5 OPSEARCH, Vol. 28, No. 1, 1991

A COMPUTATIONAL COMPARISON OF THE
NETWORK SIMPLEX METHOD WITH THE
DUAL AFFINE SCALING METHOD

Andrew Armacost and Sanjay Mehrotra*

Department of Industrial Engineering and Management Sciences
Northwestern University, Evanston, IL 60208, U.S.A.

(Received : May 1990, Revised : November 1990)

ABSTRACT

We compare the performance of an implementation of the dual affine scal-
ing method using complete Cholesky factors with the network simplex method
on (sparse) minimum cost network flow, transportation and assignment
problems. We find that the network simplex method out-performs this
implementation of affine scaling method. The ratio of times required by
the two methods is found to grow with the number of nodes and the density
of network. However, for very sparse problems we find the two methods to
be competitive,

1. Introduction

We consider the minimum cost network flow (MCNF) problem with
m nodes and n arcs. The MCNF problem can be written in the form

Minimize cTx,
subject to Ax = b,)
x20,

where A € R"*" is the node-arc incidence matrix. The demand in the

m
network is assumed to be balanced, i.e., £ b =0.
: i=1

The purpose of this paper is to compare the performance of an adap-
tation of simplex method for MCNF problems, with that of the dual affine
scaling method using complete Cholesky factorization. As a result of this
study we hope to develop further insight into the performance of interior
point methods (IPM) for solving network problems.

*Research was supported in part by the Office of Naval Research grant NG0014-87-
K-0214 and by the National Science Foundation grant CCR-8810107.

A COMPUTATIONAL COMPARISON OF THB NETWORK SIMPLEX MBETHOD 19

The question is of interest because implementations of IPM based on
complete Cholesky factors are found to be considerably superior than
implementations of simplex method for large sparse problems. It is natural
to compare how well this method compares for structured problems,
such as the network flow problems.

In Aronson et al, [8], these methods were compared. The work here
differs from [8] in several aspects. The implementation in [8] solved prob-
lems in the primal formulation by using subroutine LSQR [13]. The codes
were developed to solve the scaled least squares problems at each interation
in range and null space. No preconditioners were used while implementing
LSQR. This resulted in prohibitably large number of conjugate gradient
iterations. In [8] results were obtained on dense assignment problems.
These results were very preliminary and most of the problems were not
even solved to (near) optimality because of numerical difficulties.

The network problems, we consider in this paper, are relatively sparse.
We use a complete Cholesky factor to solve dual problems. More impor-
tantly we differ in our conclusion about the prospects of using an IPM for
solving these problems. We find enough evidence to suggest that IPM
should be reconsidered as a viable method for these problems. In parti-
cular, we think that it might be possible to take advantage of IPM in
designing algorithms for solving large network problems (particularly on
parallel computers). This paper is organized as follows:

In Section 2 we describe our adaptation of the computer implementation
of the network simplex method given in Chvatal [4, pp. 284-319]. We
describe our implementation of the affine scaling method in Section 3.
In this section we also give an approach to efficiently form the matrix
AD?AT within the framework of network data structures. In Section 4 we
discuss our computational results and make some concluding remarks.
In the remainder of the current section we describe some data structures
which are used in the later sections.

The kth column of 4 has exactly two nonzeros, at locations head(k)
and tail(k). The matrix 4 is saved using the arrays head() and tail() of size
n as follows:

arc & head tail
k headk) tail(k).
Exhibit 1

As a convention an arc k, outgoing from node tail(k), results in
Atairior = — 1. The information about the network is also stored using a

20 ANDREW ARMACOST AND SANJAY MEHROTRA

first-next list involving arrays first() and next() of size m and n, respectively.
The first-next list constructed for NETSIM is based on the fail array. Itis

formed as follows: |
Initialize first(i) = 0, i = 1,...,m
dok=1,..,n
next(k)<«first(tail(k))
Sirst(tail(k))« k
od.
Exhibit 2

2. Implementation of Network Simplex Method

The implementation of NETSIM involves three main computational
steps:

Step 1. Calculate (update) the dual price vector.

Step 2. Determine an entering arc.

Step 3. Find the leaving arc on the cycle created by the entering arc
and update the flows.

We follow the computer implementation given in [4] to perform these
steps. In particular, we use the predecessor, depth, and thread arrays in
our implementation. We now describe specific approaches used in our
implementation that influence the performance of NETSIM.

Finding the Initial Basis

It is well-known that the linear programming basis for a MCNF problem
is a connected tree of m nodes and m—1 arcs. The process of finding basis

is called phase 1.

As in Chvatal [4], we begin Phase 1 by creating an artificial network,
consisting of all the original nodes, some original arcs and some artificial
arcs. We create a two-tiered tree, with each arc going from the root to
another node, or vice versa. This gives m—1 nodes of degree 1 and one
node of degree m—1. The node m in the natural order of problem data is
designated as the permanent root. The artificial network is constructed

as follows.

To satisfy the demand at the nodes, we determine whether node i is a
source or a sink. If it is a source (b; < 0), the arc we add to the network

A COMPUTATIONAL COMPARISON OF THE NBTWORK SIMPLEX METHOD 21

is directed from node i to the root, and it is assigned an initial flow of —b,.
If it is a sink or a pure transshipment node (b, > 0), then the arc is directed
from the root to node i. It is assigned an initial flow of b;. First we use
as many arcs as possible from the original network to satisfy the demand
at nodes in the above manner. If we can not satisfy the demand at node i
using the arcs in the original network, we add an artificial arc between node
i and m to satisfy this demand. Associated with this artificial network is a
new set of costs, ¢’, where

1 if arc k is artificial
' =
0 if arc k is in the original network.

We apply NETSIM to the artificial problem, using the costs ¢’, until an
optimal solution to the artificial problem (pbase 1) is found. The tree at .
the optimal solution of phase 1 serves as the initial basis for the original
problem.

Finding an Entering Arc

At each iteration, the entering arc was chosen as follows. We find the
arc with most negative reduced cost at node i by using the tail first-next
list of Exhibit 2. If an arc with negative reduced cost is found, we use it
as an entering arc. Otherwise, we consider node i+1 Ifi=mi+1el)
If an arc with negative reduced cost was found at node i in the current itera-
tion, we use node i + 1 to begin our search for an arc with negative reduced
cost in the next interation. If no arc with a negative reduced cost is found
after searching all the nodes, we know that an optimal solution has been
reached.

Doubly Linked Thread

Chvatal [4] uses a thread array s() of size n to perform a (preorder) depth-
first search [4, p. 314]. When updating the information at the change of
bases, it is necessary to find a node i which is the predecessor in the thread
to a given node j [4, p. 317, Box 19.3 (step 0)}. Since the thread is known
only in one direction (by the order of successors), one must traverse a por-
tion of the thread to find the predecessor. This causes slight inefficiency.
We doubly link the thread to find the predecessor, whenever needed. The
array doubly linking the thread, which we call rs(), is updated whenever
the thread is updated so that if j = s(i), we have i = rs(j).

3. Implementation of Dual Affine Scaling Method

We apply the affine scaling algorithm which was first proposed by Dikin

2 ANDREW ARMACOST AND SANJAY MEHROTRA

[5], and later discovered again by Barnes [3], Vanderbei et al. [14] and others,
to the dual of (1) given by

Maximize bTy,
subject to ATy € c. o _ 4y

Our implementation of this algorithm follows the work of Adler et al.
[1], and Monma and Morton [11]. The affine scaling algorithm for (1)
is outlined in Exhibit 3.

Begin Procedure ASCALE
Let »° be such that v* = ¢—AT)* > 0.

For k = 0,1,... until a termination criterion is satisfied do:

Step 1 D«diag(l—k, 17)

v v,
Step 2 Solve Bdy = AD*47dy = b for dy.
Step 3 dve—AT dy

Vk
Step 4 « = ymin §—L| v < 0=, ko<
1

Step 5 prHle—pk 4 ody
_ Step 6 viHlevk 4 ady

roF
Exhibit 3. Dual affine scaling algorithm

Implementation Details for ASCALE
We terminated ASCALE if criterion

H1__ yk
rel(z) = Ib:zf—xy"(l’b{—y),‘) < 10~

was satisfied. The assumption that an initial interior point is available
was satisfied by introducing an artificial variable y, and considering the
artificial problem
Maximize bTy + My,,
subject to ATy 4 em. € ¢, @)
\ Ye < 0’

A COMPUTATIONAL COMPARISON OF THE NETWORK SIMPLEX METHOD 23

where e is a vector of all ones and M is a large positive number. M = 108

was used for all the test problems in our implementation. To getan interior
point for (2) we set)° =0, computed

A .
y‘: = miny; ¢y,

and used
r A A

| 2:pe if Ve < 0
4

o A
e = if o> 0

[10~ if . =0.

Although we do not propose this way of starting the algorithm, we note
that it worked quite satisfactorily for our test runs. y = .95 was used for
all iterations, except when y = 1.0 resulted in y, = 0. In this case we used
y = 1.0 and dropped the artificial variable from the problem.

The main work at each interation of ASCALE comes from solving the
equations Bdy = b. This is performed by forming a Cholesky factor L of
B, LLT = B. Important to the efficiency is the permutation of the cons-
traint matrix 4. We find the permutation of rows of A by using an in-
house implementation of the minimum degree ordering heuristic {61 on B.
While finding this permutation, we also find the location of nonzero elements
in L. Henceforth we assume that the rows in 4 have been permuted, i.e.,
the nodes of the network have been renumbered.

We compute one column of L at a time. The approach we used to form
L is similar to the one described in Section 4 of [10]. But, in our implemen-
tation we used a different approach to compute a column of B at a time.
This approach, which we describe next, efficiently forms columns of B using
network data structure.

Formation of AD* AT
Let the arrays maxnode and minnode be defined as
maxnode(j) = max(head(j), tail(j))
minnonde(j) = min(head(), tail(j))-
When the artificial variable is present in A4, the direction of the arcs is impor-
tant to find elements of the corresponding (dense) row in B. We use the

array maxnode() also to indicate whether maxnode(j) is head(j) or tail(j).
This flagging is done as follows:

24 ANDREW ARMACOST AND SANJAY MEHROTRA

—maxnode(j), if maxnode(j) = tail(j)
maxnode(j) =
{ maxnode(j), if maxnode(j) = head(J).

Next, we form a first-next list as in Exhibit 2 using the minnode array.
The corresponding arrays are called Jmin—nmin. The arrays minnode,
maxnode, fmin and nmin are used in Exhibit 4 to form one column of B
at a time.

In procedure FORMB the nonzeros corresponding to the artificial row
are stored in array ar1(). The arrangements of computation ensure that
at the completion of computations for ith column of B, (note that only
Bji,] > iare computed), Bmyy is in art(i), Byis in diag(i) and By,
m+-1>j>iare in g().

Note that the computations in procedure FORMB use each arc of the
network exactly once. Also note that B, m + 1 > j > i are calculated
by

q(node) < q(node)— D3.

This allows proper calculation when the network contains nodes which are
connected with arcs in both directions, i.e., we have an arc going from node
i to j as well as an arc going from node J to i. If nodes are connected with
exactly one arc, this assignment can be replaced with

g(node)«- — D2,

Since rank(4) = m — 1 and row m is linearly dependent on the previous
rows, when computing L, we do not perform computations for this row.

After the artificial variable is dropped from 4, the calculations are
simplified further. The calculations corresponding to the (m--1)th row of
L are no longer needed. Consequently, any computations involving art
are removed. Furthermore, we do not need to use array maxnode as a
flag array.

Procedure FORMB

Initialize q(i)«0, i=1,....m
art(i)«-0,i=1,....m+1
A diag()«0,i=1, ..,m
for i=1,....m—1
k<fmin(i)

A COMPUTATIONAL COMPARISON OF THE NETWORK SIMPLEX METHOD 25

while k50 do
node «maxnode(k)
if node <0 then

node = —node

art(node)« art(node)— D}

art(i)«ar(i)4- D2
else

art(node)« art(node) + D3

art(i)«ari(i)— D}
fi
art(m-+1)«art(m+-1)+ D}

diag(node)«diag(node)+- D}
g(node)«q(node) — D3

diag(i)«diag(i)-+ D2
k<nmin(k)
elihw
q(i)+diag(i)
g(m—+1)<-art(i)

{Compute the ith column of the Cholesky factor
using the information stored in (i), . ,q(m)}

~ rof
g(m-+1)«art(m+1)+D3
{Compute the (m+1,m+1)th element of L.}
Exhibit 4. Pseudo-code to compute columns of B.
4, Test Problems, Computational Comparison and Conclusions

Test Problems
The Network Generator NETGEN [9] was used to generate the test

26 ANDREW ARMACOST AND SANJAY MEHROTRA

set. The random seed 13502460 was used to generate all the problems.
Three classes of problems were generated: assignment problems, trans-
portation problems, and pure minimum cost network flow problems. The
number of nodes in the network were either 100,200, or 400, and the number
of arcs varied as a percentage of the number of nodes. This allows us to
observe the behaviour of NETSIM and ASCALE on the basis of problem
class, number of nodes and number of arcs. The actual size of these prob-
lem is shown in Tables 1 to 3, respectively.

The number of nodes, number of arcs, number of source nodes, number
of sink nodes, total supply and the objective value of the generated prob-
lems are given in Columns 2, 3, 4, 5, 6 and 7, respectively. All problems
were generated by allowing the cost to vary between —10 and 100.

Computational Comparison

The NETSIM and ASCALE were implemented in Fortran 77. All
floating point operations were performed in double precision. All runs
of NETSIM and ASCALE were made on a VAX 8650. Source codes were
compiled with highest optimization level.

TABLE 1—SIZE OF THE ASSIGNMENT PROBLEMS

Problem Nodes Arcs Sources Sinks Supply Objective
1 100 150 50 50 50 1652
2 100 200 50 50 50 1392
3 100 300 50 50 50 1120
4 100 400 50 50 50 727
5 100 600 50 50 50 372
6 100 800 50 50 50 214
7 200 300 100 100 100 3373
8 200 400 100 100 100 2830
9 200 600 100 100 100 2157

10 £200 800 100 100 100 1578
1 200 1000 100 100 100 1097
12 200 1200 100 100 100 805
13 400 600 200 200 200 7572
14 400 800 200 200 200 6118
15 400 1200 200 200 200 3989

400 1600 200 200 200 2467

=3
(=,

A COMPUTATIONAL COMPARISON OF THE NETWORK SIMPLEX METHOD 27

TABLE 2—SIZE OF THE TRANSPORATATION PROBLEMS

Problem Nodes Arcs Sources Sinks Supply Objective -
17 100 159 50 50 10000 453992
18 100 205 50 50 10000 390535
19 100 303 50 50 10000 222581
20 100 400 50 50 10000 257366
21 100 600 50 50 10000 105715
22 100 800 50 50 10000 117339
23 200 314 100 100 20000 855350
24 200 415 100 100 20000 870133
25 200 610 100 100 20000 621836
26 200 810 100 100 20000 690686
27 200 1010 100 100 20000 433388
28 200 1207 100 100 20000 340194
29 400 627 200 200 40000 2096668
30 400 827 200 200 40000 1649510
31 400 1230 200 200 40000 1273089
32 400 1623 200 200 40000 891325

TABLE 3—SIZE OF THE PURE NETWORK PROBLEMS

Problem Nodes Ares Sources Sinks Supply Objective
33 100 157 15 50 10000 1572384
34 100 200 15 50 10000 1192889
35 100 300 15 50 10000 65536
36 100 400 15 50 10000 469192
37 100 600 15 50 10000 331997
38 100 800 15 50 10000 144349
39 200 318 30 100 20000 2798560
40 200 411 30 100 20000 2756577
4] 200 600 30 100 20000 1659636
42 200 800 30 100 20000 760791
43 200 1000 30 100 20000 942029
44 200 1200 30 100 20000 654223
45 400 637 60 200 40000 5526523
46 400 806 60 200 40000 4571204
47 400 1200 60 200 40000 2972503
48 400 1600 60 200 40000 1929708

28 ANDREW ARMACOST AND SANJAY MEHROTRA

Tables 4 to 6 show run-time information for NETSIM and ASCALE.
For NETSIM, the CPU time in seconds, the number of iterations completed
in Phase 1, the total number of iterations in both Phases 1 and 2 are given
in Columns 2, 3 and 4, respectively. For ASCALE the CPU time in
seconds, the number of nonzeros in the Cholesky factor, L, and total number
of iterations are shown in Columns 5, 6 and 7, respectively. Finally, the
ratio of the two CPU times (ASCALE : NETSIM) is given in Column 8
to provide a comparison of the two codes for each of the problems.

At termination the dual objective value for all the problems was accurate
to 7 significant digits. A feasible solution for all the problems was found
after one iteration. Also of concern to us is the ability of the affine scaling
code to recover the primal solution. At the termination of ASCALE esti-

~

mates of primal solution x*, 4#* are obtained as follows:

X* = DATdy,

TABLE 4—PERFORMANCE OF NETSIM AND ASCALE ON ASSIGNMENT
PROBLEMS

NETSIM ASCALE CPU Ratio
Problem ASCALE:
CPU Phl Total CPU Nonz Total NETSIM

(Sec.) Iter. Iter. (Sec.) (@) Iter.

1 0.13 121 178 0.27 392 15 2.08
2 0.16 112 195 0.48 657 16 3.00
3 0.25 114 296 0.91 1064 16 3.64
4 0.23 109 311 1.83 1365 17 7.96
5 0.30 94 355 2.31 1883 18 7.70
6 0.31 89 370 3.10 2380 17 10.00
7 0.40 252 374 0.93 1054 16 2.30
8 0.55 252 518 2.18 2080 17 3.96
9 0.78 231 649 4.46 3360 18 5.72
10 0.78 257 739 6.40 4316 17 8.21
11 0.90 224 783 9.81 5343 18 10.90
12 1.04° 223 878 13.66 6770 17 13.13
13 1.37 526 866 3.26 3060 17 2.38
14 2.20 550 1317 10.96 6398 17 4.98
15 3.00 540 1870 32.53 12292 18 10.84
16 3.20 497 1743 45.70 15205 19 14.28

A COMPUTATIONAL COMPARISON OF THE NETWORK SIMPLEX METHOD 29

TABLE 5--PERFORMANCE OF NETSIM AND ASCALE ON TRANSPORTATION
PROBLEMS

NETSIM ASCALE CPU Ratio
Problem ASCALE:
CPU Phi Total CPU Nonz Total NETSIM
(Sec.) Iter. Iter. (Sec.) (L) Iter.

17 0.13 134 189 0.36 42 17 2.76
18 0.17 153 222 0.63 704 19 3.71
19 0.26 153 291 1.30 1171 20 5.00
20 0.30 140 345 2.45 1481 19 817
21 0.31 139 370 2.9 2034 20 9.55
2 0.40 140 394 4.13 2486 20 10.33
23 0.46 264 413 1.16 1125 20 2.52
24 0.58 330 525 2.57 2031 20 4.43
25 1.04 295 811 7.08 3909 21 6.81
26 0.98 295 802 15.65 5708 24 15.97
27 1.02 299 765 17.24 6221 23 16.90
28 1.16 305 412 23.33 7078 26 20.11
29 1.54 547 881 3.81 3170 18 2.47
30 2.26 650 1219 14.97 6304 2 6.62
3l 3.84 759 1786 48.12 12383 24 12.53
32 3.2 645 1773 T1.72 17035 23 19.28

and

A { (D2A4Tdy),, if (D*ATdy), > 0
X* =

0, otherwise.

Here D and dy are the corresponding vectors used at the last iteration of
ASCALE '

Second column of Tables 7, 8 and 9 provide the normalized non-
negativity violation min {;;"/M;*"}. The third column of these tables give
maximum normalized violation in the complementary slackness max
{| x*(c—ATa¥), | [x*llle—ATx4[}. The fourth column of these tables

give the normalized error in the feasibility of primal solution max

30 - ANDRBEW ARMACOST AND SANJAY MEHROTRA

TABLE 6—PERFORMANCE OF NETSIM AND ASCALE ON NETWORK
FLOW PROBLEMS

NETSIM ASCALE CPU Ratio
Problem ASCALE:
CPU Ph-1 Total CPU Nonz Total NETSIM
(Sec.) Iter. Iter. (Sec.) L) Iter.

33 0.12 124 147 0.38 325 22 3.17
34 0.18 126 207 0.54 481 22 3.00
35 0.24 121 258 0.83 824 19 3.46
36 0.25 120 267 1.73 1071 22 6.92
37 0.31 118 391 2.46 1535 23 7.94
38 0.39 119 403 2.39 1391 25 6.13
39 0.38 233 325 1.03 89;1 21 2.
40 0.51 372 468 2.08 1428 25 4.08
41 0.76 290 631 4.67 2551 26 6.14
42 0.89 278 719 6.12 3389 21 6.87
43 0.92 274 809 8.73 4254 22 9.49
44 1.11 264 855 10.61 4455 23 9.56
45 1.29 490 738 3.95 2624 22 3.06
46 2.06 563 1064 10.58 4327 28 5.14
47 2.72 579 1340 29.07 8570 27 10.69
48 3.74 540 1896 39.91 11507 23 10.67

A
{(6—Ax*),/l 6|1 }. And finally the last column of these tables give the

A
primal value ¢Tx* recorded at the termination. The results in these
table confirm the observation made in [1] that typically primal solutions
can be obtainzd at the termination of dual affine scaling algorithm.

The following conclusions are drawn from the results reported in Tables
4 to 9.

+ The results indicate that the number of iterations required to satisfy
termination criterion grow very moderately with the complexity of
the problems. The termination criterion in ASCALE was satisfied
after 15 to 19 iterations for assignment problems, 17 to 26 iterations
for transportation problems and 19 to 28 iterations for the minimum

A COMPUTATIONAL COMPARISON OF THE NETWORK SIMPLEX METHOD 31

TABLE 7—QUALITY OF PRIMAL SOLUTIONS FOR ASSIGNMENT PROBLEMS

o) [Tae—aran, 1, f)
Problem Min { _' % Max{ _ Max ‘ (b—A&*) ? cTH*

Ui Llele—amaty J LM
1 -3.83e-14 ~3.03e-09 3.83¢-14 - 1652.0
2 -3.06e-15 ©3.97e-10 3.19e-15 1392.0
3 -6.77e-15 4.56e-10 1.48e-14 11200
4 -2.91e-13 2.77e-10 2.92e-13 772.0
5 -4.05e-15 7.55¢e-11 5.00e-15 372.0
6 -2.51e-15 8.57e-11 4.99e-15 214.0
7 7.45¢e-15 5.58e-10 8.06e-15 3373.0
8 -1.16e-15 1.89e-10 1.50e-15 2830.0
9 -2.21e-14 2.04e-10 3.62e-14 2157.0
10 -2.33e-14 3.00e-10 2.65e-14 1578.0
11 -7.18e-15 - 1.63e-10 1.28e-14 1097.0
12 -4,55e-14 1.11e-10 5.71e-14 805.0
13 -1.82e-12 6.69¢-10 1.82e-12 7572.0
14 -5.04e-14 3.72e-10 6.50e-14 6118.0
15 -1.56e-12 1.48e-10 7 1.57e-12 3989.0

16

-2.35e-12 4.38e-11 2.35e-12 2467.0

cost network flow problems. Also the increase in the number of
iterations required by ASCALE was moderate with the size of prob-
lems within each problem class.

. The performance of ASCALE is directly linked with the number of
nonzeros in L. For a fixed number of nodes, an increase in the num-
ber of arcs results in an increase in the number of nonzeros in B, and
consequently in L. Loosely speaking, the increase in average number
of nonzeros in B increases the total work to compute L between linearly
and quadratically.

On the other hand, the work required by NETSIM seems to grow only
linearly with the increase in the number of arcs (due to partial pricing).
Therefore, for all the network problems, one expects to see an in-
creasing trend in the ratio of CPU times required by the two algorithms,

32 ANDREW ARMACOST AND SANJAY MEHROTRA

TABLE 8—QUALITY OF PRIMAL SOLUTIONS FOR TRANSPORTATION

PROBLEMS
(%) [Fatemarary,) r]
Problem Min { ___ % Max - Max -! (i—’ﬁ)i S cTE*
UM URlle—amaty) L
17 -1.04e-12 4.21e-10 1.13e-12 453992.0
18 . -1.63e-10 7.46e-10 1.63e-10 390545.0
19 -6.16e-11 1.86e-10 6.17e-11 222581.0
20 «2.43e-13 1.60e-10 2.90e-12 257366.0
21 -7.45e-12 1.62e-10 ‘ 8.88e-12 105715.0
22 -5.32e-12 4.21e-11 5.34e-12 117339.0
23 <1.43e-13 1.36e-10 ‘ 1.44e-14 855350.0
24 -1.63e-11 2.78e-10 1.70e-11 870133.0
25 -4.15¢-10 . 5.44e-10 4,15¢-10 621835.9
26 -6.05e-14 2.94e-11 6.20e-14 390686.0
27 -2.48e-12 6.84e-11 2.51e-12 433387.9
28 -3.99¢-12 6.06e-11 7.85e-12 340194.0
29 -3.67¢-10 6.11e-10 3.67e-10 2096668.0
30 -2.56e-11 8.05e-11 2.56e-11 1649510.0
31 -1.09e-11 8.21e-11 2.24e-11 1273089.0
32 -3.28e-11 - 4.80e-11 3.32¢-11 891325.0

as the network gets richer in arcs. This is clearly visible from the
results in Tables 4,5 and 6.

It is interesting to observe that the ratio of times required by NETSIM
and ASCALE also grow as the number of nodes (m) is increased,
while keeping n/m fixed. This is because with an increase in m the
average work required to update the information at each iteration of
NETSIM does not grow as fast as the number of nonzeros in L.

An important observation from the results is that for very sparse
network problems the ratio of CPU times required by ASCALE and
NETSIM is small. This is despite the fact that all the computations
in NETSIM heavily exploit the integrality (£1) of data in 4 and
additional network properties. This property is lost in ASCALE

A COMPUTATIONAL COMPARISON OF THE NETWORK SIMPLEX METHOD 33

TABLE 9—QUALITY OF PRIMAL SOLUTION FOR NETWORK FLOW

PROBLEMS
(%) [Tse—ara,) .
Problem Min < — » Max > Max k (b—A%*); b T4
U) Leie—amaty L
33 4.92¢-14 9.54¢-10 5.04e-14 1572384.0
34 3.31e-11 9.78¢-10 5.41e-11 1192889.0
35 -9.12¢-11 7.88¢-10 9.70e-11 655636.0
36 4.81e-12 3.07¢-10 4.85-12 469192.0
37 10212 . 8.45e-11 1.09e-12 331997.0
8 -7.86e-12 9.25¢-11 7.86e-12 144349.0
39 -1.47e-11 5.86e-10 1.48e-11 2798560.0
40 -2.08e-09 4.17-10 2.08¢-09 2756577.0
41 -1.02e-10 5.14e-10 1.02-10 1659635.0
42 -6.54e-12 1.30e-10 6.64e-12 760791.0
43 -3.656-09 1.01e-09 3.65¢-09 942029.1
44 4.72e-11 1.41e-10 4.94¢-11 654223.0
45 -2.41e-11 4.88e-10 2.4le11 5526525.0
46 -1.12e-10 1.09¢-10 1.21e10 4571204.0
47 -6.19¢-10 1.35¢-10 6.20e-10 2972503.0
48 -2.39e-10 3.27¢-10 2.41e-19 1929707.0

when performing computations involving L. Nonzeros in L are real
numbers.

« The network problems for which results are reported in this paper
are small in size. We solved some larger problems as well. On a
pure network problem with 1000 nodes and 5000 arcs ASCALE was
slower than NETSIM by a factor of 80. The number of nonzeros
in L for this problem were about 120,000, an average of 120 per column
of L. However, for similar problems with 1000 nodes and 1500
arcs and 5000 nodes and 7500 arcs, ASCALE was slower than NET-
SIM by a factor less than 3. This supports earlier conclusions.

Concluding Remarks

We find that the performance of affine scaling method computing com-
plete Cholesky factor could deteriorate as the networks get richer in the

34 ; ANDREW ARMACOST AND SANJAY MEHROTRA

number of arcs, and as the network gets bigger while keeping arc/note ratio
fixed. The growth in the nonzeros in L with an increase in the number of
arcs (with fixed m) can possibly be controlled by using a preconditioned
conjugate gradient method to approximately solve Bdy = b. We believe that
the work in Mehrotra [10] would be useful in this direction. Karmarkar
and Ramakrishnan [7] have reported some results using this approach on
randomly generated network flow problems on square grid graph with 10,001
nodes and 20,000 arcs and 40,001 nodes and 80,000 arcs. It is expected

that the work involved in computation of a preconditioner L and in the
implementation of preconditioned conjugate gradient method is more paral-
lalizable than the work in updates of simplex method. Also the finding that
the performance of affine scaling method is within a small factor of the per-
formance of network simplex method is very encouraging. This indicates
the possibility of designing hybrid methods in the future.

REFERENCES

[1] ApLer, I, KARMARKAR, N., RESENDE, M. AND ViEGa, G. (1989), Animplementation
of Karmarkar’s algorithm for linear programming, Mathematical Programming,
44(3), 297-336.

[2] ApLEr, 1., KARMARKAR, N., REsENDE, M. AND VieGA, G. (1989), Data structure
and programming techniques for the implementation of Karmarkar’s algorithm,
ORSA Journal on Computing, 1(2), 84-106.

[3] Barnes, E.R. (1986), A variation of Karmarkar’s algorithm for solving linear
programming problems, Mathematical Programming, 36, 174-182.

[4] CuvATAL, V. (1983), Linear Programming, W.H. Freeman and Co., New York.

[5] DikiN, LI (1967), Iterative solution of problems of linear and quadratic program-
ming, Soviet Math. Dokl. 8, 674-675.

6] GeorGe, A. AND Liu, 1. (1981), Computer Solutions for Large Positive Definite
Systems, Harcourt Press,. Princeton, NIJ.

* [7] KARMARKAR, N, AND RAMAKIRsHNAN, K.G., Implementation and Computational
Results of the Karmarkar Algorithm for Linear Programming Using an Iterative
Method for Computing Projections, Extended Abstract circulated during 13th
International Symposium on Mathematical Programming, Tokyo, Japan, 1988,

8] AronsoN, J., BArRR, R., HELGAsoN, R., KENNINGTON, J., LoH, A. AND Zaki, H.
The Projective Transformation Algorithm by Karmarkar: A Computational
Experiment with Assignment Problems, Technical Report 85-OR-3, Department of
Operations Research, Southern Methodist University, 1985.

[9] KLingMAN, D., Narier, A. AND STUTZ, J. (1974), NETGEN: A program for gene-
rating large scale capacitated assignment, transportation and minimum cost fow
network problems, Management Science, 20(5), 814-821.

A COMPUTATIONAL COMPARISON OF THE NETWORK SIMPLEX METHOD 35

[10] MeuroTRA S., Implementations of Affine Scaling Methods : Approximate Solu-
tions of Systems of Linear Equations Using Preconditioned Conjugate Gradient
Method, TR 89-04, Department of IE/MS, Northwestern University, Evanston,
IL 1989.

{l1] Monma, C.L. AND MortoN, A.J. (1987), Computational experience with a dual
affine variant of Karmarkar’s method for linear programming, 6(6), OR Letters,
261-267, 1987.

{12} MurTAGH, B.A. AND SAUNDERsS, M.A., MINOS 5.0 user’s guide, Technical report
SOL 83-20, Department of Operations Research, Stanford University, Stanford,
California, 1983.

[13) Paige, C.C. aAND SaUNDERS, M.A. (1982), Algorithm 583 LSQR: Sparse linear
equations and least squares problems, ACM Transactions on Mathematical Soft-
ware, 8(2), 195-209.

{14] Vanoerees, R.J., MEKETON, M.S. AND FreepMmaN, B.A. (1986), A modification of
Karmarkasr's linear programming algorithm, Algorithmica. 1, 395-407.

