

aT
m+1H(w̃)−1am+1

s2
m+1(w̃)

)
,

which gives

Ṽ (w̃)− V (w) = V (w̃)− V (w) +
1

2
ln

(
1 + τ(x)

[
s2

m+1(x)

s2
m+1(w̃)

] [
aT

m+1H(w̃)−1am+1

aT
m+1H(x)−1am+1

])
.

(26)
If V (w̃) − V (w) ≥ 1

8(µ(w))2
, then the result follows immediately from (26) by taking

δ̃ = 1 in (25), so without loss of generality assume that V (w̃)− V (w) = δ̃2

2(1+δ̃)2(µ(w))2
,

0 ≤ δ̃ < 1. We lower bound the term inside ln(.) in (26). From Lemma 6, we have
µ(w)‖w− w̃‖Q(w) ≤ δ̃. This from (7) in Proposition 3 gives ‖S−1(w)A(w̃−w)‖∞ ≤ δ̃,
and thus from (10) in Proposition 4 we have

1− δ̃ ≤ si(w̃)

si(w)
≤ 1 + δ̃,

(1− δ̃)2

(1 + δ̃)2
≤ σi(w̃)

σi(w)
≤ (1 + δ̃)2

(1− δ̃)2
, i = 1, . . . , m. (27)

For any x ∈ P satisfying µ(x)‖g(x)‖Q−1(x) ≤ δ̂/6 from (14) in Lemma 5 we have

µ(x)‖w − x‖Q(x) ≤ 6µ(x)‖g(x)‖Q−1(x) ≤ δ̂. This from (7) in Proposition 3 gives

‖S−1(x)A(w − x)‖∞ ≤ δ̂, and thus from (10) in Proposition 4 we have,

1− δ̂ ≤ si(w)

si(x)
≤ 1 + δ̂,

(1− δ̂)2

(1 + δ̂)2
≤ σi(w)

σi(x)
≤ (1 + δ̂)2

(1− δ̂)2
, i = 1, . . . , m. (28)

Now using (27) and (28) for any p ∈ <n,

pT H(x)p =
m∑

i=1

(pT ai)
2

s2
i (x)

≥ (1− δ̃)2(1− δ̂)2

m∑
i=1

(pT ai)
2

s2
i (w̃)

= (1− δ̃)2(1− δ̂)2pT H(w̃)p.
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Hence from Proposition ??, for all p ∈ <n we have

pT H(x)−1p ≤ 1

(1− δ̃)2(1− δ̂)2
pT H(w̃)−1p,

which for p = am+1 gives

aT
m+1H(w̃)−1am+1

aT
m+1H(x)−1am+1

≥ (1− δ̃)2(1− δ̂)2. (29)

Towards bounding sm+1(x)/sm+1(w̃) first note that
∣∣∣∣
sm+1(w̃)

sm+1(x)
− 1

∣∣∣∣ =

∣∣∣∣
aT

m+1(w̃ − x)

sm+1(x)

∣∣∣∣ ≤
‖am+1‖H(w)−1 ‖w̃ − x‖H(w)

sm+1(x)
. (30)

We now bound the two terms in (30). Using (28) we have

‖am+1‖2
H(w) =

m∑
i=1

(ai
T am+1)

2

s2
i (w)

≥ 1

(1 + δ̂)2

m∑
i=1

(ai
T am+1)

2

s2
i (x)

=
1

(1 + δ̂)2
‖am+1‖2

H(x),

which from Proposition ?? gives

‖am+1‖2
H(w)−1 ≤ (1 + δ̂)2‖am+1‖2

H(x)−1 . (31)

The triangular inequality gives ‖w̃−x‖H(w) ≤ ‖w̃−w‖H(w)+‖w−x‖H(w). From (8) in

Proposition 3 we have ‖w̃−w‖H(w) ≤ ‖w̃−w‖Q(w)

σ
1/2
min(w)

≤ δ̃

µ(w)σ
1/2
min(w)

, since µ(w)‖w−w̃‖Q(w) ≤
δ̃. Similarly, ‖w− x‖H(x) ≤ ‖w−x‖Q(x)

σ
1/2
min(x)

≤ δ̂

µ(x)σ
1/2
min(x)

, since µ(x)‖w− x‖Q(x) ≤ δ̂. Hence,

from using (28) we have ‖w − x‖H(w) ≤ δ̂

(1−δ̂)µ(x)σ
1/2
min(x)

. Therefore, we have

‖w̃ − x‖H(w) ≤ δ̃

µ(w)σ
1/2
min(w)

+
δ̂

(1− δ̂)µ(x)σ
1/2
min(x)

. (32)

Substituting (32) and (31) in equation (30) and using (23) gives,

∣∣∣∣
sm+1(w̃)

sm+1(x)
− 1

∣∣∣∣ ≤ τ(x)1/2(1 + δ̂)

(
δ̃

µ(w)σ
1/2
min(w)

+
δ̂

(1− δ̂)µ(x)σ
1/2
min(x)

)
≡ δ′. (33)

hence

1− δ′ ≤ sm+1(w̃)

sm+1(x)
≤ 1 + δ′. (34)

Now using inequalities (34) and (29) in (26) we get

Ṽ (w̃)− V (w) ≥ δ̃2

2(1 + δ̃)2(µ(w))2
+

1

2
ln

(
1 + τ(x)

(1− δ̃)2(1− δ̂)2

(1 + δ′)2

)
.

The theorem follows. 2
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Corollary 11 Let x ∈ P̃ with µ(x)‖g(x)‖Q−1(x) ≤ δ̂/6, δ̂ = .01. Let τ(x) = 4, and
µ(x) ≥ .04. Then,

Ṽ (w̃)− V (w) ≥ .0358. (35)

Also,
Ṽ (x)− Ṽ (w̃) ≤ .77 (36)

Proof. From Proposition 3, and (12, 13) we know that .0384 ≤ σmin(w) ≤ .042
and straight forward calculation gives 1.651 ≤ µ(w) ≤ 1.682. The bound in (35) is
obtained from a numerical calculation, which shows that the minimum in (25) occurs
at δ̃ ≈ 0.71, with the value ≈ .0358. Now to show (36) first observe that from (24)
we have,

Ṽ (x)− Ṽ (w̃) = V (x)− V (w) + V (w)− Ṽ (w̃) +
1

2
ln(1 + τ(x)).

Now from Lemma 5 for γ = .01/6 numerical calculations show that for α = .0017,
V (x)− V (w) ≤ 5× 10−7. Using (35) and the value of τ(x) = 4 we obtain the result.
2

3.4 Dropping a Constraint

Without loss of generality assume that σmin(x) = σm(x), and assume that mth con-

straint is dropped. Let P̃ ≡ {x|aT
i x ≥ bi, i = 1, . . . m − 1}, and A =

(
Ã
aT

m

)
, b =

(
b̃

bm

)
. For x ∈ P̃ , let s̃(x) ≡ Ãx − b̃. Note that s(x) = (s̃(x), sm(x)), and

x ∈ P ⇒ x ∈ P̃ . Let H̃(x) ≡ ÃT S̃−2(x)Ã, and Ṽ (x) ≡ 1
2
ldet(H̃(x)) be the volumetric

barrier for P̃ and w̃ be its volumetric center. Let σ̃i(x) ≡ aT
i H̃(x)−1ai

s̃2
i (x)

, i = 1, . . .m− 1

and define Q̃(x), σ̃min(x), µ̃(x), ˆ̃µ(x) similarly. For any x ∈ P

Ṽ (x) =
1

2
ldet(H̃(x))

=
1

2
ldet(H(x)− 1

s2
m(x)

amaT
m)

=
1

2
ldet

(
H(x)

[
I − 1

s2
m(x)

H(x)−1amaT
m

])

= V (x) +
1

2
ln

(
1− aT

mH(x)−1am

s2
m(x)

)

= V (x) +
1

2
ln(1− σm(x))) (37)
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where the second last equality uses the fact that det(I −uvT ) = 1− vT u. We need to
bound Ṽ (w̃)− V (w). This is accomplished in Corollary 13, which uses the following
theorem due to Anstreicher[4, Lemma 5.2, Theorem 5.3].

Theorem 12 Suppose that P̃ is obtained by deleting the mth constraint and σmin(x) =
σm(x). Then,

σi(x) ≤ σ̃i(x) ≤ σi(x)/(1− σmin(x)), i = 1, . . .m− 1.

and

‖g̃(x)‖Q̃(x)−1 ≤ 1√
1− σmin(x)

(
‖g(x)‖Q(x)−1 + σmin(x)

(
1 +

1√
1− σmin(x)

))
. 2

Corollary 13 Let x ∈ P with µ(x)‖g(x)‖Q−1(x) ≤ δ̂/6, δ̂ = .01. Assume that we
have chosen a constraint for deletion for which σi(x) ≤ .04. Then,

V (w)− Ṽ (w̃) ≤ .0315, (38)

Also,
Ṽ (x)− Ṽ (w̃) ≤ .012. (39)

Proof. The proof of this corollary follows the steps in the proof of Anstreicher
[5, Theorem 5.2]. From Theorem 12 we have σmin(w) ≤ σi(w) ≤ σ̃i(w), for i =
1, . . .m − 1, hence we have σmin(w) ≤ σ̃min(w). Therefore, since µ̂(.) is a decreasing
function of σmin, we have ˆ̃µ(w) ≤ µ̂(w). Furthermore, µ̃(w) ≤ µ(w), since we have
reduced the number of constraints by one. By taking x = w in Theorem 12, noting
that g(w) = 0, and multiplying both sides by µ̃(w) we have,

µ̃(w)‖g̃(w)‖Q̃(w)−1 ≤ µ̃(w)σmin(w)√
1− σmin(w)

(
1 +

1√
1− σmin(w)

)
.

From Proposition 3, and (10–13) we have .0384 ≤ σmin(w) ≤ .042 and 1.651 ≤ µ(w) ≤
1.682. Using this in above it is easy to see that

µ̃(w)‖g̃(w)‖Q̃(w)−1 ≤ .146
µ̃(w)

µ(w)
≤ .146.

This from Proposition 2 shows that P̃ is bounded. First consider the case where
µ̃(w) ≤ .81µ(w). In this case, µ̃(w)‖g̃(w)‖Q̃(w)−1 ≤ .119 and in Lemma 5 taking γ =

.119 and using numerical calculations it is seen that Ṽ (w̃) − Ṽ (w) ≥ − .01
µ̃2(w)

≥ −.01

(minimum at α ≈ 0.21).
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Now consider the case where µ̃(w) ≥ .81µ(w). We still have µ̃(w)‖g̃(w)‖Q̃(w)−1 ≤
.146 and µ̃(w) ≥ 1.33. Once again from Lemma 5 by using numerical calculations it
is seen that Ṽ (w̃)− Ṽ (w) ≥ −.01 (minimum at α ≈ .4). Hence, in all cases we have

Ṽ (w̃)− Ṽ (w) ≥ −.01.

From (37) for x = w we have

Ṽ (w̃)− V (w) = Ṽ (w̃)− Ṽ (w) +
1

2
ln(1− σmin(w))

≥ Ṽ (w̃)− Ṽ (w) +
1

2
ln(1− .42)

≥ −.01− .0215 = −.0315

Now from (37) we have

Ṽ (x)− Ṽ (w̃) = V (x)− V (w) + V (w)− Ṽ (w̃) +
1

2
ln(1− σmin(x)). (40)

From Lemma 5 (for γ = .01/6) numerical calculations show that V (x) − V (w) ≤
5× 10−7. Hence, Ṽ (x)− Ṽ (w̃) ≤ 5× 10−7 + .0315 + 1

2
ln(1− .04) ≤ .012 2

3.5 Near-Central Cut VCM and its Convergence.

We now describe the near-central cut version of the volumetric center method and
provide a convergence analysis for this algorithm. At the start of each iteration
k ≥ 0, we have a bounded polyhedron Pk which contains the optimal solution. The
hypercube containing C is taken as a starting polyhedron. It is straight forward to
show that x0 = 0 is the volumetric center of P0. The algorithm is described below.

Algorithm 1. (Near-Central Cut Volumetric Center Method)

Input. x0, P0, m0, L, σ = .04, δ̂ = .01, τ = 4

Step 1. (Termination Check) If V k(xk) ≥ .7nL+n ln(mk), then STOP. Else go to Step 2.

Step 2. (Decide if we should add or drop a constraint) If σmin(x
k) ≥ σ, go to Step 3,

else go to Step 4.

Step 3. (Add a Cut) Call the oracle to check if xk ∈ C. If yes, STOP. Otherwise the
oracle returns a vector a ∈ <n such that aT x ≥ aT xk for all x ∈ C. Let
sk = Akxk − bk, Sk = diag(sk). Add the constraint aT x ≥ β to the existing

constraint system. Here β = aT xk− (aT (AkT
(Sk)−2Ak)−1a/τ)1/2. Represent the

new constraint system by (Ak+1, bk+1), mk = mk + 1. Go to Step 5.
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Step 4. (Delete a Constraint) Suppose that σmin(x
k) = σj(x

k) < σ. Let (Ak+1, bk+1) be
the constraint system obtained by removing the jth row of (Ak, bk), mk = mk−1.
Go to Step 5.

Step 5. (Centering Steps) Let x̄0 = xk. Starting from x̄0 take a sequence of damped
Newton-like steps of the form x̄j+1 = x̄j − αQ−1(x̄j)g(x̄j), j ≥ 0, until
µ(x̄J)‖g(x̄J)‖Q−1(x̄J ) ≤ δ̂/6. Let xk+1 = x̄J , k = k + 1, and go to Step 1

The following Lemma from Anstreicher [4, Lemma 3.1] shows that if the algorithm
terminates in Step 1, then the volume of C is sufficiently small.

Lemma 14 Consider the volumetric cutting plane algorithm with δ̂/6 ≤ .03 and as-
sume that L ≥ 1, and let V k

max = .7nL+n ln(mk). Then, termination in Step 1 proves
that the volume of C is less than that of an n−dimensional sphere of radius 2−L 2

The next result is on the number of iterations after which we meet the termination
criterion in Step 1.

Theorem 15 For σ = .04, τ = 4, δ̂ = .01 in the volumetric cutting plane algorithm
the termination criterion in Step 1 is satisfied after O(nL) major iterations, while
performing O(

√
n) Newton-like steps at each major iteration. The total number of

calls to the oracle are O(nL).

Proof. At a major iteration we either add a cut or drop a constraint and recenter.
Since

∑mk

i=1 σi(x
k) = n, and a constraint is added only when σi(x

k) ≥ σ = .04,
the total number of constraints can not exceed n/σ + 1, i.e., mk ≤ 25n + 1. Also
since Pk is bounded mk ≥ n + 1. Therefore, the difference of the number of added
cuts and deleted constraints is bounded by 24n. If we add a cut at iteration k from
Corollary 11, V k+1(wk+1)− V k(wk) ≥ .0358. If we delete a constraint at an iteration
from Corollary 13 we have V k+1(wk+1)−V k(wk) ≥ −.0315. Hence, V k(wk)−V 0(w0) ≥
.043(k−24n)

2
−24×.0315n. Note that V 0(x0) ≤ −nL̂. Hence, after O(n(L+L̂)) iterations

V k(wk) ≥ .7nL + n ln(mk) + 5 × 10−7. Since at each iteration for δ̂ = .01, V k(xk) −
V k(wk) ≤ 5× 10−7 the termination check in Step 1 is satisfied after at most O(n(L+
L̂)) iterations. Corollary 11 together with Theorem 8 shows that the number of
Newton-like iterations required to recenter after a cut is added is O(

√
n) because

mk = O(n). Similarly, Corollary 13 together with Theorem 8 shows that the number
of Newton-like iterations required to recenter after a constraint is dropped is also
O(
√

n). The calls to the oracle are O(nL) because we only call the oracle at a major
iteration in the case of adding a cut. 2.
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3.6 Translating Cuts

In the context of optimization problem it is often possible to translate (strengthen)
a previously generated objective cut. This can help speed up the algorithm. It is
therefore important to analyze the effect of cut translations. The analysis for such a
modification was done in Ariyawansa and Jiang [7] for Vaidya’s VCM in the context
of using this method for solving SLPF. Our analysis here is for the near-central cut
variant and it is considerably simpler than the analysis of Ariyawansa and Jiang [7].
Furthermore, we allow for translation of more than one previously generated cuts
simultaneously. Our main purpose is to derive conditions that can be easily checked
and that ensure that we can recenter in O(

√
n) Newton-like iterations, as in the case

of adding new cuts and dropping a constraint. In order to simplify notations we
assume that all constraints are being translated, by changing the constraint right
hand side from bi to b̃i, b̃i ≥ bi.

Let P̃ ≡ {x|aT
i x ≥ b̃i, i = 1, . . .m}, be the new region obtained after translation.

Let b̃ ≡ (b̃i) and let s̃(x) ≡ Ax− b̃ and S̃(x) ≡ diag(s̃(x)). Note that x ∈ P̃ ⇒ x ∈ P
and s(x)− s̃(x) = b̃− b ≥ 0. Let Ṽ (.) be the volumetric barrier function for P̃ and w̃

be its volumetric center. Let H̃(x) ≡ AT S̃−2(x)A and let H(x) = L(x)L(x)T , where
L(x) is the Cholesky factor of H(x). Let

M(x) ≡ I +
m∑

i=1

(
1

s̃2
i (x)

− 1

s2
i (x)

)
L−1(x)aia

T
i L−T (x).

Now for an x ∈ P̃ ,

Ṽ (x) =
1

2
ldet(H̃(x))

=
1

2
ldet

(
H(x) +

m∑
i=1

(
1

s̃2
i (x)

− 1

s2
i (x)

)
aia

T
i

)

=
1

2
ldet

(
L(x)

[
I +

m∑
i=1

(
1

s̃2
i (x)

− 1

s2
i (x)

)
L−1(x)aia

T
i L−T (x)

]
LT (x)

)

=
1

2
ln

(
det(L(x))det(LT (x))det

([
I +

m∑
i=1

(
1

s̃2
i (x)

− 1

s2
i (x)

)
L−1(x)aia

T
i L−T (x)

]))

=
1

2
ln(det(L(x))det(LT (x))) +

1

2
ldet(M(x))

= V (x) +
1

2
ldet(M(x)). (41)

Since all singular values of M(x) are larger than 1, ldet(M(x)) ≥ 0. Hence, from (41),
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Ṽ (x) ≥ V (x) for all x ∈ P̃ . In particular, Ṽ (w̃) ≥ V (w̃). Also from (41) we have

Ṽ (x)− Ṽ (w̃) = V (x)− V (w) + V (w)− V (w̃) + V (w̃)− Ṽ (w̃) +
1

2
ldet(M(x))

≤ V (x)− V (w) + V (w)− V (w̃) +
1

2
ldet(M(x))

≤ V (x)− V (w) +
1

2
ldet(M(x)), (42)

where the last inequality follows because w is the minimizer of V (.). Since the Newton-
like iterations terminate when µ(x)‖g(x)‖Q−1(x) ≤ .01/6, ensuring V (x) − V (w) ≤
5× 10−7, in order to have an O(1) bound on Ṽ (x)− Ṽ (w̃) it is sufficient to have an
O(1) bound on ldet(M(x)). We now give conditions that ensure this bound. We need
the following proposition for this purpose.

Proposition 16 Let u1, . . . um ∈ <n, αi ≥ 0, and let

Mk =

(
I +

k∑
i=1

αiuiu
T
i

)
, k = 1, . . .m.

Then, det(Mm) ≤ ∏m
i=1(1 + αiu

T
i ui).

Proof. The bound is satisfied with equality for m = 1. Assume that it is true for
k < m. Now,

det(Mk+1) = det(Mk + αk+1uk+1u
T
k+1)

= det
(
Mk

(
I + αk+1M

−1
k uk+1u

T
k+1

))

= det(Mk)det
(
I + αk+1M

−1
k uk+1u

T
k+1

)

= det(Mk)(1 + αk+1u
T
k+1M

−1
k uk+1)

≤ det(Mk)(1 + αk+1u
T
k+1uk+1),

here the last inequality follows from noting that pT Mkp ≥ pT p for all p ∈ <n and
using Proposition ??. 2

Since ln(.) is an increasing function, an immediate consequence of Proposition 16
is that

ldet(M(x)) ≤
m∑

i=1

ln

(
1 +

(
1

s̃2
i (x)

− 1

s2
i (x)

)
aT

i L−T (x)L−1(x)ai

)

=
m∑

i=1

ln

(
1 +

(
1

s̃2
i (x)

− 1

s2
i (x)

)
aT

i H−1(x)ai

)

=
m∑

i=1

ln

(
1 +

(
s2

i (x)

s̃2
i (x)

− 1

)
σi(x)

)
,
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where the last equality used the definition of σi(x). The following theorem is now
immediate.

Theorem 17 Assume that the constraints are translated so that

m∑
i=1

ln

(
1 +

(
s2

i (x)

s̃2
i (x)

− 1

)
σi(x)

)
= O(1),

then Ṽ (x)− Ṽ (w̃) = O(1). 2

3.7 Generating Multiple Cut

Recall that a cut at each iteration is generated from using subgradient information at
the current iterate. Since the set of subgradients (subdifferential set) at the current
iterate may have more than one elements, or multiple constraints may be violated at a
given iterate, it may be possible to generate more than one cuts at the current iterate.
It is therefore important for us to allow the possibility of adding multiple cuts at the
cut addition step of a volumetric algorithm. Algorithm 1 needs a straight forward
modification to allow for multiple cut addition in Step 3. It is however important
that after adding multiple cuts, we can quickly recompute the approximate center
in Step 5 of the algorithm. For this reason in this section we give a condition that
guarantee that the number of iterates needed in Step 5 is of the same order (O(

√
m))

as in the case of single cut addition. This condition is similar to the conditions in
the cut translation situation of Section 3.6. The addition of multiple cuts appears to
be more difficult in the central cut variant of VCM. This is because the central cut
method requires generation of a “good new feasible solution” after adding cuts (see
Anstreicher [5, Conclusions]). This is not needed in the near-central cut variant.

We assume that t new constraints are added and we let P̃ ≡ {x|x ∈ P , aT
m+jx ≥

bm+j, j = 1, . . . t} be the new region obtained after adding these t inequality to P .

Let

Ã =




A
aT

m+1
...

aT
m+t


 , b̃ =




b
bm+1

...
bm+t


 .

Note that x ∈ P̃ ⇒ x ∈ P . For x ∈ P̃ , let s̃(x) = Ãx − b̃, and S̃(x) = diag(s̃(x)).
Clearly, s̃(x) = (s(x), s̃m+1(x), . . . , s̃m+t(x)), where s̃m+j(x) = aT

m+jx − bm+j, j =
1, . . . , t. Let

τj(x) =
aT

m+j(A
T S−2(x)A)−1am+j

s̃2
m+j(x)

=
aT

m+jH(x)−1am+j

s̃2
m+j(x)

, j = 1, . . . t.
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Let Ṽ (.) be the volumetric barrier function for P̃ and w̃ be its volumetric center. Let
H̃(x) = ÃT S̃−2(x)Ã. The following theorem and its proof is similar to Theorem 17.

Theorem 18 Assume that t constraints are added as above, and let

t∑
i=1

ln(1 + τi(x)) = O(1),

then Ṽ (x)− Ṽ (w̃) = O(1).

Proof. Following the steps used to arrive at (41) we can see that Ṽ (x) = V (x) +
1
2
ldet(M(x)), where M(x) ≡ I +

∑t
i=1

1
s̃2
m+i(x)

L−1(x)am+ia
T
m+iL

−T (x), and L(x) is a

Cholesky factor of H(x). Also using arguments similar to those used to arrive at
(42) we can show that Ṽ (x) − Ṽ (w̃) ≤ V (x) − V (w) + 1

2
ldet(M(x)). Next, using

Proposition 16, and V (x)− V (w) ≤ 5× 10−7, we have

ldet(M(x)) ≤
t∑

i=1

ln

(
1 +

1

s̃2
m+i(x)

aT
m+iH

−1(x)am+i

)
=

t∑
i=1

ln(1 + τi(x)) 2

4 An Algorithm for Two Stage Convex Stochastic

Program

We now use the volumetric center algorithm of the previous section to solve two stage
convex stochastic programs. The modifications are straight forward for the case where
the number of scenarios are finite and the subgradient of R(x) is calculated exactly.
We cover this case in the next subsection. We then modify the algorithm using exact
subgradients to an algorithm which calculates these subgradients approximately in
Section 4.2.

4.1 Near-Central Cut Volumetric Algorithm for Two Stage
Convex Stochastic Programs with Exact Subgradients

In this section we assume that an oracle can compute an exact subgradient of ci(.), i =
1, . . .m1 for all x ∈ B. Another oracle can compute a subgradient of R(.), c̃(.) for all
x ∈ C1. It is easy to see [39] that a subgradient of c(.) is available by adding the
available subgradients of c̃(.) and R(.). For a given ρ > 0, let

Cρ ≡ C1 ∩ {x|c(x) ≤ c(x∗) + ρ}.
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The next well known proposition, which follows immediately from the definition of a
subgradient, is used for generating cuts.

Proposition 19 Let x̄ ∈ B, x̄ 6∈ C1, and assume that the ith inequality is violated.
Let gi be a subgradient of ci(x) at x̄. Then,

Cρ ⊆ {x|giT x ≤ giT x̄ + ci(x)− ci(x̄)}.

Now let x̄ ∈ C1, x̄ 6∈ Cρ, and assume that g0 is a subgradient of c0(x) at x̄, then

Cρ ⊆ {x|g0T
x ≤ g0T

x̄ + c0(x∗) + ρ− c0(x̄)},

where x∗ is an optimal solution of TSSCP. 2

Since c0(x∗) and ci(x∗) are not known, the following weaker inequalities obtained from
the above proposition are used:

giT x ≤ giT x̄ (feasibility cut) (43)

g0T
x ≤ g0T

x̄ (optimality cut). (44)

The inequality (43) is valid because ci(x∗) ≤ 0, and ci(x̄) > 0 since x̄ is infeasible.
Inequality (44) is valid because if c0(x̄) ≤ c0(x∗) + ρ, then we have a desired solution,
otherwise, c0(x∗)+ρ− c0(x̄) < 0. Since ci(x̄) > 0, the feasibility cut can be translated
as the algorithm progresses. The optimality cut can be translated as better estimates
of optimal objective value become available. The approach used for translating these
cuts was discussed in Section 3.6.

We now modify the near-central cut VCM of Section 3.5 for TSSCP. We state
the algorithm without cut translation and multiple cuts. These modifications can be
easily incorporated in the algorithm.

Algorithm 2 (Near-Central Cut VCM for TSSCP).

Input. x0, P0, m0, L, σ = .04, δ̂ = .01, τ = 4

Step 1. (Termination check). If V k(xk) ≥ .7nL + n ln(mk), then STOP. Else go to Step
2.

Step 2. (Decide if we should add or drop a constraint) If σmin(x
k) ≥ σ, go to Step 3,

else go to Step 6.

Step 3. (Feasibility Test) Check if xk ∈ C1. If no, go to Step 4a, otherwise go to Step
4b.
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Step 4a. (Feasibility cut subgradient). Call the oracle which returns a vector gi ∈ <n

such that giT x ≤ giT xk for all x ∈ C1. Let a = −gi and go to Step 5.

Step 4b. (Optimality cut subgradient). Call the oracle which returns a vector g0 ∈ <n

such that g0T
x ≤ g0T

xk is satisfied by x∗. Let a = −g0 and go to Step 5.

Step 5. (Add a cut). Let sk = Akxk− bk, Sk = diag(sk). Add the constraint aT x ≥ β to

the existing constraint system. Here β = aT xk − (aT (AkT
(Sk)−2Ak)−1a/τ)1/2.

Represent the new constraint system by (Ak+1, bk+1), mk = mk + 1. Go to Step
7.

Step 6. (Delete a constraint). Suppose that σmin(x
k) = σj(x

k) < σ. Let (Ak+1, bk+1) be
the constraint system obtained by removing the jth row of (Ak, bk), mk = mk−1.
Go to Step 7.

Step 7. (Centering steps). Let x̄0 = xk. Starting from x̄0 take a sequence of damped
Newton-like steps of the form x̄j+1 = x̄j − αQ−1(x̄j)g(x̄j), j ≥ 0, until
µ(x̄J)‖g(x̄J)‖Q−1(x̄J ) ≤ δ̂/6. Let xk+1 = x̄J , k = k + 1, and go to Step 1

It is straight forward to see that an analogue of Lemma 14 and Theorem 15 is also
true for Algorithm 2. The following theorem follows from these results.

Theorem 20 Let parameters for Algorithm 2 be chosen as in Theorem 15 (σ =
.04, τ = 4, δ̂ = .01). Algorithm 2 either finds a point in Cρ or it proves that the
volume of Cρ is smaller than that of a n−dimensional sphere of radius 2−L. The
overall complexity of the algorithm is O(n(L + L̂)KC + n4.5(L + L̂)), where C is the
cost of solving an instance of second stage problem, and K is the number of scenarios.

Proof. The feasibility cuts do not cut away a point in Cρ. The only way an
optimality cut can cut away a point in Cρ is if it is generated at a feasible point where
the objective value is lower than c(x∗) + ρ, in which case we have found a desired
point. Now assume that all cuts are generated at points that are not in Cρ, in which
case they are valid for Cρ. From Lemma 14 we have that at termination the volume
of Cρ be smaller than that of a n−dimensional sphere of radius 2−L. 2

Theorem 20 states that Algorithm 2 correctly solves the problem if Cρ contains a
n− dimensional ball of radius 2−L. For proper choices of ρ and L such an assumption
is justified if the set C1 has a non-empty interior. As discussed in Section 2.2, this
can be ensured by introducing an artificial variable with a large unknown cost. In
practice we guess this large cost. The cost is increased it if the artificial variable is
not sufficiently small at the solution available at termination.
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4.2 Algorithm for Two Stage Convex Stochastic Programs
Using Sampling

As discussed in Section 2.3 for many practical problems either the number of scenarios
is too large or the probability space is continuous. In these situations computation of
exact subgradient is not practical, and we need to resort to Monte-Carlo simulation.
For developing an algorithm the natural idea is to replace the exact subgradient with
the subgradient computed through simulation when computing optimality cuts in Al-
gorithm 2. Since we can not compute a subgradient exactly, we relax the optimality
requirements by requiring a solution of desired accuracy with any desirable proba-
bility, but not with probability one. The analysis of this section gives two ways to
accomplish this: (i) a probability arbitrarily close to one is achieved in one single run
of the algorithm, (ii) the algorithm is run repeatedly from randomly (independently)
generated starting points, with each run having a positive probability of producing a
solution with desirable accuracy (see Remark 3 below).

Recall that when an optimality cut is generated in Algorithm 2, instead of passing
the cut through the point at which it is generated, it is made weaker. In particular,
at a point x̄ at which the cut is generated, instead of adding a constraint aT x ≥ aT x̄
in Step 5 we added aT x ≥ β, where β = aT x̄ − (aT (AT S(x̄)−2A)−1a/τ)1/2. We use
this property of the algorithm with exact subgradients to develop an algorithm with
approximate subgradients computed by sampling. Now assume that a subgradient
was computed approximately, so instead of g0, we have an estimate ḡ, and g0 =
ḡ + ε, for some ε ∈ <n. In our context the estimate ḡ is obtained from Monte-Carlo
simulation. Clearly, (ḡ + ε)T x ≤ (ḡ + ε)T x̄ is a valid cut, i.e.,

ḡT x ≤ ḡT x̄ + εT (x̄− x)

is satisfied by all x̂ ∈ Cρ, unless a point in Cρ is already found. This means that the
cut

ḡT x ≤ ḡT x̄ + (ḡT (AT S(x̄)−2A)−1ḡ/τ)1/2

added in Step 5 of Algorithm 2 does not cut away any point in Cρ as long as

max
x̂∈Cρ

εT (x̄− x̂) ≤ (ḡT (AT S(x̄)−2A)−1ḡ/τ)1/2. (45)

We would like to know the probability with which (45) is satisfied as ḡ is obtained with
increased sample size. We obtain this probability using the large deviation principle.

Let ζ i, i = 1, . . . N be independent and identically distributed observations of a
random variable ζ̃. Assume that |ζ̃| ≤ ν, and E[ζ̃] = 0. Let ζN = 1

N

∑N
i=1 ζ i, and

observe that limN→∞ ζN = 0. The next lemma shows a bound on Prob(ζN ≥ θ) as
an exponential function of N.
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Lemma 21 Let ζN be the sample mean of a random variable ζ̃ using N samples, and
|ζ̃| ≤ ν, then

Prob(ζN ≥ θ) ≤ e
−Nθ2

2ν2 .

Proof. Let 1ζN−θ≥0 be an indicator function which is 1 if ζN − θ ≥ 0 and zero
otherwise. For any λ ≥ 0 and θ > 0, following the steps of the proof of Theorem 2.2.3
in Dembo and Zeitouni [26] and Shapiro and Homem-de-Mello [65] we have,

Prob(ζN ≥ θ) = E[1ζN−θ≥0]

≤ E[eNλ(ζN−θ)]

= e−Nλθ

N∏
i=1

E[eλζi

]

= e−N [λθ−Λ(λ)],

where Λ(λ) ≡ ln E[eλζ ]. The inequality above is a Chebycheff’s inequality, and the
second equality above uses independence of ζ i. Note that Λ(λ) is the log of moment
generating function of ζ.

Clearly, Λ(0) = 0, and

Λ′(λ) =
E[ζeζλ]

E[eζλ]
=⇒ Λ′(0) = E[ζ] = 0,

and

|Λ′′(λ)| =
∣∣∣∣∣
E[ζ2eλζ ]

E[eλζ ]
−

(
E[ζeλζ ]

E[eλζ ]

)2
∣∣∣∣∣ ≤ ν2.

Since for any λ > 0,

Λ(λ) = Λ(0) + λΛ′(0) +
λ2

2
Λ′′(αλ), for some α, 0 ≤ α ≤ 1,

hence we have Λ(λ) ≤ λ2ν2

2
. Hence by taking λ = θ/ν2, we have the desired result.

2

We now work towards generating a bound for the right and left hand side in (45).
The following proposition says that if the difference between the objective value at
the current iterate, x̄, and the optimal objective value is large, then a subgradient at
x̄ should be sufficiently large in magnitude.

Proposition 22 Let x̄ ∈ C1, x̄ 6∈ Cρ, and x∗ ∈ C∗. Let g be a subgradient of c0(.) at
x̄, and let g = ḡ + ε, where ḡ is an estimate of g. Then,

‖ḡ‖H̄−1 ≥ ρ− εT (x̄− x∗)
‖x∗ − x̄‖H̄

, (46)

where H̄ = AT S(x̄)−2A.
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Proof. Since c(.) is a convex function, for any x̄ ∈ C1, and x̄ 6∈ Cρ and x∗ ∈ C∗ we
have

ρ ≤ c(x̄)− c(x∗) ≤ −gT (x∗− x̄) = −(ḡ + ε)T (x∗− x̄) ≤ ‖ḡ‖H̄−1‖x∗− x̄‖H̄ − εT (x∗− x̄),

hence the inequality in (46) follows. 2

We are now in a position to prove the following result, which shows that the
probability of not cutting away the set Cρ can be made arbitrarily small when using
a cut generated from sampling.

Lemma 23 Assume that the subgradient is estimated by taking the sample mean of
N samples. The probability of Cρ ∈ Pk+1 after adding a cut in Step 4b is given by

Prob(Cρ ∈ Pk+1) ≥ (1− e−Nψ+ln(2n))Prob(Cρ ∈ Pk),

where

ψ ≡ ρ2

1.2× 106n722Lν2
. (47)

Proof. Let ẑ = maxx̂∈Cρ εT (x̄ − x̂). For x̄ ∈ C1, and x̄ 6∈ Cρ, from Proposition 22
we have

Prob

(
ẑ ≤ ‖ḡ‖H̄−1

τ 1/2

)
≥ Prob

(
ẑ ≤ ρ− εT (x̄− x∗)

τ 1/2‖x̄− x∗‖H̄

)

= Prob

(
ẑ +

εT (x̄− x∗)
τ 1/2‖x̄− x∗‖H̄

≤ ρ

τ 1/2‖x̄− x∗‖H̄

)

≥ Prob

(
ẑ ≤ ρ

1 + τ 1/2‖x̄− x∗‖H̄

)
,

where the last inequality uses that ẑ ≥ εT (x̄ − x∗), since x∗ ∈ Cρ. For x̄ as in
Lemma 7 (near-center point at termination in Step 7 of Algorithm 2), if x∗ ∈ Pk, then
‖x̄−x∗‖H̄ ≤ 26.5n, and 1+τ 1/2‖x̄−x∗‖H̄ ≤ 54n. Also if Cρ ∈ Pk, then for any x̂ ∈ Cρ,
εT (x̄−x̂) ≤ ‖ε‖Q̄−1‖x̄−x̂‖Q̄ ≤ 5.3n‖ε‖Q̄−1 , hence ẑ = maxx̂∈Cρ εT (x̄−x̂) ≤ 5.3n‖ε‖Q̄−1 .
Furthermore, from Corollary ?? we have ẑ ≤ (5.3n)22L‖ε‖. Hence we have,

Prob(Cρ ⊆ Pk+1) = Prob(Cρ ⊆ Pk+1|Cρ ⊆ Pk)Prob(Cρ ⊆ Pk)

≥ Prob

(
ẑ ≤ ‖ḡ‖

τ 1/2

∣∣Cρ ⊆ Pk

)
Prob(Cρ ⊆ Pk)

≥ Prob(ẑ ≤ ρ

54n
)Prob(Cρ ⊆ Pk)

≥ Prob(‖ε‖ ≤ ρ

1525n32L
)Prob(Cρ ⊆ Pk).
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Let ρ′ = ρ
1525n32L . Clearly the event ‖ε‖ ≥ ρ′ implies the event |εi| ≥ ρ′/

√
n for some

i. Hence, Prob(‖ε‖ ≥ ρ′) ≤ nProb(|εi| ≥ ρ′/
√

n) ≤ 2ne
−Nρ′2
2nν2 , where the bound in

the last inequality follows from Lemma 21 and observing that the random vector ε

is bounded, εN = g0 −∑N
i=1 gi → 0 as N → ∞ and E[ε] = 0. Here gi is a sampled

subgradient, and without loss of generality we have taken ν to be the bound on all
|εi|. 2

The following corollary follows immediately from Lemma 23.

Corollary 24 After k iterations of Algorithm 2 using subgradients estimated from
sampling, either an x ∈ Cρ has been found, or

Prob(Cρ ⊆ Pk) ≥ 1− e−Nψ+ln(2nk)

Proof. In k iterations of Algorithm 2 at most k cuts are added. From Lemma 23,
we have

Prob(Cρ ⊆ Pk) ≥ (1− e−Nψ+ln(2n))k ≥ 1− ke−Nψ+ln(2n) = 1− e−Nψ+ln(2nk). 2

We now have the following theorem regarding the convergence of Algorithm 2
using sampled subgradients.

Theorem 25 Let parameters for Algorithm 2 be chosen as in Theorem 15 (σ =
.04, τ = 4, δ̂ = .01). Assume that an estimate of a subgradient of c0(.) is obtained

by using N = µ+ln(2n2(L+L̂))−ln(1−℘)
ψ

, (ψ defined in (47) and µ is log of constant in

O(n(L + L̂))) samples at each iteration to generate a cut in Step 4b of Algorithm 2.
Then, with probability greater than ℘ Algorithm 2 finds a point in Cρ or it proves that
the volume of Cρ is smaller than that of a n−dimensional sphere of radius 2−L in
O(n(L + L̂)) iterations. The overall complexity of the algorithm is O(n(L + L̂)NC +
n4.5(L + L̂)), where C is the cost of solving an instance of second stage problem.

Furthermore, if N processors are used and each second stage problem can be solved
in polynomial time (in n, L, L̂), then the two stage stochastic program can be solved
in time which is polynomial in n, L, L̂, ln(ν) and ln(℘).

Proof. The proof of the first part of Theorem 25 follows from Corollary 24. To
see the second part it is sufficient to observe that each of the N processors can be
used to generate an observation of the subgradient. Using these processors the sum
1
N

∑N
i=1 gi can be computed in O(ln N) steps (see [12, Section 1.2]). 2

Remark 1 (Measure of Problem Difficulty). While finding the number of sam-
ples N to ensure that Cρ ⊆ Pk at termination with probability ℘, we have a factor
ln(O(n(L + L̂))) = µ + ln(n + (L + L̂)) from the total number of iterations after
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with the algorithm is stopped. We expect that the number of iterations after which
the algorithm is stopped will be much smaller than O(n(L + L̂)), most likely O(n) or
smaller. Also for most practical situations we expect that ρ and 2L will be a constant,
as 3 to 6 digits of accuracy in the solution will be sufficient. Similarly ℘ will also be a
constant, i.e., for most practical problems we will be required to have a solution say
with probability ℘ = .999. This implies that the computational difficulty in solving
TSSCP will largely depend on the value of ν.

Remark 2 (Sample Size in Practice). The parameter ν is difficult to estimate
in advance, and the analysis above does not suggest a practical value of sample size.
However, in practice we can estimate Prob(ẑ ≤ ‖ḡ‖H̄−1

τ1/2 ), using Monte-Carlo simulation
as follows. The constant ‖ḡ‖H̄−1/τ 1/2 can be computed directly in the implementation,
and we need not use a bound as used in the analysis. After a constant number of
samples, ε will have a near multi-variate normal distribution whose co-variance matrix
can be estimated. Using this distribution we can generate instances of ε, say εi, and
solve maxx∈Pk εiT x. The desired probability is estimated by recording the number of
instances that satisfy (45) and dividing it by the total number of instances generated.

Remark 3 (Computing Environment). It is possible to have a computing en-
vironment having clusters of processors, where the cost of communicating among
processors in a cluster is small compared to cost of communicating across clusters.
For example, we may have separate clusters of processors available at two geographi-
cally distant locations, where the cost of communicating over network between these
two locations is large. In this situation the analysis suggests an alternative imple-
mentation strategy. Instead of making the probability of Cρ ⊆ Pk large by using
large number of scenarios while generating cut at each iteration of near-central cut
VCM, we may generate cuts ensuring Cρ ∈ Pk with smaller probability. Next we can
independently solve our problem a fixed number of times, making large the proba-
bility that one of these runs give the desired solution. In particular, assume that a
particular run of our algorithm ensures that x ∈ Cρ is found with probability ℘̄ and

the desirable probability is ℘, ℘̄ < ℘. Then, after d ln(1−℘)
ln(1−℘̄)

e independent runs we will
have the desired solution with probability ℘ in at least one of the runs.

5 Algorithm for General Convex Stochastic Pro-

gram

We now apply the ideas of previous section to develop an algorithm for general convex
stochastic programs. For x̄ 6∈ X let aT

Xx ≥ β represent an inequality that is generated
so that X ⊆ {x|aT

Xx ≥ ρ}. Also, for a given x̄ ∈ X, we assume that a subgradient of
ci(x) is estimated with increasing accuracy using sampling. A subgradient of ci(x) is
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represented by gi and its estimate by ḡi. The following algorithm is a modification
of Algorithm 2 where subgradient is estimated to generate feasibility and optimality
cuts.

Algorithm 3 (Near-Central Cut VCM for SCP).

Input. x0, P0, m0, L, σ = .04, δ̂ = .01, τ = 4.

Step 1. (Termination check). If V k(xk) ≥ .7nL + n ln(mk), then STOP. Else go to
Step 2.

Step 2. (Decide if we should add or drop a constraint). If σmin(x
k) ≥ σ, go to Step 3,

else go to Step 6.

Step 3. (Feasibility tests). Check if xk ∈ X. If no, go to Step 4a. If yes, find if any of the
constraints ci(x) ≤ 0, i = 1, . . .m is violated at xk by checking c̄i(xk) ≤ 0, where
c̄(.) represents an estimate of c(.) generated by using Monte-Carlo simulation.
If c̄i(xk) ≤ 0 for i = 1, . . . m, go to Step 4b, otherwise go to Step 4c.

Step 4a. (Compute subgradient for feasibility cut). Call an oracle which returns a vector
gX ∈ <n such that gX

T x ≤ gX
T xk for all x ∈ X. Let ā = −gX and go to Step

5.

Step 4b. (Compute subgradient for optimality cut). Call the oracle which returns an
estimate, ḡ0, of subgradient vector g0 ∈ <n. Let ā = −ḡ0 and go to Step 5.

Step 4c. ( Compute subgradient for expected value constraint). Let ḡi be an estimate of
subgradient vector gi ∈ <n of the constraint satisfying c̄i(xk) > 0. Let ā = −ḡi

and go to Step 5

Step 5. (Add a cut). Let sk = Akxk− bk, Sk = diag(sk). Add the constraint āT x ≥ β to

the existing constraint system. Here β = āT xk − (āT (AkT
(Sk)−2Ak)−1ā/τ)1/2.

Represent the new constraint system by (Ak+1, bk+1), mk = mk + 1. Go to Step
7.

Step 6. (Delete a constraint). Suppose that σmin(x
k) = σj(x

k) < σ. Let (Ak+1, bk+1) be
the constraint system obtained by removing the jth row of (Ak, bk), mk = mk−1.
Go to Step 7.

Step 7. (Centering steps). Let x̄0 = xk. Starting from x̄0 take a sequence of damped
Newton-like steps of the form x̄j+1 = x̄j − αQ−1(x̄j)g(x̄j), j ≥ 0, until
µ(x̄J)‖g(x̄J)‖Q−1(x̄J ) ≤ δ̂/6. Let xk+1 = x̄J , k = k + 1, and go to Step 1
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The analysis of Algorithm 3 is similar to the analysis in Section 4.2, except for
Step 4c followed by Step 5. In this case we need to account for the possibility of error
in estimating ci(.) together with the error in its subgradient estimate. Below we show
how this can be accomplished. Let gi be an exact subgradient of ci(x) at x̄. Recall
from Proposition 19 that

giT x ≤ giT x̄ + ci(x)− ci(x̄)

is a valid inequality. Let gi = ḡi + εi and ci(x̄) = c̄i(x̄) + εi
c, where εi is error in

estimation of gi and εi
c = ci(x)− c̄i(x) is error in the estimation of constraint function

value. Since for x̂ ∈ Cρ, ci(x̂) ≤ 0,

ḡiT x ≥ ḡiT x̄ + εiT (x̄− x∗)− εi
c

gives a valid cut. We add the feasibility cut if c̄i(x̄) > 0. This means that in this case
the cut added in Step 5 is valid as long as

max
x̂∈Cρ

εiT (x̄− x̂)− εi
c ≤ (ḡiT (AT S(x̄)−2A)−1ḡi/τ)1/2. (48)

We can now take our error vector (ε) to be

(
εi

εi
c

)
and perform an analysis similar to

that in Section 4.2. A theorem similar to Theorem 25 can be stated for Algorithm 3.
We leave this to the reader.

6 Conclusions

We developed a variant of Vaidya’s volumetric center cutting plane method that is
suitable for stochastic convex programming problems where the subgradient to gener-
ate a cut is computed using sampling. For this variant we showed how multiple cuts
and bulk cut translation can be done. We showed how a subgradient used to generate
cuts in our algorithm is computed for the two-stage stochastic convex program. For
the two-stage and general stochastic convex programming problem we showed that the
proposed variant ensures certain performance guarantees. In particular, we provided
an estimate of the sample size needed to generate a cut ensuring that the near-central
cut variant of VCM will give an optimal solution of the stochastic convex program
with any desirable probability. It is also possible to analyze the cutting plane algo-
rithm using the analytic centers instead of the volumetric centers. The computations
at each iteration in the analytic center approach are simpler, however, in the worst
case analysis the algorithm requires O(nL2) calls to the oracle [29], as compared with
O(nL) calls for the volumetric center method. The practical evaluation of the two
approaches, and their overall efficiency require a computational study, which we are
currently undertaking.
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[28] O. Güler (1994), “New Proximal Point Algorithms for Convex Minimization”, SIAM
Journal on Optimization, 4, 649-664.

[29] J.-L. Goffin, Z.-Q Luo and Y. Ye (1996), “Complexity Analysis Of An Interior Cutting
Plane Method For Convex Feasibility Problems”, SIAM Journal on Optimization, 6(3),
638-652.

40



[30] J. L. Higle and S. Sen (1996), “Stochastic Decomposition: An Algorithm for Two Stage
Linear Programs with Recourse”, Mathematics of Operations Research, 16, 650-669.

[31] J. L. Higle and S. Sen (1996), “Stochastic Decomposition: A Statistical Method for
Large Scale Stochastic Linear Programming”, publisher: Kluwer.

[32] J. L. Higle and S. Sen (1996), “Duality and statistical tests of optimality for two stage
stochastic programs”, Mathematical Programming, 75, 257-275.

[33] J. L. Higle and S. Sen (1999), “Statistical approximations for stochastic linear pro-
gramming problems”, Annals of Operations Research, 85, 173-192.

[34] J.-B. Hiriart-Urruty (1976), “About properties of the mean value functional and the
continuous inf-convolution in stochastic convex analysis”, In Optimization Techniques
Modeling and Optimization in the Service of Man, Ed. J. Cea, Springer-Verlag Lecture
Notes in Computer Science, Berlin, 763-789.
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