Finite Termination and Superlinear Convergence in Primal-Dual Methods

Sanjay Mehrotrat

Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, IL 60208-3119, U.S.A.

Technical Report 91-13

July 1991

Abstract

This paper studies two questions important for developing implementations of primal-dual in-
terior point methods. (i) When to jump to an optimal solution from a near optimal solution? (ii)
What is the role of asymptotic superlinear convergence in these methods?

The empirical evidence reported in this paper suggests that typically we detect superlinear
convergence after the optimal face and a point on it could have been identified. However, superlinear
convergence property serves well as an indicator for deciding when to try for the optimal face.

t Supported in part by a grant from the GTE Laboratories and by the grant CCR-9019469 from
the National Science Foundation.

Introduction

It is well known that an optimal solution of a linear program can be obtained in polynomial
time, if the problem data is rational. Recently, Mehrotra and Ye[16] showed that the optimal face of
a linear program can be identified in polynomial time using an interior point method. Furthermore,
a point in the interior of this face can be generated efficiently.

In addition to being an interesting combinatorial problem, the ability to identify optimal face
has several direct uses in the context of interior methods. First, it could serve as a termination
criterion with in the framework of the implementations of these methods. In addition, the sensitivity
analysis proposed by Adler and Monteiro [1] assumes its knowledge.

The Mehrotra and Ye approach uses an indicator to partition variables and generates a point
(optimal solution) in the interior of the optimal face. Computational results given in [16] showed
the practical usefulness of identifying optimal face.

A question that remained unanswered in their work is: when to partition variables in practice?

In a class of interior point methods, namely the primal-dual methods, practical implementations
indicate that asymptotically the variables converge superlinearly. A theory explaining the super-
linear convergence behavior was developed by Zhang, Tapia and Dennis [25]. More recently, Zhang
and Tapia [27] have developed a polynomial time primal-dual method which is shown to be super-
linearly convergent under certain conditions. However, the importance of superlinear convergence
is often questioned for polynomial algorithms since they also have finite termination property.

The natural question to ask is: in practice do we observe superlinear convergence before iden-
tifying the optimal face?

This paper addresses the two questions asked above. It provides computational evidence in-
dicating that typically a point on the optimal face can be generated before we begin to observe
superlinear convergence. This indicates that the superlinear convergence behavior observed in
primal-dual methods is a consequence of a solution being close to the optimal face. However, if we
do not use the correctly identified partition to stop, and let the algorithm run, it begins to converge
superlinearly almost immediately.

The latter suggests a non-traditional use of superlinear convergence property. We can use super-
linear convergence as an indicator for deciding when to partition variables. We give computational
evidence on this.

This paper is organized as follows. In the next section we state several results on the optimal
face identification problem and the superlinear convergence properties in primal-dual methods. In
Section 2 we outline the algorithm we implemented for our experiments. Section 3 presents and
discusses computational results on the face identification problem and the superlinear convergence
observed in practice.

1. Optimal Facet and Superlinear Convergence

We are interested in solving a linear program (LP):

min Tz
s.t. Az = b, z >0,

and its dual (LD):
max bTy
s.t. ATy+s=¢, s>0,

where A € R™X1 ¢ ¢ R®, and b € R™. Feasible solutions z* and (y*,s*) respectively for (LP)
and (LD) are optimal, if and only if,

gis; =0 for j=1,2,..,n

1.1 A Generic First Order Primal-Dual Method

We first describe a generic primal-dual method (e.g., see Kojima et al. [10], Lustig, Marsten
and Shanno [11], McShane, Monma and Shanno [12], Mehrotra [13], Mizuno, Todd and Ye [17],
Monteiro and Adler [18], and Zhang, Tapia and Dennis [25]). Several convergence results are stated
for this method later in this section.

Let us assume that at the beginning of iteration k a feasible solution zF > 0, vk, s > 0
is available. For simplicity we define z(1) = zF, y(1) = v*, s(1) = sk. Let X(1) = diag(z(1)).
We follow similar notation to define diagonal matrices for other variables. Let 8* € [0,1) and
7% € (0,1). Let u* = BkzFs* [n and e be a vector of all ones.

We define a system of non-linear equa,tions" as

X(a)s(a) = aX(1)s(1) + (1 — a)u*e,
ATy(a) + s(a) = ¢, (1.1)
Az(a) = b.

The first derivative of (1.1) at @ = 1 is used as a search direction. Differentiating (1.1) with
respect to o at o = 1 (for simplicity a is suppressed from the argument) gives

S X 0 T XFksk — uke
I AT § I = 0 . (1.2)
A 0 0 } 0

After the first derivative is computed using (1.2) a new solution is obtained as follows
gkl — ok — tFaki,
skl gk _ rkoks
yr1 — yF — haly,

where
= min(1, min(z¥/%;| &; > 0)),
= min(1, min(s¥/5;| 5; > 0)).

1.2 Results on the Optimal Face Identification Problem
Let o(z) represent the index set of positive components in z > 0, that is,
o(z) = {¢:2; >0}.

Among all the optimal solutions for (LP) and (LD), there exists at least one optimal solution pair
(z*,s*) which is strictly complementary, that is,

a(z*)No(s*) =0 and o(z*)Uo(s*)={1,2,...,n}. | (1.3)

for every complementary solution (z*,s*). Moreover, o(z*) and o(s*) remain invariant for every
strictly complementary solution (z*, s*). Hence, we can denote o(z*) by o* for (LP) and let * =
{1,...,n} \ o*. One can further show that

o(z*) C o* and o(s*)C 5"
for every complementary solution (z*,s*). Thus, the optimal face for the primal is
Op={z:Az=0b,22>0, z; =0, for j € 5"},
and one for the dual is
Os={y:ATy+s=c, s;=0, for j € o*}.
This property has been known since the early days of linear programming (Goldman and Tucker

[7]). A proof can be found in the recent book by Schrijver ([20], pp. 95-96). The following results
were proved by Mehrotra and Ye [16].

Theorem 1. Let {(z*,s*)} be generated in an interior point method. At iteration k, let
of = {j: 25 > st} (1.4)

Let the data in (LP) be rational, and L be its input length. For all the algorithms satisfying the
results of Giiler and Ye [9], if (z¥)Ts* < 273L, then

g =0.

Theorem 2. Let us assume that the sequence (z*,sF) — (z*,s*) is generated in a primal-dual

algorithm. Define
ofF ={j:]zf‘“ - zfl/zf < I.s;F+1 - 3;?[/3?}. (1.5)

Then for all the algorithms satisfying the results of Giler and Ye [9], there exists a K such that for
allk > K

The following criterion, which is derived from (1.4) and (1.5), was used to partition variables
for the computational results in [16]:

oF={j: sf <107 or |:1:;?“"l - a:;‘[/:z:;c < |s§+1 - sfl/sf}. (1.6)

The use of relative change in variables as an indicator is similar to Tapia’s indicator (see El-
Bakry, Tapia and Zhang [3]). Mehrotra and Ye also gave the following approach for finding a
solution in the interior of ©, and ©4. Solutions obtained from this approach are used to verify
optimality of a partition.

For simplicity, let those columns in A corresponding to ¢* form matrix B and the remaining
columns form matrix N. Let us represent the corresponding variables by zp and zx, respectively.
Note that we have not made any assumptions on B. To find a point in the interior of ©,, we solve

system of linear equations:
BAzg =b— Bzk = Nz§; (1.7)

for Azp. Linearly dependent rows and/or columns in (1.7) are deleted during the Gaussian elimi-
nation. The elements of Azp corresponding to the linearly dependent columns are set to zero. A
solution is then generated as zj = xg + Azpg, z3 = 0. A point in the interior of ©4 can be found

by considering the problem
BTAy =cpg— BTyF = sf;,

and using y* = y* + Ay for computing s = ¢ — ATy*. Linearly dependent rows and/or columns
of BT are dropped as they are identified. The components of Ay corresponding to the linearly
dependent columns are set to zero.

1.3 Results on Superlinear Convergence

Zhang, Tapia and Dennis [25] proved the following result (see also Zhang, Tapia and Potra [26]).

Theorem 3. Let {(z*,s*)} be generated by the generic primal-dual algorithm and (z*,s¥) —
(z*,). If the following assumptions hold,

(i) strict complementarity,
(ii) the sequence x”Ts"/(n min(z¥s¥)) is bounded,
(iii) 7% — 1 and g% — 1,
then (z*,s*) solves (LP) and the sequence {z*s*} converges to zero Q—superlinearly.

Recently, Zhang and Tapia [27] showed that it is possible to develop a primal-dual algorithm for
which assumptions (ii) and (iii) in Theorem 3 are satisfied for appropriate choices of parameters.

2. A Practical Interior Point Method

In this section we describe a practical interior point method which we used for our experiments.
This method is discussed in more details in Mehrotra {13, 14]. The description given here is for

completeness. This description assumes problems in the form (LP). For our handling of bounds
and free variables see [14] and [15] respectively. The method developed here uses a second order
approximation of an appropriately defined trajectory. This method was used for all the results
reported in this paper.

Let us assume that at iteration k a solution z(1) = z*¥ > 0, y(1) = y*¥, s(1) = s* > 0is available.
This solution may be infeasible. Let &, = Az(1) — b and & = ATx(1) + s(1) — c. Now consider the
trajectory defined by

X(o)s(e) = aX*s* + a1 — a)?ue,
ATx(e) + s(a) =c+ aé,, (2.1)
Az(a) =b+ af;.

The first derivative of this trajectory at @ = 1 (value of & is suppressed from the argument) is

obtained by solving
& -X-18 AT &\ _[&-s '
n(5)=[7 V106 (57), 2

and computing $§ = & — ATy. This derivative is used to compute the centering parameter p. To
compute p, we first find

al = min(l, min{z;(1)/2; | #; > 0}),
al = min(1,min{s;(1)/$; | 8 > 0}),
and then compute “
B = (z* - ala)T(sF - a}é)/szsk.

We then take

e { 332+7 sk [if (112 + 8l12) /2T s* < 1.1 (2.3)

33z*T sk /n min(el,al) otherwise.

The centering parameter u computed from (2.3) is used in (2.2) for computing the second derivative.
This derivative is obtained by solving

H(i‘)_<2uX"—le—-2X.§) :
g) 0 ’

and §(1) = —AT§(1). The computations of first and second derivative require us to factor H once
and use these factors to solve for two different right hand sides. The approach we used to compute
the factors of H is described in Fourer and Mehrotra [4].

First and second derivatives are used in a Taylor polynomial to generate a step direction. The
maximum step in the Taylor polynomial is first found by using

a; = min(1l,max{a | z(1) — az + .5a%% > 0}),
a, =min(1,max{a | s(1) - asé+ .5a23 > 0}).

The step direction d, dy, d, is then computed from

— . 2--
dy = o0zt — o0,

—_ . 2--
d;, = a,8 - 33,

dy, = o,y—aj.

6

The step length is computed by finding

I, =argmin{z¥/(d;); | (dz)i >0,i=1,2,...n},
I, =argmin{sf/(ds); | (ds)i >0,i=1,2,...n},

first, and then computing f;, f, such that

(zﬁ — fo* (dx)lz)(sﬁ — fsx(ds),) = (!Bk - dz)T(sk —ds)/"Ya,
(X = fo * (do)i,)(85 = fo % (da)r,) = (2% — do)T(s* — ds)/n7a.

Now we take
fz := max(fz,7s),
fs := max(f,,7¢)-

vt = .9 and 74 = 1/(1 — 7¢) is used for all problems. The new iterate is obtained as

gkl — gk — fxdm
3k+1 At sk - fsds’
yk+1 At yk - fsdy-

Primal and dual starting solutions are generated by using the solutions of the least squares
problems:
min ||z]|

st. Az =), - (24)

and '
min [|s]|

st. ATr+s=c. (25)

Let #, and 7, § be the solution of (2.4) and (2.5) respectively. We take §; = max(—1.5*min{Z;},0)
and 8, = max(—1.5* min{3;},0). Now we compute

z £46.¢)T (5+6se

0z =6+ .5+ Lzru_li:l(iﬁ&) ,

s _ F+6-e)T(54+6,e

63 = 63 + .5% L‘Z’W‘!—H .‘=1(i“+6‘) ’
and take # + 8ye,%,3 + 8¢ as primal and dual starting points respectively. The least-squares
problems (2.4) and (2.5) can be solved by using the augmented matrix H.

3. Computational Results

For our experiments we used a full implementation (including problems with bounds) of the basic
algorithm described in the previous section. The research code we used is written in FORTRAN
77. All computational tests were performed on a SPARC-1 Sun workstation. Computational tests
were performed on 86 netlib problems which we solved successfully. Other remaining problems
(Pilot, Pilot87, Dfi001) were sufficiently large for our current computing environment. Table 3.1
provides information on the size of these problems. Problems with bounds and ranges are marked
with B and R respectively. The optimal objective values for simplex method given here are those

reported by Bixby [2]. For all the runs terminated with an optimal face this value was matched to
all digits by both primal and dual solutions.

A complementary solution pair z* and s* is declared optimal if it satisfies

leTz* — bTy*|/(1 + [bTy"|) < €
|Az* — B||/(1 + |[b]}) < €& (3.1)
|ATy* + s* —c|l/(1 + ||e]]) £ €.

€ = ¢ = ¢ = 10712 was used for all the problems in all the runs.

Table 3.2 gives computational results that we have obtained under various settings. These
results are discussed later in this section. The second column of this table gives iteration number
at which we could identify (and verify) the optimal partition for the first time. For this run we
generated a partition using (1.6) at every iteration and tried to generate a feasible interior point
on the primal and dual faces defined by this partition.

In Mehrotra and Ye [16] after (3.1) was satisfied for €* = €} = ¢ = 1078 we tried to find an
optimal face at each iteration. Results from this approach are reported in Column 3. This column
gives the iteration at which the optimal partition was found, and in () the number of attempts
required to identify optimal partition using this approach.

Another run was made to record the superlinear convergence behavior. For this run we masked
the option of identifying the optimal face. We recorded several quantities to observe the behavior of
the algorithm. This included the step for the second order polynomial (e, and a,), and the duality
gap at each iteration. In this case the algorithm was terminated if |cTz* —bTy*|/(1+[bTy"]) < 1014
was satisfied, or if the number of iterations was one more than the number of iteration at which
the optimal face would have been identified for the first time. Columns 5 to 8 of Table 3.2 give
|cTzF — 8Ty*|/(1 + |bTy¥|) recorded at four successive iterations. These are two iterations prior
and one iteration after the iteration at which the optimal face can be identified for the first time.
Actually, we ran the algorithm for an additional few iterations, but the results for several problems
were contaminated with numerical errors, therefore we do not present them here.

Finally, Column 4 gives results with a criterion that tries to make use of the observed superlinear
convergence behavior in deciding the iteration for identifying the optimal partition. For this purpose
we generated a partition (and verified its optimality) if at iteration k the basic algorithm of previous

section satisfied
a; > .95,

as > .95, (3.2)
ghr1T gkt kT gk < 01,

In practice we observe o, — 1 and a, — 1 and a:"“Ts"“‘l/x"Tsk — 0. This is similar to the
observation of Zhang, Tapia and Dennis [25], which led to the basic assumptions for their theory.

We now discuss the computational results in Table 3.2.

The results clearly show that for several problems there is no clear evidence of superlinear (or
fast linear) convergence till the iteration at which the optimal partition could be identified and
verified for the first time. For example the average ratio of best-1/best-2 is 0.27. This hardly
indicates superlinear convergence.

However, the average ratio best/best-1 is 0.05, and best+1/best is 0.02. The average ratio
best+1/best is 0.0068 if we exclude problems finnis, greenbea and nesm. Clearly, at iteration best

8

or best+1 algorithm has begun to converge quickly. This improvement in convergence rate is
reflected by individual problems as well.

From these results we infer that in practice the superlinear convergence is a consequence of
iterates having come sufficiently close to the optimal face.

Checking for an optimal partition at each iteration is not practical. In practice we must use
some indicators to decide when to partition the variables. Interestingly, the criterion based on (3.1)
has worked well on the large number of problems in netlib. However, the choice of eight digits of
precision is arbitrary. For several problems there is no need to wait for eight digits of precision,
while for others (e.g, etamacro, nesm, pilot.we, scsd6) eight digits of accuracy is not sufficient to
verify optimality.

The results obtained from using (3.2) show a marked improvement in the number of attempts
for optimal face for problems etamacro and nesm, and required one less iteration to identify the
optimal partition for 15 problems. These are boeing?2, cycle, grow22, sc105, sc50a, sc50b, scorpion,
scsdl1, ship04l, ship08s, stair, standata, vtp.base, wood1p, woodw. However it took an extra iteration
for seven problems. These are 80bau3b, bnll, d2q06c, etamacro, greenbeb, pilot.we, scsd6. It took
extra two iterations for finnis and nesm. More importantly it always identified the optimal partition
within two iteration of the “best” iteration. The results indicate that (3.2) generally performs just
as well or better than the “eight digit relative precision criterion” based on (3.1).

If we used (3.2), in most cases the optimal partition was identified and verified at the first
attempt. However, for several problems we needed two and for scsd6 we needed three attempts.
This can happen because the algorithm may make large progress at solutions far from the optimal
face.

Conclusions: Computational results show that fast convergence in primal-dual methods occur
after solutions have come sufficiently close to the optimal face. As a result, we can jump to a point
in the interior of the optimal face before benefiting from the fast convergence behavior. However,
we have shown that a criterion based on fast convergence behavior can be developed to effectively
decide when to partition variables.

Name Rows Cols | Nonzeros | BR Objective
25fv47 822 1571 11127 5.5018458883e+3
80bau3b 2263 | 9799 29063 B | 9.872241924le+5
adlittle 57 97 465 2.2549496316e+5
afiro 28 32 88 -4.6475314286e+-2
agg 489 163 2541 -3.5991767287e+7
agg2 517 302 4515 -2.0239252356e+7
agg3 517 302 4531 1.0312115935e+7
bandm 306 472 2659 -1.5862801845e+2
beaconfd 174 262 3476 3.3592485807e+4
blend 75 83 521 -3.0812149846e+1
bnll 644 1175 6129 1.9776295615e+3
bnl2 2325 3489 16124 1.8112365404e+3
boeingl 351 384 3865 | BR | -3.3521356751e+2
boeing2 167 143 1339 | BR | -3.1501872802e+2
bore3d 234 315 1525 B 1.3730803942e+43
brandy 221 249 2150 1.5185098965e+3
capri 272 353 1786 B 2.6900129138e+3
cycle 1904 2857 21322 B | -5.2263930249¢+0
czprob 930 3523 14173 B 2.1851966989e--6
d2q06¢ 2172 5167 35674 1.2278421081e+5
degen2 445 534 4449 -1.4351780000e+3
degen3 1504 1818 26230 -9.8729400000e+-2
e226 224 282 2767 -1.8751929066e+1
etamacro 401 688 2489 B | -7.5571523337e+2
{800 525 854 6235 5.5567956482e+5
finnis 498 614 2714 B | 1.7279106560e+5
fitld 25 1026 14430 B | -9.1463780924e+3
fitlp 628 1677 10894 B 9.1463780924e+3
fit2d 26 | 10500 138018 B | -6.8464293294e+4
fit2p 3001 | 13525 60784 B 6.8464293294e+4
forplan 162 421 4916 | BR | -6.6421896127e+2
ganges 1310 1681 7021 B | -1.0958573613e-+2
gfrd-pnc 617 1092 3467 B 6.9022359995e+6
greenbea 2393 5405 31499 B | -7.2555248130e+6
greenbeb 2393 5405 31499 B | -4.3022602612e+6
growl5 301 645 5665 B | -1.0687094129¢+8
grow22 441 946 8318 B | -1.6083433648e+8
grow7 141 301 2633 B | -4.7787811815e+7
israel 175 142 2358 -8.9664482186e+5
kb2 44 41 291 B | -1.7499001299e+3
lotfi 154 308 1086 -2.5264706062e+1
maros 847 1443 10006 B | -5.8063743701e+4
nesm 663 2923 13988 | BR 1.4076036488e+7

Table 3.1: Problem Data Summary (A-N)

10

Name Rows | Cols | Nonzeros | BR Objective
perold 626 | 1376 6026 B | -9.3807552782e+3
pilot.ja 941 | 1988 14706 B | -6.1131364656e+3
pilot.we 723 | 2789 9218 B | -2.7201075328e+6
pilot4 411 | 1000 5145 B | -2.5811392589%¢+3
pilotnov 976 | 2172 13129 B | -4.4972761882e+3
recipe 92 180 752 B | -2.6661600000e+2
sc105 106 | 103 281 -5.2202061212e+1
8c205 206 | 203 552 -5.2202061212e+1
sc50a 51 48 131 -6.457507705%¢+1
sc50b 51 48 119 -7.0000000000e-+1
scagr25 472 { 500 2029 -1.4753433061e+7
scagr? 130 | 140 553 -2.3313898243e+7
scfxm1 331 | 457 2612 1.8416759028e+4
scfxm2 661 | 914 5229 3.6660261565e+4
scfxm3 991 | 1371 7846 5.4901254550e+4
scorpion 389 | 358 1708 1.8781248227e+3
scrs8 491 | 1169 4029 9.0429695380e+2
scsdl 78 | 760 3148 8.6666666743e+1
scsd6 148 | 1350 5666 5.0500000078e+1
scsd8 398 | 2750 11334 9.0499999993e+2
sctapl 301 | 480 2052 1.4122500000e+-3
sctap2 1091 | 1880 8124 1.7248071429%¢e+3
sctap3 1481 | 2480 10734 1.4240000000e+3
seba 516 | 1028 4874 | BR | 1.5711600000e-+4
sharelb 118 | 225 1182 -7.6589318579%¢+4
share2b 97 79 730 -4.1573224074e+2
shell 537 | 1775 4900 B | 1.2088253460e+9
ship041 403 | 2118 8450 1.7933245380e+7
ship04s 403 | 1458 5810 1.7987147004e+6
ship08l 779 | 4283 17085 1.9090552114e4-6
ship08s 779 | 2387 9501 1.9200982105e+6
ship12l 1152 | 5427 21597 1.4701879193e+6
ship12s 1152 | 2763 10941 1.4892361344e+6
sierra 1228 | 2036 9252 B | 1.5394362184e+7
stair 357 | 467 3857 B | -2.5126695119e+2
standata 360 | 1075 3038 B | 1.2576995000e+3
standmps 468 | 1075 3686 B | 1.4060175000e+3
stocforl 118 111 474 -4.113197621%e+4
stocfor2 2158 | 2031 9492 -3.9024408538e+4
tuff 334 | 587 4523 B 2.9214776509e-1
vip.base 199 | 203 914 B | 1.2983146246e+5
woodlp 245 | 2594 70216 1.4429024116e+0
woodw 1099 | 8405 37478 1.3044763331e+0

Table 3.1: Problem Data Summary (P-W)

11

Name best | 8(t) | sup(t) [best-2 | best-1 best | best+1
25fv47 25 | 26(1) | 26(1) | 7.5e-05 | 2.1e-05 | 4.5e-07 | 4.2e-12
80bau3b 45 | 45(2) | 46(1) | 1.0e-08 | 7.9e-10 | 2.4e-11 | 5.4e-15
Adlittle 9 | 10(1) | 10(1) | 1.5e-03 | 2.2¢-04 | 7.7e-06 | 8.1e-10
Afiro 5| 7(1) | 7(1) | 7.0e-01 | 1.9e-01 | 3.5¢-02 | 6.3¢-04
Agg 25 | 26(1) | 26(1) | 2.3e-04 | 1.7¢-05 | 6.8¢-07 | 2.1e-11
Agg? 32 | 23(1) | 23(1) | 9.3e-05 | 1.8e-05 | 9.4e-07 | 1.3e-10
Agg3 21 | 21(2) | 21(2) | 8.5¢-06 | 2.2e-09 | 4.3e-15

Bandm 18 | 18(2) | 18(2) | 6.1e-07 | 3.1e-11 | 2.4e-14

Beaconfd 6| 7(1) 7(1) | 2.8e-03 | 4.6e-04 | 3.2e-05 | 6.2e-09
Blend 9 | 10(1) 10(1) | 5.8e-03 | 6.6e-04 | 8.9e-06 | 9.0e-12
Bnll 39 | 29(1) | 30(1) | 4.7e-06 | 4.6e-07 | 8.8¢-09 | 8.2e-12
Bni2 36 | 37(1) | 37(1) | 6.3¢-06 | 5.1e-07 | 3.1e-08 | 1.4e-10
Boeingl 25 | 26(1) | 26(1) | 2.3¢-05 | 3.3¢-06 | 5.3e-08 | 3.9¢-13
Boeing?2 17 | 191) | 18(1) | 7.7¢-03 | 5.0e-04 | 3.9¢-05 | 5.3¢-08
Bore3dd 17 | 18(1) | 18(1) | 1.2¢-02 | 9.1e-04 | 3.5e-05 | 2.9e-09
Brandy 18 | 19(1) | 19(1) { 7.1e-05 | 1.1e-05 [1.2e-07 | 3.9e-13
Capri 18 | 19(1) | 19(1) | 1.7e-03 | 2.5e-04 | 5.4e-06 | 1.2e-11
Cycle 29 | 30(1) | 29(1) | 2.3e-03 | 2.1e-04 | 7.2e-07 | 2.2e-14
Czprob 35 | 35(1) | 35(1) | 2.5¢-06 | 5.1e-08 | 6.5e-14 | 1.2e-15
D2q06c 29 | 30(1) | 31(1) [6.9e-06 | 1.5¢-06 | 2.1e-07 | 5.4e-09
Degen2 11 | 12(1) | 12(1) | 5.1e-04 | 1.4e-04 | 1.8e-06 | 5.4e-12
Degen3 15 | 16(1) | 16(1) | 2.1e-04 | 6.7e-05 | 2.0e-06 | 4.0e-10
E226 20 | 20(1) | 20(1) | 3.4e-06 | 4.6e-07 | 5.7e-12 | 4.6e-15
Etamacro | 33 | 33(4) | 34(1) | 3.0e-09 | 1.1e-09 | 1.3e-10 | 7.5e-14
FfE800 38 | 38(1) | 38(1) | 1.3¢-07 | 4.5¢-08 | 3.1e-10 | 2.7e-15
Finnis 26 | 26(2) | 28(1) | 1.4e-:08 | 3.4e-09 | 8.1e-10 | 2.2¢-10
Fitld 18 | 18(1) | 18(1) | 5.4e-06 | 1.3e-06 | 1.6e-09 | 1.1e-14
Fitlp 18 | 18(1) | 18(1) | 1.7e-06 | 2.1e-07 | 1.6e-11 | 5.6e-14
Fit2d 22 | 23(1) | 23(1) | 3.2¢-05 | 3.5¢-06 | 5.9¢-07 | 3.9e-09
Fit2p 20 | 20(1) | 20(1) | 1.4e-06 | 4.3e-07 | 2.7e-09 | 1.9e-15
Forplan 22 | 24(1) | 24(1) | 5.6e-04 | 2.1e-05 | 4.46-06 | 6.5e-08
Ganges 18 | 18(1) | 18(1) | 1.3¢-06 | 3.3¢-07 | 5.7e-10 | 7.9e-12
Gfrd-pnc | 15 | 16(1) | 16(1) | 6.2¢-04 | 1.7e-04 | 2.8¢-06 | 4.de-11
Greenbea 41 | 41(1) | 41(1) | 8.3¢-08 | 1.5¢-08 | 3.2e-10 | 2.0e-10
Greenbeb 42 | 42(2) | 43(1) | 9.5¢-10 | 6.5e-11 | 1.3e-14

Growl15 10 [11(1) | 11(1) | 1.4e-03 | 2.5¢-04 | 1.6e-05 | 5.2¢-10
Grow?22 12 | 13(1) | 12(1) | 2.2e-04 | 9.6e-05 | 3.6e-07 | 8.8e-15
Grow7 10 | 11(1) | 11(1) | 1.7e-03 | 1.7e-04 | 5.6e-06 | 2.9e-10
Israel 25 | 25(2) | 25(1) | 7.3e-08 | 2.0e-09 | 4.0e-13 | 1.4e-15
Kb2 17 | 19(1) | 19(1) | 2.7e-04 | 2.8¢-04 | 4.4e-05 | 2.4e-06
Lot 13 | 14(1) | 14(1) | 7.76-:08 | 5.8¢-04 | 1.2e-05 | 3.5e-12
Maros 26 | 27(1) | 27(1) | 1.0e-05 | 1.5e-06 | 2.2¢-08 | 2.0e-12
Nesm 36 | 36(5) | 38(1) | 7.9e-11 | 2.6e-11 | 7.6e-12 | 6.1e-12

Table 3.2: Results for facet finding problem (A-N)

12

