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Abstract Recently, a walk-and-round heuristic was proposed by Huang and
Mehrotra [26] for generating high quality feasible solutions of mixed integer
linear programs (MILPs). This approach uses geometric random walks on a
polyhedral set to sample points in this set. It subsequently rounds these ran-
dom points using a heuristic, such as the feasibility pump. In this paper,
the walk-and-round heuristic is further developed for the mixed integer con-
vex programs (MICPs). Specifically, an outer approximation relaxation step
is incorporated. The resulting approach is called a walk-relax-round heuristic.
Computational results on problems from the CMU-IBM library show that the
points generated from the random walk steps bring additional value. Specif-
ically, the walk-relax-round heuristic using a long step Dikin walk found an
optimal solution for 51 out of the 58 MICP test problems. In comparison, the
feasibility pump heuristic starting at a continuous relaxation optimum found
an optimal solution for 45 test problems. Computational comparisons with a
commercial software Cplex 12.1 on mixed integer convex quadratic programs
(MIQPs) are also given. Our results show that the walk-relax-round heuristic is
promising. This may be because the random walk points provide an improved
outer approximation of the convex region.
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1 Introduction

We consider the problem of generating good quality solutions for mixed integer
convex programs (MICPs) of the form:

min c(x) (1)

s.t. x ∈ C :=

x
∣∣∣∣∣∣
gi(x) ≥ 0, i = 1, . . . , m̃
ai(x) = 0, i = 1, . . . , m̂
0 ≤ x ≤ u

 ⊆ Rn, (2)

xj ∈ Z for each j ∈ I, (3)

where x are the decision variables, u is the vector of the upper bounds on x, I
represents the set of integer elements in x, c(·) : Rn → R is a convex objective
function, gi(·) : Rn → R, i = 1, . . . , m̃ are concave, and ai(x) := Aix − bi,
i = 1, . . . , m̂ , where Ai ∈ Rn is as a row vector, and bi ∈ R. We let A :=
[(Ai)i=1,...,m̂] ∈ Rm̂×n, and b := [(bi)i=1,...,m̂] ∈ Rm̂. We assume that the set C
is bounded, and it has a nonempty relative interior.

Quickly finding a good quality solution of mixed integer programs is im-
portant for multiple reasons. A branch-and-cut algorithm uses available fea-
sible solutions to efficiently prune segments of the search tree. Additionally,
an improved quality solution allows for early termination of the algorithm if
the desired tolerance is met. Hence, significant research effort has been spent
towards developing different heuristics for finding a quality solution, particu-
larly for the general mixed integer linear programs (MILPs). Among the known
heuristics, the feasibility pump (FP) heuristic [15] is known to perform well
for the unstructured problems. For a survey of the progress towards solving
MICPs, see [17].

In a recent paper (Huang and Mehrotra [26]) we proposed a walk-and-round
heuristic that combines the use of random walks [27,29,30,36] with a rounding
heuristic for generating feasible solutions of MILPs. The FP [22] heuristic was
used for the rounding step. The walk-and-round heuristic generates points in
a polytope using a random walk. The walk is started from an interior solution,
typically from near the log-barrier center of the polytope. It then attempts to
round a random point to a feasible integer solution using the FP heuristic. In
theory, the points generated after a sufficient number of random walk steps is
known to follow a nearly uniform distribution on the feasible set [27,29,30,36].
Consequently, in theory the walk-and-round heuristic explores the continuous
relaxation set by uniformly sampling on the set.

The FP heuristic was initially proposed by Fischetti et al. [22], and was
later extended to mixed integer nonlinear programs (MINLPs). Fischetti et
al. [22] showed that the FP heuristic is effective in generating feasible solutions
for mixed binary linear problems (0-1 MILPs). This led to several subsequent
papers for general MILPs [7,10,13,24]. In the context of MICPs, Bonami and
Gonçalves [16] and Abhishek et al. [6] have shown that the basic principle of
the FP heuristic can be used to find good solutions of MICPs in reasonable
computational times. Bonami et al. [15] proposed a different variant of the
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FP heuristic for MICPs that is based on outer approximation (OA) of the
problem constraints. D’Ambrosio et al. [18,19] extended the FP for general
MINLPs.

In (Huang and Mehrotra [26]) we adapt the hit-and-run walk [29,30,36]
and Dikin-type walks [27]. Instead of taking a long walk to comply with the
theory of generating a uniformly sampled point, only a few random walk steps
are taken, and the resulting point is rounded. Additionally, FP is terminated if
it fails to find a feasible integer solution within a specified termination criteria;
and a new random point is generated to start another FP search. If a feasible
integer solution is found, an objective constraint is used to cut off this feasible
integer solution, and the method is restarted. The computational experiments
in [26] showed that for a large number of test problems, an improved feasible
solution is generated from the walk-and-round heuristic, when compared with
the solution generated from the standard FP heuristic in the same amount of
run time.

The goal of the current paper is to develop the walk-and-round heuris-
tic for MICPs, and study its performance. Specifically, the use of an OA to
the convex constraints is incorporated in the walk-and-round framework. The
main modification to the standard FP approach for MICPs is that the OA
information is generated at the points obtained from the random walk and
subsequent FP points. The resulting heuristic is called the walk-relax-round
heuristic. The walk-relax-round approach strategically reuses (or abandons)
the generated OA constraints in the subsequent FP search, based on the qual-
ity of the current incumbent solution or the number of random walk steps.
This heuristic is implemented in a software package named iOptimize. We
test this walk-relax-round heuristic on 58 convex MICP instances taken form
the CMU-IBM library Open source MINLP Project [2].

We find that the walk-relax-round heuristic is promising for MICPs. For
most problems, using a similar computational effort, the walk-relax-round
heuristic generates better solutions than FP running at either an optimal
solution, or the analytic center of the continuous relaxation. In particular,
the walk-relax-round heuristic using a long step Dikin walk finds an optimal
solution for 51 out of the 58 test problems. In comparison, FP starting at
the continuous relaxation solution an optimal solution for 45 test problems.
A computational comparison with a commercial software Cplex 12.1 on nine
small and medium size mixed integer quadratic programs (MIQPs) taken from
the Hans D. Mittelmann’s collections [4] shows that walk-relax-round method
generates comparable computational results as Cplex.

The rest of this paper is organized as follows. In Section 2 we outline two
different random walks, namely the hit-and-run walk, and the Dikin walk. In
Section 3 we outline the walk-relax-round heuristic for solving MICPs arising
in practice. In this section we also describe the FP heuristic used for round-
ing the sample points. In Section 4 we provide additional implementation
details. In Section 5 we present and discuss computational results. Here the
random walk performances are compared on a set of general MICPs taken
from the CMU-IBM open source MINLP Project. Computational comparison
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with Cplex 12.1 on MIQPs is also provided in this section. Finally, we con-
clude in the last section.

2 Random walk methods for a general convex set

Let K ⊆ Rn be a full dimensional convex set. A random walk on this set is
a Markov chain that starts at some point x0 ∈ K. At step k, it moves from
xk ∈ K to a randomly chosen point xk+1 ∈ K which depends only on the
current point xk. Using a suitable walk step (see below) xk is near uniformly
sampled over K for a sufficiently large value of k. The number of walk steps
required to obtain a near uniformly sampled point is called the mixing time
of the walk.

Several walks have been studied in the literature. These include the hit-and-
run walk first proposed by Smith [35] (see also [29,30,36]) and the Dikin-walk
proposed by Kannan and Narayanan [27]. The random walks have been used
to approximately count the number of lattice points in a polytope [28], sam-
pling lattice over an integer hyper-rectangle [12], approximating the volume
of a convex body [30], and solving convex optimization problems [14,27,38].
Lovász [29] showed that the hit-and-run walk has O∗(n2R2/r2) mixing time,
where R and r are the radii of the inscribed and circumscribed balls of K.
Kannan and Narayanan’s Dikin walk uses Dikin ellipsoids with a Metropolis
modification. They showed that when started from the log-barrier center, the
Dikin walk for sampling from a full dimensional polyhedral has a strongly
polynomial mixing time. Narayanan [34] extended this walk for sampling from
K equipped with a self-concordant barrier, and showed that the mixing time
of the Dikin walk remains strongly polynomial for this set.

Let wj = uj −xj , j = 1, . . . , n. The log-barrier center of C is defined as the
solution of

min

B(x) := −
m̃∑
i=1

ln gi(x)−
n∑

j=1

lnxj −
n∑

j=1

lnwj

∣∣∣∣∣∣ ai(x) = 0, i = 1, . . . , m̂

 .

(4)

Let X = [diag(xj)j=1,...,n] (resp. W = [diag(wj)j=1,...,n]) be a diagonal ma-
trix whose diagonal elements are xj (resp. wj), and let e = (1, . . . , 1)T . The
gradient and Hessian of the log-barrier at a point x are given by

∇B(x) = −eTZ−1Jg + eTX−1 + eTW−1 and

∇2B(x) = JT
g Z
−2Jg +H +X−2 +W−2, (5)

where Z := [diag(gi(x))i=1,...,m̃] is a diagonal matrix whose diagonal ele-
ments are gi(x), Jg := [∇gi(x)i=1,...,m̃] is the Jacobian matrix, and H :=

−
∑m̃

i=1
∇2gi(x)
gi(x)

.

Although the random walks are naturally described over a full dimensional
set, the set C is not full dimensional due to the presence of equality constraints.
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In some cases one may be able to reformulate C as a full dimensional set using
reduced space reformulations. However, the sparsity of the original problem
data is typically destroyed in such reformulations. Hence, reformulation and
the full dimensional assumption are not practical in general. Following Huang
and Mehrotra [26], in the following we present modified versions of the hit-and-
run [36] and the Dikin walk [27,34] over C. These random walks are modified
from the original walks by adding a step that projects a random direction on
the equality in the sense that they are not described over a full dimensional
convex body

We assume that all these walks are started from near the log-barrier ana-
lytic center. Implementation details for the log-barrier analytic center compu-
tations will be given in Section 4.1.1.

2.1 Projected hit-and-run walk for a general convex set

Given a full dimensional convex set K, the basic scheme of the hit-and-run
walk is as follows:

– Pick a uniformly distributed random line p through the current point.
– Move to a uniform random point along the chord p

⋂
K.

Now, given a general convex set C ⊆ Rn, the projected hit-and-run walk
first computes a random direction d in Rn. Next, it orthogonally projects d onto
the affine space given by the equality constraints Ax = b, yielding direction p.
Finally, it computes a random point from the line segment ` := {x+ λp}

⋂
C as

follows. The line segment ` is computed (in Step 9 in Algorithm 2.1) by using
a simple backtracking line-search heuristic. First, we compute the maximum
and the minimum of the step-size, λ+ and λ−, in the following:

λ+ := max {λ | 0 ≤ x+ λp ≤ u} and λ− := min {λ | 0 ≤ x+ λp ≤ u} .

Next, we check if x+ λ+p ∈ C (resp. x+ λ−p ∈ C). If not, we let λ+ := 0.9λ+

(resp. λ− := 0.9λ−). The procedure is continued until λ+ and λ− become a
feasible step-size. The point xk+1 is picked by computing a uniform random
number on (λ−, λ+) and taking the corresponding step. The projected hit-
and-run walk is summarized in Algorithm 2.1.

Note that the direction p in Step 5 is computed by solving minAp=0 ‖p−d‖2.
It can be verified that the explicit solution to this problem is p = [I −
AT (AAT )−1A]d. If, however, no equality constraint is presented in C, the pro-
jection step (Step 5) is not needed. In this case Algorithm 2.1 reduces to the
original hit-and-run walk.

2.2 Modified Dikin walk for a general convex set

The Dikin walk in Kannan and Narayanan [27] is a “Metropolis” type walk
which picks a move and then decides whether to “accept” the move, or “reject”
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Algorithm 2.1 Projected hit-and-run walk for a convex set

Input: A starting point x0 ∈ C and the maximum number of walk steps kmax.
Output: Random points xk ∈ C, k = 1, . . . , kmax.

1: Set k := 0.
2: while k < kmax do
3: Pick a uniform random direction d in Rn.
4: if m̂ 6= 0 (affine equation exists) then
5: Compute p := [I −AT (AAT )−1A]d.
6: else
7: Set p := d.
8: end if
9: Find the line segment ` := {x | x+ λp, λ ∈ R}

⋂
C.

10: Uniformly pick a random point xk+1 from the line segment `.
11: Set k := k + 1.
12: end while

and stay at the current iterate with a repeated random direction computation.
The move step is picked inside a Dikin ellipsoid centered at the current point
in the convex set.

Huang and Mehrotra [26] proposed a modified Dikin walk by ignoring its
Metropolis step. This modification is made because the computation of deter-
minants as required in the original Dikin walk is not practical when equality
constraints are present. We describe an adaptation of this modified Dikin walk
in the following.

The Dikin ellipsoid of radius r centered at xc ∈ C is defined as follows:

E(xc,∇2B(xc); r) :=
{
x | pT∇2B(xc)p ≤ r2, Ax = b, 0 ≤ x ≤ u

}
,

where p := (x− xc), and B(·) and ∇2B(·) are defined in (4) and (5).
A random direction d ∈ Rn is projected onto the null space ofA(∇2B(xk))−1/2

to compute a random walk direction (∇2B(xk))−1/2d. Equivalently, the fol-
lowing ellipsoid constrained optimization problem is solved:

min pT d (6)

s.t. Ap = 0,

pT∇2B(xk)p = r2.

Following Ye [37, Chapter 3], it can be verified that the optimal solution to
problem (6) is

p =
r(∇2B(xk))−1/2p(x)

‖p(x)‖
, (7)

where

p(x) =
[
I − (∇2B(xk))−1/2AT (A(∇2B(xk))−1AT )A(∇2B(xk))−1/2

]
(∇2B(xk))−1/2d.
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Algorithm 2.2 Modified Dikin walk for a convex set

Input: A starting point x0 ∈ C and the maximum number of walk steps kmax.
Output: Random points xk ∈ C, k = 1, . . . , kmax.

1: Set k := 0.
2: while k < kmax do
3: Generate a random direction d uniformly distributed over a direction

set in Rn.
4: Compute p from (7).
5: Compute a new point xk+1 by using Strategy I or Strategy II.
6: end while

Once p is obtained, a new random point is computed by using one of the
following strategies.

– Strategy I (Short step strategy): Take r to be a constant (we used r =
0.95) and λ uniformly distributed in (0, 0.95]. Let xk+1 := xk + λp.

– Strategy II (Long step strategy): Uniformly pick a random point xk+1

from a line segment ` := {x | x+ λp, λ ∈ R}
⋂
C.

We note that the implementation for Strategy II is similar to that in the
Projected hit-and-run walk (for details, see the discussion on the Step 9 in
Algorithm 2.1).

Finally, we note that if we take ∇2B(xk) = I, then the modified Dikin
walk with Strategy II studied in Algorithm 2.2 reduces to the projected hit-
and-run walk. Hence, the hit-and-run walk does not use information from
the geometric structure of C, whereas the modified Dikin walk uses a local
ellipsoidal approximation to capture this information. The pseudocode of the
modified Dikin walk is described in Algorithm 2.2.

3 Walk-relax-round heuristic for practical MICPs

We now give a description of our walk-relax-round heuristic. Implementation
details are given in Section 4. Starting from a near-analytic center of C, defined
in (2), we use the random walks described in the previous section to generate
a random point in C. Next, we perform a rounding heuristic that attempts to
find a feasible integer solution satisfying the integrality requirements defined
in (3). If the rounding heuristic fails to find a feasible integer solution within
a specified termination criteria, we generate another random point from the
current one by taking additional walk steps. This point is now rounded by
using the rounding heuristic again. On the other hand, if a new (better) integer
solution is found, we modify the feasible set C by introducing a (or updating
the) objective cutoff constraint, which prevents the walk-relax-round heuristic
from finding another integer solution with the same objective value. This will
be discussed later. Afterward, we recompute a new (approximate) analytic
center for the new feasible set, and restart the walk-relax-round heuristic.
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A core step in the proposed walk-relax-round heuristic is to round a solu-
tion violating integrality requirements. This rounding is performed using an
implementation of the feasibility pump (FP) heuristic. In the following we
first provide necessary details about FP. Next, we present a soluiton polishing
phase to improve the quality of the solutions found by FP.

3.1 Outer approximation based feasibility pump for MICPs

The basic scheme of FP is described below. Starting from a point x̄ ∈ C, the
method searches for a point x∗ that is heuristically as close as possible to a
rounded integer solution x̂ of x̄ by solving an l1-norm minimization problem.
For a given point x̄k ∈ C, let x̂ be the integer solution obtained by rounding
x̄kj to the nearest integer for each j ∈ I, and keep the other components equal

to x̄kj . The l1-norm minimization problem is of the form

min
∑
j∈I
|xj − x̂kj | (FP-NLP) (8)

s.t. x ∈ C.

Let xk∗ be an optimal solution of (8). If
∑

j∈I |xk∗j − x̂kj | = 0, we have a

feasible solution for (1)–(3), else we take x̄k+1 := xk∗, set k := k+ 1, and start
a new iterate. The algorithm iterates until a maximum iteration or some other
criteria (e.g., time limit) is reached.

Once a feasible integer solution xk∗ is generated, the following artificial
constraint is used to cutoff all inferior solutions:

c(x) ≤ c(xk∗)− ε, (9)

where ε is a small positive constant. This objective cutoff constraint guarantees
that the next feasible integer solution generated by the FP procedure is always
better than the current one. After applying the objective cutoff constraint to
problem (8), FP is restarted again (from the optimal solution of the continuous
relaxation).

Bonami et al. [15] proposed a variant of FP for MICPs. In their method,
x̄k ∈ C is generated in the same way as the basic FP heuristic, whereas x̂k is
generated by solving a sub-MILP. This sub-MILP is constructed by building
an outer approximation (OA) of the nonlinear constraints in C (including the
objective cutoff constraint if an integer solution is available) with linearizations
taken at all points of the sequence 〈x̄l〉l=0,...,k. x̂k is taken as the point in the
current OA of the constraints that is closest to x̄k in l1-norm by solving the
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following problem:

min
∑
j∈I
|xj − x̄kj | (FP-OA) (10)

s.t. gi(x̄
l) +∇gi(x̄l)(x− x̄l) ≥ 0, i = 1, . . . , m̂ and l = 0, . . . , k,

∇c(x)(x− xk∗) ≤ c(xk∗)− ε, if the (best) integer solution xk∗ is available,

Ax = b,

xj ∈ Z for each j ∈ I,
0 ≤ x ≤ u.

Since (10) is a linear relaxation of the feasible set of (C) combined with the
integrality requirements, as a result, if (10) is empty, i.e, no integer solution
exists, then FP terminates the search and claim that the available integer
solution is optimum within a specific tolerance ε, or the MICP is infeasible.

Computational results [15] show that this variant of the FP (called OAFP)
heuristic outperforms the basic FP heuristic in terms of finding better solu-
tions. Therefore, we choose OAFP for rounding a point generated from the
random walk methods. We note that Bonami et al. [15] proposed an enhanced
version of OAFP that avoids cycling. However, in our experiments OAFP did
not suffer from this issue; hence, our implementation mainly follows the basic
version of OAFP with a modification given in the next section.

3.2 Improving the quality of the solutions found by feasibility pump

Although the original FP heuristic has been shown to be effective for finding
feasible solutions of MILPs, the quality of heuristic solutions in terms of ob-
jective value can potentially be poor. Hence, once a feasible integer solution x̂k

is obtained, we try polishing the quality of x̂k over the continuous relaxation
domain, i.e., we solve (1)–(3) with constraints xj = x̂kj , j ∈ I. In particular,
we solve a convex program of the form:

min c(x) (FP-POL) (11)

s.t. x ∈ C,
xj = x̂ij , for each j ∈ I.

Though additional computational overhead occurs in solving (11), we accept
this cost tradeoff over the original OAFP procedure, with the hope to find a
better solution and further strengthen the objective cutoff constraint.

Figure 1 illustrates the initial point, rounded point, the generated point, the
feasible set, and the outer approximation in the OAFP procedure. The search
starts from an initial point x̄0, which is rounded to an integer solution x̂0 by
solving problem (10) constructed at x̄0. Since x̂0 /∈ C and hence is not a feasible
solution, we solve problem (8) that projects x̂0 back to C, resulting another
point x̄1. Again, we round x̄1 to an integer solution x̂1 by solving problem
(10) constructed at x̄0 and x̄1. Since x̂1 is a feasible solution, we polish it by
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solving problem (11), yielding another feasible solution x̂1′. Finally, we update
the artificial objective cutoff constraint at x̂1′, and continue the OAFP search.

x
0x

1

x
0

x
1

x
1
'

Objective cutoff

Fig. 1: Illustration of the OAFP search

A flow chart of the implementation of the OAFP heuristic is given in
Figure 2. We note that the main difference between our implemented OAFP
heuristic and the original OAFP heuristic proposed by Bonami et al. [15] is
that our method includes solving FP-OA, FP-NLP, and FP-POL, whereas the
original one includes only FP-OA and FP-NLP.

4 Implementation

We now present implementation details of the walk-relax-round heuristic. This
heuristic is implemented in a software package referred to as iOptimize, which
is being developed in C++. Details of continuous optimization algorithmic im-
plementation are in Mehrotra and Huang [32], and Huang and Mehrotra [25].
Here we provide relevant information for completeness.
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Given a point x
0
 in C.

Let k := 0.

Compute a rounding 

integer point x
k
 by solving 

(FP-OA).

Compute a feasible point

 x
k
* by solving (FP-NLP).

Improve the quality of x
k
* 

by solving (FP-POL).

Is x
k
* a feasible 

integer solution?
Yes

No Stop the search?

Yes

Stop.

Update the objective 

cutoff constraint.

Set x
k+1

 := x
k
*.

Set k:= k+1.
No

Fig. 2: Implementation of the OAFP heuristic

4.1 Solving convex optimization problems

We used iOptimize convex solver with Mehrotra predictor-corrector [31] vari-
ant of the homogeneous interior point method [8,9,25,32] to find an optimal
solution of the continuous relaxation. The implementation is equipped with a
refined potential function that ensures global convergence [25,32].

Let rvkp , rv
k
d , and rvkg be the residual vectors of the primal feasibility, dual

feasibility, and complementarity of the optimality condition corresponding to
the kth interior point iterate. We terminate the algorithm if one of the following
criteria is satisfied:
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– An (approximate) optimal solution is obtained if

‖rvkp‖
max

{
1, ‖rv0p‖

} < 10−8, (12)

‖rvkd‖
max {1, ‖rv0d‖}

< 10−8, (13)

|rvkg |
max

{
1, |rv0g |

} < 10−8. (14)

– The problem is (near) infeasible if

µk

µ0
< 10−8, and

τk

min {1, κk}
<
τ0

κ0
10−12,

where τ and κ represent variables introduced in the homogeneous reformula-
tion [8,9,25], and µ represents the centering parameter used in the context of
standard interior point method [8,9,25].

4.1.1 Analytic center computations

Recall in Section 2 we assumed that all the walks are started from near the
log-barrier analytic center. The results reported here were obtained by using a
two-phase approach in iOptimize for computing the analytic center. Phase-I
problem was solved as a continuous relaxation optimization problem except
with a null-objective function and artificial upper bounds for the primal vari-
ables that ensure boundedness of the feasible region. The solution from Phase-I
was processed to remove the redundant variables by forcing variables to their
bounds or to set the linear inequality constraints to equality, if the slack to
the bound is less than 10−8. For the Phase-II analytic center computation, a
feasible primal-dual potential-reduction method [37] was used. Newton itera-
tions were used on the perturbed-KKT conditions of the log-barrier problem.
Phase-II used ‖Xs − e‖∞ ≤ 10−1 and the infeasibility criterion in (12)–(13)
for termination.

4.2 Implementation of the walk-relax-round heuristic

We now give the implementation logic of the walk-relax-round heuristic. Sim-
ilar to the observation in Huang and Mehrotra [26], the walk-relax-round
heuristic finds feasible solutions quickly in the beginning of the search, and
needs more effort for improving the objective value. With this in mind, we
find it useful to split the walk-relax-round heuristic in three stages. In the
initial stage, we start the OAFP procedure at an optimal solution of the con-
tinuous relaxation as it is often a good candidate for generating an integer
solution. In the second stage, we perform the random walk from an analytic
center to generate sample points, and round them using OAFP. Note that all
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the OA constraints built from the previous OAFP searches will not be reused,
i.e., we restart the OAFP search from scratch. In the third stage, we perform
the search as in the previous stage, but with a different setting in that we
reuse all the OA constraints built from the previous OAFP searches at this
stage. We update the objective cutoff constraint whenever a better integer so-
lution is found. Consequently, a new (approximate) analytic center of the new
continuous relaxation is recomputed, and the random walk is restarted from
the new near-center point. In the following we give more details about each of
these stages.

– Stage 1: We start the OAFP procedure at an optimal solution of the con-
tinuous relaxation. However, to avoid unnecessary computational effort, we
perform only 15 OAFP iterations (Imax = 15) for the search. In our expe-
rience this setting allows us to find at least one integer solution in most
test instances, though the quality of these solutions tends to be inferior.

– Stage 2: We start to sample random points and round them using the
OAFP procedure. Our goal here is to quickly reduce the integrality gap.
However, as the number of OA constraints accumulate, the sub-MILP may
become harder to solve. To save the computational effort, while the walk
moves from a point to another, the OAFP search is restarted from scratch,
i.e., all the OA constraints built from the previous OAFP search are not
reused. Another reason to rebuild the OA constraints is that the OA con-
straints taken at all the random points generated at this stage may be far
away from an integer optimal solution, and hence cannot provide a “good”
approximation for C. We terminate the OAFP search once the maximum
OAFP iterations (Imax = 10) is reached, or three integer solutions are
found (Fmax = 3). We end this stage if the number of walk steps allowed
is reached (Smax = 15), or the relative integrality gap (GI < 40%) is
observed. The relative integrality gap is calculated as

GI = 100%× Obj −RObj
max{1, |RObj|}

,

where RObj is the optimum value of the continuous relaxation of the prob-
lem instance, and Obj is the current best objective value.

– Stage 3: We perform the search as in Stage 2 but with different settings. We
use Imax = 15 and Fmax = 5 for terminating OAFP as before. Moreover, we
reuse all the OA constraints built from OAFP searches at this stage, i.e, the
number of OA constraints are accumulated from one OAFP search to the
other, with the hope that these OA constraints are capable of providing
a reasonably good approximation for C. We terminate the search if the
maximum execution time allowed (Tmax) is reached.

Recall from Section 3.1 that if problem (10) becomes empty, then the
FP search should be terminated (since, no mixed integer solution exists). We
have either found an optimal integer solution within a specific tolerance ε, or
the problem is infeasible. Therefore, in addition to the termination criteria
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mentioned above, we also terminate the OAFP search once a sub-MILP (FP-
OA) becomes infeasible. On the other hand, if a feasible integer solution is
generated, then the artificial objective cutoff constraint is applied to C defined
in Section 2.

We note that the parameters for Imax and Fmax in each stage are cho-
sen arbitrarily, but they allow us to perform the search in each stage in a
reasonable time. Our experience suggests that if we start to accumulate OA
constraints right after Stage 1 (that is, we ignore Stage 2), the number of the
OA constraints may grow significantly. In this case, the effort for solving FP-
OA increases. Hence, care is required in building OA away from an integer
optimum.

A flowchart of the implementation of the walk-relax-round heuristic is given
in Figure 3.

4.3 Computational environment

All computations were performed on a 3.2 GHz Intel Core 2 Duo CPU with
4GB RAM; however, no parallelization is done in our current implementation.
Our problem test set consists of 58 convex MICP instances taken from the
CMU-IBM Open source MINLP Project (CMU-IBM for short) [2]. An AMPL [1]
interface is implemented in iOptimize to read the AMPL MICP models and
the corresponding first and second-derivatives are calculated using AMPL.

Cplex 12.1 [5] is used for solving the sub-MILPs (FP-OA). Here we do not
insist on solving the sub-MILPs (FP-OA) to optimality. Following Bonami et
al. [15], we terminate Cplex once a feasible integer solution is found, and it has
not improved for 5000 nodes. Moreover, we set CPX PARAM MIPEMPHASIS= 1
that emphasizes feasibility over optimality, and we set parameter CPX PARAM

THREADS= 1 that forces Cplex to solve the sub-MILPs sequentially in a single
thread.

In our computational runs we set time limit of five minutes for each prob-
lem in each run. This time limit is chosen arbitrarily, but it allowed us to
perform computations with a reasonable effort. We will, however, discuss re-
sults obtained from using long-runs on a few problems. Table 1 gives the
instance names, the number of continuous variables (Conti), integer variables
(Int), linear constraints (LRows), nonlinear constraints (NLRows), and the
corresponding objective value (Obj). All the CMU-IBM test problems are mixed
binary problems. Note that instance trimloss12 remains unsolved.

To provide a summary of the results, we use performance profiles [21].
Consider a set A of na algorithms, a set P of np problems, and a performance
measure ma,p, e.g., computation time or a objective value. We compare the
performance on problem p by algorithm a with the best performance by any
algorithm on this problem using the following performance ratio

rp,a =
mp,a

m∗p
,
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where m∗p := min {mp,a | a ∈ A}. We therefore obtain an overall assessment of
the performance of the heuristic by defining the following value

ρa(τ) =
1

np
cardinality {p ∈ P | rp,a ≤ τ} .

This represents the probability for algorithm a that the performance ratio rp,a
is within a factor τ of the best possible ratio. The function ρa(·) represents
the distribution function for the performance ratio.

5 Computational results

In this section we present and discuss our computational results on the test
problems. We first compare the performance of FP at an optimum (FP-OPT)
and at the analytic center (FP-AC) of the continuous relaxation. In Section
5.2, we compare the performance of the walk-relax-round heuristic that uses
the hit-and-run walk, and Dikin walk with Strategies I and II to generate a
random point in two settings: (i) using the “default” seed as an initial seed to
generate a walk; (ii) average performance over 30 runs using different initial
seeds. In Section 5.3, we discuss additional computational comparisons. In
particular, we compare the walk-relax-round heuristic using long step Dikin
walk (Strategy II) with FP-OPT, present the performance of different stages
of the walk-relax-round heuristic described in Section 4.2, discuss some details
about the solution polishing phase, perform a long random walk on selected
problems, and finally provide computational comparison with Cplex 12.1 on
nine mixed integer (convex) quadratic programs (MIQPs).

In the following, we refer the walk-relax-round heuristic using hit-and-run
walk as HR, and using Dikin walk with Strategies I (short step strategy) and
II (long step strategy) as DW1 and DW2.

5.1 Feasibility pump at an optimal solution and the analytic center of the
continuous relaxation

An optimal solution of the continuous relaxation is often considered a good
candidate for generating an integer solution, so this is an obvious starting
choice for FP. However, it is possible that the analytic center may be closer to
an integer solution. Table 2 gives the FP performance at an optimal solution
(FP-OPT) and at the analytic center (FP-AC) of the continuous relaxation on
the CMU-IBM test problems. The best available upper bound on the objective
value is reported in Column “Obj”. The total computational times are reported
in Column “Time” in seconds. The optimality “Gap” is calculated as

Gap := 100%× Obj −Obj∗

|Obj∗|
,
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where Obj∗ is the optimal value or the best bound of the problem instance.
We note that the optimal value or the best bound of all the problem instances
is not zero. “Avg” in the last row of Table 2 provides the arithmetic mean for
the Gap and geometric mean for the computational times. We note that FP
is implemented using OA described in Section 3.

Considering Avg in these experiments, the mean-gap of FP-OPT (Avg
= 3.34%) is significantly better than that for FP-AC (Avg = 19.78%). In
these experiments FP-OPT proves optimality of the solutions in 39 instances
whereas FP-AC proves optimality in 30 instances. Although FP-AC performs
worse than FP-OPT in terms of its average performance, it is able to find at
least one feasible solution for instance trimloss7 where FP-OPT fails. For
instance trimloss12, both heuristics fail to find a feasible solution.

We note that the computational results of the integrality gap performance
for instances SLay08H, SLay09M, SLay10H, and SLay10M are worse than those
reported in Bonami et al. [15]. This may come from different continuous solver
used for solving the continuous relaxation: we used iOptimize [25] HSD in-
terior point method whereas Bonami et al. [15] used Ipopt [3] primal-dual
interior point method.

Figure 4 shows the performance profiles for CMU-IBM problems comparing
the integrality gap and CPU time performances of FP-OPT and FP-AC. FP-
OPT dominates FP-AC in terms of either the integrality gap or the CPU time
performance. Hence, FP-AC is not discussed further.
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Fig. 4: Performance profiles of FP with different starting solutions

5.2 Computational comparison of random walks

Since the performance of the random walk methods may depend on the initial
seed of the random number generator, we now discuss the obtained results in
two settings: (i) using the “default” seed as an initial seed to generate a walk;
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(ii) average performance over 30 runs using different initial seeds. We note
that because of the inherent randomness in the generated “short” walk, the
conclusions must be validated with multiple walks. However, in practice only
a short walk will be performed.

Recall from Section 4.2 that we split the search of the walk-relax-round
into three stages, and start the OAFP procedure at an optimal solution of the
continuous relaxation in the first stage. Hence, the first stage of the search in
the walk-relax-round is same as FP-OPT.

5.2.1 Performance of single run computations

We now report the performance of the random walks on CMU-IBM test prob-
lems. The computational results are given in Table 3. This table reports the
best objective value (Columns “Obj”) obtained from HR, DW1, and DW2.
Computational time (in seconds) is given under Column “Time”, and the op-
timality “Gap” is calculated as indicated in Section 5.1. “Avg” in the last row
of Table 3 provides the arithmetic mean for the Gap and geometric mean for
the computational times.

The “Avg” mean-gap in these experiments are 1.26%, 1.35%, and 1.11% for
HR, DW1, and DW2, respectively. In this case DW2 ranked first whereas DW1
ranked last. One may expect for DW1 to perform better than HR and DW2
because DW1 started from the center (with lazy step and a self-concordant
barrier assumption) mixes in strongly polynomial time [34] while HR mixes in
polynomial time [29]. However, the number of walk steps taken in our experi-
ment is small. Moreover, DW2 appears better than HR because HR does not
use geometric information from the convex body. Consequently when com-
bined with OAFP, DW2 may be able to explore more region than HR and
DW1.

We note that in our experiment the walk-relax-round heuristic may be
able to find an integer solution in Stage 1, though the integrality gap of the
solution tends to be inferior (more than 100%) for difficult problems. However,
the heuristic usually improves the integrality gap of the incumbent solutions
to less than 40% quickly in Stage 2. For easy problems, on the other hand, the
heuristic may terminate in Stage 1.

Now we focus on the average computational times for various steps of
the walk-relax-round heuristic. We observe that FP takes about 85%, the
analytic center computation takes about 13%, the initial relaxation problem
computation takes less than 1% time on average, and the walk computation
takes less than 1% (the detailed results are not reported here). This suggests
that when compared to the OAFP heuristic, additional computational effort in
walking and computation of the log-barrier analytic center is not substantial.

Figure 5 shows the performance profiles comparing the best integrality gap
and the CPU time performances of HR, DW1, and DW2.
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Fig. 5: Performance profiles of different walk-relax-round heuristics

5.2.2 Performance of multiple run computations

The walk-relax-round heuristic may behave differently with different starting
seeds to generate random numbers. Hence, to draw more rigorous conclusions
we tested all random walks with 30 different initial random seeds. Table 4
reports the average computational behavior for each problem in the test set.
Column “MinGap” shows the minimum gap of a solution among the 30 runs
whereas column “MaxGap” shows the maximum gap among a solution of the
30 runs, column “AvgGap” and “StDevGap” shows the arithmetic mean-gap
and the corresponding standard deviation of the 30 runs. Column “AvgTime”
reports the geometric mean times of the 30 runs.

By comparing the average of “AvgGap”, we observe all three methods
generate similar results (HR = 1.3%, DW1 = 1.26%, DW2 = 1.26%), though
DW1 and DW2 are marginally better than HR. When comparing the average
standard deviation, DW2 (0.24) is marginally better than HR (0.3) and DW1
(0.3). A pairwise t-test between their mean-gaps, however, shows that the
differences are not statistically significant.

The performance profiles comparing the average integrality gap and the
CPU time performances of HR, DW1, and DW2 over multiple runs are given
in figure 6.

5.3 Detailed computational results and discussions

We now present additional computational comparisons. We first compare the
walk-relax-round heuristic using long step Dikin walk (DW2) with FP-OPT.
Next, we illustrate and analyze the performance of different stages of DW2 on
two problems, showing the effectiveness of the search in different stage. Then,
we discuss some details about the solution polishing phase. In Section 5.3.2,
we perform a long random walk using one hour time limit on six problems.
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Fig. 6: Performance profiles of different walk-relax-round heuristics over mul-
tiple runs

Finally, we provide computational comparison with Cplex 12.1 on nine MIQPs
selected from the Hans D. Mittelmann’s collections [4].

5.3.1 Comparison of walk-relax-round heuristic with FP-OPT

In this section we compare DW2 with FP-OPT using a five minute time limit
for both heuristics. The computational results are given in Tables 2 and 3.
Observe a single run of DW2 heuristic finds an optimal solution for 51 out of
the 58 test problems. In comparison the FP based relax-and-rounding heuristic
finds an optimal solution for 45 test problems only. Optimality is proved for
40 problems in case of DW2 and 39 problems in case of FP-OPT. DW2 finds
a better upper bound for 6 problems when compared to FP-OPT. Moreover,
DW2 can generates a feasible solution for trimloss7, but FP-OPT fails. The
”Avg” mean-gap for DW2 and FP-OPT are 1.11% and 3.34%, respectively.
This suggests that DW2 generates better quality solutions. One possible reason
is that DW2 is expected to build a better OA of the convex set than FP-OPT
since it likely explores more continuous relaxation feasible region to generate
a better OA. FP-OPT finds a better bound only in one instance (problem
RSyn0840M03M). In this case DW2 and FP-OPT integrality gaps are 8.53%
and 2.53%, respectively. We think this is likely because the number of walk
steps performed in the given time limit during the search is relatively small
(only 12 walk steps), and hence DW2 was not able to build a “good” OA for
the convex feasible region C. When the run time limit was increased to an hour
both DW2 and FP-OPT solved this problem to optimality.

Although we gave a 5 minute time limit, several easier problems (e.g., the
CLay and Syn families) were solved to optimality in much less time by both
DW2 and FP-OPT heuristics. We note that for these problem classes FP-OPT
requires less computational time than DW2. Clearly, for these easier problems
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Fig. 7: Performance profiles of FP-OPT and DW2

the computational burden from exploring the extra feasible region to build
better OA is not justified.

For SLay problem family we observe that the objective value gap between
the integer feasible solution found by FP-OPT and that of the relaxation prob-
lem is significant, and this gap is similar to that of the feasible integer solution
obtained from FP-AC. It appears that because of this gap, it is beneficial to
build improved OA by performing a random walk in the feasible set for the
SLay family.

Since the performance of DW2 depends on the randomly generated points,
we now compare the performance of DW2 with FP-OPT over 30 runs. For
simplicity we use mean integrality gap of FP-OPT with minimum, maximum,
and average over 30 runs of the mean integrality gap in DW2. The minimum
and the maximum integrality gaps for DW2 are 1.03% and 1.59%, respectively,
while the average mean integrality gap over 30 runs is AvgGap = 1.26%. Even
in the worst run the mean integrality gap of DW2 is better than that of FP-
OPT.

Figure 7 shows the performance profiles comparing the best integrality gap
and the CPU time performances of FP-OPT and a single run of DW2. We note
that about 70% of the (easy) problems can be solved to optimality by both
DW2 and FP-OPT. For the remaining 30% of the (difficult) problems, both
methods used 5 minute time limit without solving the problem to optimality.

5.3.2 Performance of different stages of walk-relax-round heuristic on
selected problems

Recall that in Section 4.2 we split the walk-relax-round heuristic in three
stages. We now present the performance of different stages of DW2. Figure 8
shows the incumbent solution over time of FP-OPT and a single run for DW2
on problems RSyn0830M03M and SLay10. Performance at different stage is pre-
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Fig. 8: Incumbent solution over time of FP-OPT and DW2 on selected prob-
lems

sented in Figure 8. Note that DW2 performs FP at an optimum of the contin-
uous relaxation in the first stage. Hence, the result of this stage is identical to
that of FP-OPT.

For problem RSyn0830M03M, both FP-OPT and DW2 improved the ob-
jective value of the incumbent solution from -2.03 to -1231.89 at around 40
seconds (the end of first stage of DW2). However, at around 130 seconds (the
middle of stage 2 of DW2), the quality of the incumbent solution of DW2
is inferior than that of FP-OPT. Recall that DW2 performs the FP search
from scratch in this stage, i.e., OA constraints built from the previous OAFP
search are not reused; on the other hand, FP-OPT reuses all the OA con-
straints built from the beginning of the search. Hence, FP-OPT may benefit
from these OA constraints, if they approximate the convex set accurately. Ob-
serve that at around 180 seconds, DW2 starts to slightly outperform FP-OPT.
In fact, DW2 moves onto the last stage at this point. Overall, the difference
between DW2 and FP-OPT in this problem is not significant.

For problem SLay10, DW2 dominates FP-OPT over almost the entire
search. In fact, FP-OPT generates a slightly better solution at around 70
seconds and 120 seconds, both of which are in Stage 2 of the DW2 search. In
the last stage, DW2 outperforms FP-OPT.

5.3.3 Relevance of solution polishing phase

We also note that the technique of improving the solution quality by solving
FP-POL mentioned in Section 3.2 helps in finding a better solution, especially
in the beginning of the search. For example, for problem RSyn0830M03M, the
value of the first integer solution found by DW2 (the solution found in the
rounding phase by solving FP-OA) is 4269.63. This value is subsequently im-
proved to -2.03 in the solution polishing phase (by solving FP-POL). After 10
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steps, DW2 found a solution with a value of -1474.82, and FP-POL improved
it to -1479.88. After 15 walk steps, DW2 found a solution with a value of
-1514.28, but no further improvement was made.

In general, our experience suggests that FP-POL is able to improve the
quality of the solution significantly in the beginning of the search (e.g., the
solution found in Stage 1). On the other hand, FP-POL gives limited im-
provement when the integrality gap of the incumbent solution is small (e.g.,
the integrality gap is less than 5%).

5.3.4 Performance of a long random walk

All the previous experiments were performed with relatively small computa-
tional efforts (at most five minutes). One may perform a long run for the walk-
relax-round heuristic, with the hope to keep improving the objective value.
We performed such long walks using at most one hour of running time for six
difficult problems: trimloss7, trimloss12, BatchS201210M, RSyn0830M03M,
RSyn0840M03M, and SLay10H. Table 5 summarizes the results for these prob-
lems except for trimloss12, for which none of the heuristics found a feasible
solution. Here “Start Obj” and “Start Gap” respectively represents the ob-
jective value and the gap after 5 minutes (i.e., the results from Tables 2 and
3), whereas “End Obj” and “End Gap” respectively represents the objective
value and the gap at the end of the run.

Observe that all methods solved problems BatchS201210M, RSyn0830M03M,
and RSyn0840M03M to optimality. For the remaining two problems, DW1 (18.4
(trimloss7), 129971.1 (SLay10H)) generates equal or better results than DW2
(18.4 (trimloss7), 130996.5 (SLay10H)) and HR (18.9 (trimloss7), 130996.4
(SLay10H)). This result is different from the short run computation presented
before, where DW2 ranked first. This suggests Dikin walk explores more region
uniformly using short walk steps (DW1). This is consistent with the theory of
Dikin walk.

For comparison, we also performed FP-OPT with a one hour time limit
for these six problems. As the walk-relax-round heuristic, FP-OPT can also
solve problems BatchS201210M, RSyn0830M03M, and RSyn0840M03M to opti-
mality, but with less CPU times in most cases. However, for the remain-
ing problems, FP-OPT (18.6 (trimloss7), 131351.7 (SLay10H)) performed
slightly worse than DW1 (18.4 (trimloss7), 129971.1 (SLay10H)) and DW2
(18.4 (trimloss7), 130996.5 (SLay10H)).

5.3.5 Comparison of walk-relax-round on Mixed Integer Quadratic Programs

In this section we compare the walk-relax-round heuristic using long step Dikin
walk (DW2) with Cplex 12.1 for solving MIQPs. We selected nine small and
medium MIQPs from the test set at [4] by using the number of rows/columns
is less than 5000, and the number of integer variables is less then 1000 as a
criterion. Table 6 gives the instance names, the number of continuous variables
(Conti), integer variables (Int), linear constraints (LRows), total number of
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nonzero elements in the affine matrix (NZeros), and total number of nonzero
elements in the quadratic objective matrix (QNZeros).

We used Cplex default parameter settings, except for parameter CPX PARAM

THREADS = 1 that forces Cplex to solve the problems sequentially using a sin-
gle thread. A five minute time limit is used as the termination criterion for
both implementations. The computational results are given in Table 7. Here
“Time (Found)” and “Time (Proven)”, respectively, represents the computa-
tion times for finding an optimal solution, and that for proving its optimality
within the time limit. Columns “Obj” reports the best objective value ob-
tained from DW2 and Cplex. The optimality “Gap” is calculated as indicated
in Section 5.1.

Observe both DW2 and Cplex find an optimal solution for eight out of the
nine test problems. Cplex also proves optimality for four problems; whereas
DW2 does so for three problems. In particular, for problems isqp0 and isqp1,
both methods find an optimal solution within 10 seconds. In fact, DW2 finds an
optimal solution in Stage 1 of the search, and Cplex finds an optimal solution
at the root node. For problem ibell3a, DW2 takes about 20 seconds to find
an optimal solution and about 35 seconds to prove its optimality; on the other
hand, Cplex needs less 10 seconds to solve this problem to optimality.

For problem iqiu, DW2 finds an optimal solution faster than Cplex; how-
ever, it fails to prove its optimality within the time limit; whereas Cplex proves
optimality in about 200 seconds. For problem isqp, DW2 requires significantly
more effort (154.45 seconds) to find an optimal solution than Cplex (8.11 sec-
onds). We note that for this problem Cplex finds the optimal solution after
examining only about 50 nodes of the search tree; whereas DW2 performs
more than 15 walk steps before it can find the optimal solution. For problem
itointqor, DW2 not only finds an optimal solution slightly faster than Cplex,
but also proves its optimality within the time limit; whereas Cplex fails to do
so. However, for problem ilaser0, DW2 can only find a near optimal solu-
tion (with optimality gap less than 0.001). On the other hand, Cplex finds an
optimal solution in 33 seconds (but fails to prove it to optimality within the
time limit). Finally, for problem iportfolio, DW2 finds an optimal solution
in about one minute and proves its optimality within the time limit; whereas
Cplex fails to find a feasible solution.

Overall, though DW2 in general takes longer computation times than
Cplex to find an optimal solution, we think that the results are still promising,
as our implementation is not a fine-tuned software like Cplex, and it is able
to find an optimal solution in one instance, where Cplex fails. We also note
that our code uses Cplex as a black box, and does not take advantage of any
of its internal features.

6 Concluding Remark

FP [15] is a useful heuristic for finding good quality solutions of mixed in-
teger convex programs in a reasonable computational time. Conventionally,



Title Suppressed Due to Excessive Length 25

an optimal solution of a continuous relaxation is used as a starting point for
FP. First, our computational results show that, in general, the performance of
FP started from an optimal solution of the continuous relaxation is a better
than if it is started from the analytic center. This conclusion is consistent with
that of Baena and Castro [10], and Huang and Mehrotra [26] in the context
of mixed integer linear programs. However, for harder problems we found that
the incorporation of a walk in FP allows us to generate better quality solutions
with the same time limit. We conjectures that it is likely because solutions gen-
erated from the walk points allow us to build a better outer approximation of
the convex region. Our computational results suggest that the long step Dikin
walk is marginally better than the hit-and-run walk, and the walks using short
steps. On the other hand, the short step Dikin walk generates a better quality
solution when many walk steps are needed. This is consistent with the theory
of Dikin walk.

We note that Huang and Mehrotra [26] experimented with a random ray
strategy to sample feasible points from a polyhedral set. This method generates
random points by shooting random rays from near the analytic center. More
precisely, it performs the steps of Algorithm 2.2 with Strategy I repeatedly
without updating the solution, i.e., we set xk+1 := x0 + λp in Strategy I
of Algorithm 2.2. Huang and Mehrotra [26] found that the results of this
random ray search approach are generally inferior than those of the random
walk approaches. In our experiments (detailed results not reported here) this
conclusion also holds for MICPs.

We also note that Achterberg and Berthold [7] proposed a variant of the
FP approach, called Objective FP. This variant considers the objective func-
tion while solving the projection problem. In particular, they proposed the use
of a convex combination of the original objective function with the l1-norm
function. The hope is that Objective FP not only converges to a feasible so-
lution but also concentrates the search in the region of high quality points.
The principle of Objective FP can be extended to the context of MICP. How-
ever, finding a proper balance between the original objective function and the
l1-norm function remains unclear, and is a topic of future research.

Recently, Naoum-Sawaya [33] proposed a central rounding heuristic that
recursively fixes a subset of integer variables while using the analytic center
to re-center the remaining ones. Computational results show that this method
provides good quality feasible solutions with a reasonable computational effort.
Incorporating this idea to the walk-relax-round heuristic is also a possible
future research topic. In addition to the FP heuristic, the dive and search
heuristic [16] has also been studied in the context of MICP. Other heuristics
that are originally designed for MILPs such as OCTANE heuristic [11], local
branching heuristic [23], and Relaxation Induced Neighborhood Search (RINS)
heuristic [20] may also be extended to the context of MICP. Combining random
walks with these heuristics is also a topic of further investigation.
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Problem Conti Int LRows NLRows Objective

trimloss2 6 31 22 2 5.3

trimloss4 20 85 60 4 8.3
trimloss5 30 131 85 5 10.3
trimloss6 56 289 147 7 15.3
trimloss7 56 289 147 7 15.5
trimloss12 156 644 360 12 221.7†
BatchS101006M 149 129 1018 1 769440
BatchS121208M 242 203 1780 1 1543472
BatchS151208M 307 251 2326 1 2295349
BatchS201210M 20 36 58 48 40262.4
CLay0304H 152 24 210 48 40262.4
CLay0304M 20 36 58 48 40262.4
CLay0305H 235 40 335 60 8092.5
CLay0305M 30 55 95 60 8092.5
FLay05H 342 40 460 5 64.5
FLay05M 22 40 60 5 64.5
FLay06H 506 60 687 6 66.93
FLay06M 26 60 87 6 66.93
fo7 72 42 197 14 20.73
fo7 2 72 42 197 14 17.75
fo8 90 56 257 16 22.38
fo9 110 72 325 18 23.46
o7 72 42 197 14 131.64
o7 2 72 42 197 14 116.94
RSyn0830M 156 94 405 20 -510.07
RSyn0830M02H 962 210 1754 40 -730.51
RSyn0830M02M 372 248 1232 40 -730.51
RSyn0830M03H 1443 315 2874 60 -1543.06
RSyn0830M03M 558 372 2091 60 -1543.06
RSyn0840M 176 104 456 28 -325.55
RSyn0840M02H 1124 236 2050 56 -734.98
RSyn0840M02M 432 288 1424 56 -734.98
RSyn0840M03H 1686 354 3363 84 -2742.65
RSyn0840M03M 648 432 2424 84 -2742.65
SLay07H 392 84 609 0 64749
SLay07M 56 84 189 0 64749
SLay08H 520 112 812 0 84960
SLay08M 72 112 252 0 84960
SLay09H 666 144 1044 0 107806
SLay09M 90 144 324 0 107806
SLay10H 830 180 1305 0 129580
SLay10M 110 180 405 0 129580
Syn30H 217 11 325 20 -138.16
Syn30M 70 30 147 20 -138.16
Syn30M02H 494 82 860 40 -399.68
Syn30M02M 200 120 564 40 -399.68
Syn30M03H 741 123 1425 60 -654.15
Syn30M03M 300 180 981 60 -654.15
Syn30M04H 988 164 2080 80 -865.72
Syn30M04M 400 240 1488 80 -865.72
Syn40H 288 14 438 28 -67.71
Syn40M 90 40 198 28 -67.71
Syn40M02H 656 108 1156 56 -388.77
Syn40M02M 260 160 756 56 -388.77
Syn40M03H 984 162 1914 84 -395.15
Syn40M03M 390 240 1314 84 -395.15
Syn40M04H 1312 216 2792 112 -901.75
Syn40M04M 520 320 1992 112 -901.75

1 † : previous best known objective value.

Table 1: Problem profiles of CMU-IBM library
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Method FP-OPT FP-AC

Problem Obj Gap Time Obj Gap Time

trimloss2 5.3* 0 0.33 5.3* 0 0.28
trimloss4 8.3* 0 173.69 9.6 15.66 128.51
trimloss5 11.3 9.71 ‡ 12.5 21.36 ‡
trimloss6 15.6 1.96 ‡ 16.1 5.23 ‡
trimloss7 – NA ‡ 38.7 149.68 ‡
trimloss12 – NA ‡ – NA ‡
BatchS101006M 769440* 0 86.06 880612.7 14.45 ‡
BatchS121208M 1241125* 0 227.18 3977749 220.5 ‡
BatchS151208M 1543472 0 ‡ 4088185 164.87 ‡
BatchS201210M 2324008 1.25 ‡ 7480235 225.89 ‡
CLay0304H 40262.4* 0 10.81 40262.4* 0 9.27
CLay0304M 40262.4* 0 5.8 40262.4* 0 8.31
CLay0305H 8092.5* 0 26.75 8092.5* 0 40.37
CLay0305M 8092.5* 0 47.95 8092.5* 0 14.34
FLay05H 64.5* 0 87.2 64.5* 0 93.75
FLay05M 64.5* 0 21.01 64.5* 0 14.77
FLay06H 66.93 0 ‡ 66.93 0 ‡
FLay06M 66.93 0 ‡ 66.93 0 ‡
fo7 20.73* 0 110.98 20.73* 0 130.2
fo7 2 17.75* 0 63.1 17.75* 0 30.34
fo8 22.38* 0 230.86 22.38 0 ‡
fo9 23.46 0 ‡ 23.46 0 ‡
o7 131.64 0 ‡ 131.64 0 ‡
o7 2 116.94 0 ‡ 116.94 0 ‡
RSyn0830M -510.07* 0 11.23 -510.07* 0 20.7
RSyn0830M02H -730.51* 0 53.01 -730.51* 0 248.81
RSyn0830M02M -730.51* 0 145.5 -730.51* 0 172.33
RSyn0830M03H -1543.06* 0 200.91 -1256.44 18.57 ‡
RSyn0830M03M -1520.02 1.49 ‡ -1507.88 2.28 ‡
RSyn0840M -325.55* 0 16.55 -325.55* 0 48.48
RSyn0840M02H -734.98* 0 68.31 -659.49 10.27 ‡
RSyn0840M02M -718.31 2.27 ‡ -571.5 22.24 ‡
RSyn0840M03H -2741.99* 0 68.03 -1877.13 31.54 ‡
RSyn0840M03M -2673.3 2.53 ‡ -1584.38 42.23 ‡
SLay07H 64749* 0 33.45 64749* 0 33.43
SLay07M 64749* 0 49.12 64749* 0 49.08
SLay08H 84960* 0 74.63 84960* 0 79.44
SLay08M 102755.7 20.95 ‡ 102755.7 20.95 ‡
SLay09H 108781.1 0.9 ‡ 109651.9 1.71 ‡
SLay09M 130353.5 20.91 ‡ 130353.5 20.91 ‡
SLay10H 152751.8 17.88 ‡ 152751.8 17.88 ‡
SLay10M 268114.8 106.91 ‡ 268385.8 107.12 ‡
Syn30H -138.16* 0 1.12 -138.16* 0 5.36
Syn30M -138.16* 0 1.01 -138.16* 0 2.95
Syn30M02H -399.68* 0 4.4 -399.68* 0 60.38
Syn30M02M -399.68* 0 9 -399.68* 0 15.76
Syn30M03H -654.15* 0 9.67 -654.15* 0 113.42
Syn30M03M -654.15* 0 21.14 -654.15* 0 60.52
Syn30M04H -865.72* 0 32.37 -861.72 0.46 ‡
Syn30M04M -865.72* 0 49.73 -865.72* 0 176.1
Syn40H -67.71* 0 1.76 -67.71* 0 18.64
Syn40M -67.71* 0 2.89 -67.71* 0 4.47
Syn40M02H -388.77* 0 6.35 -388.77* 0 110.26
Syn40M02M -388.77* 0 17.86 -388.77* 0 44.12
Syn40M03H -395.15* 0 42.59 -395.15* 0 210.21
Syn40M03M -395.15* 0 66.32 -395.15* 0 117.42
Syn40M04H -901.75* 0 39.95 -825.19 8.49 ‡
Syn40M04M -901.75* 0 87.61 -901.75* 0 212.65

Avg 3.34 56.53 19.78 96.73

1 NA: Statistics not available.
2 *: Proven optimality.
3 –: No solution found.
4 ‡: 5-minute time limit reached.

Table 2: FP performance on CMU-IBM library
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Method HR DW1

Problem Obj Gap Time Obj Gap Time

trimloss2 5.3* 0 0.33 5.3* 0 0.36
trimloss4 8.3* 0 298.77 8.3 0 ‡
trimloss5 10.3 0 ‡ 10.7 3.88 ‡
trimloss6 15.3 0 ‡ 15.5 1.31 ‡
trimloss7 23.2 49.68 ‡ 23 48.39 ‡
trimloss12 – NA ‡ – NA ‡
BatchS101006M 769440* 0 57.94 769440* 0 64.11
BatchS121208M 1241125* 0 143.05 1241125* 0 176.22
BatchS151208M 1565979 1.46 ‡ 1543472 0 ‡
BatchS201210M 2302924 0.33 ‡ 2345035 2.16 ‡
CLay0304H 40262.4* 0 94.19 40262.4* 0 85.14
CLay0304M 40262.4* 0 33.94 40262.4* 0 30.15
CLay0305H 8092.5* 0 38.61 8092.5* 0 37.52
CLay0305M 8092.5* 0 96.03 8092.5* 0 93.79
FLay05H 64.5* 0 86.92 64.5* 0 87.22
FLay05M 64.5* 0 92.34 64.5* 0 60.26
FLay06H 66.93 0 ‡ 66.93 0 ‡
FLay06M 66.93 0 ‡ 66.93 0 ‡
fo7 20.73* 0 111.44 20.73* 0 110.84
fo7 2 17.75* 0 47.59 17.75* 0 43.74
fo8 22.38* 0 143.85 22.38* 0 200.3
fo9 23.46 0 ‡ 23.46 0 ‡
o7 131.64 0 ‡ 131.64 0 ‡
o7 2 116.94 0 ‡ 116.94 0 ‡
RSyn0830M -510.07* 0 21.83 -510.07* 0 23.07
RSyn0830M02H -730.51* 0 65.94 -730.51* 0 64.5
RSyn0830M02M -730.51* 0 167.3 -730.51* 0 176.01
RSyn0830M03H -1543.06* 0 233.42 -1543.06* 0 290.2
RSyn0830M03M -1498.04 2.92 ‡ -1523.37 1.28 ‡
RSyn0840M -325.55* 0 33.23 -325.55* 0 33.51
RSyn0840M02H -734.98* 0 73.38 -734.98* 0 72.8
RSyn0840M02M -734.98 0 ‡ -734.98 0 ‡
RSyn0840M03H -2741.99* 0 67.93 -2741.99* 0 68.09
RSyn0840M03M -2486.93 9.32 ‡ -2513.14 8.37 ‡
SLay07H 64749* 0 37.83 64749* 0 35.71
SLay07M 64749* 0 19.27 64749* 0 20.23
SLay08H 84960* 0 80.04 84960* 0 89.84
SLay08M 84960* 0 43.84 84960* 0 33.84
SLay09H 107806 0 ‡ 107806* 0 202.03
SLay09M 107805.7 0 ‡ 107806 0 ‡
SLay10H 139824.1 7.91 ‡ 144585 11.58 ‡
SLay10M 130174 0.46 ‡ 129651.8 0.06 ‡
Syn30H -138.16* 0 1.11 -138.16* 0 1.11
Syn30M -138.16* 0 1.03 -138.16* 0 1.03
Syn30M02H -399.68* 0 4.37 -399.68* 0 4.35
Syn30M02M -399.68* 0 10.04 -399.68* 0 10.09
Syn30M03H -654.15* 0 9.66 -654.15* 0 9.66
Syn30M03M -654.15* 0 35.54 -654.15* 0 38.63
Syn30M04H -865.72* 0 32.34 -865.72* 0 32.34
Syn30M04M -865.72* 0 81.42 -865.72* 0 98.73
Syn40H -67.71* 0 1.76 -67.71* 0 1.76
Syn40M -67.71* 0 3.77 -67.71* 0 3.88
Syn40M02H -388.77* 0 6.33 -388.77* 0 6.3
Syn40M02M -388.77* 0 35.69 -388.77* 0 51.43
Syn40M03H -395.15* 0 52.13 -395.15* 0 51.81
Syn40M03M -395.15* 0 99.01 -395.15* 0 100.31
Syn40M04H -901.75* 0 39.81 -901.75* 0 39.89
Syn40M04M -901.75* 0 172.5 -901.75* 0 167.25

Avg 1.26 64.93 1.35 65.32

1 NA: Statistics not available.
2 *: Proven optimality.
3 –: No solution found.
4 ‡: 5-minute time limit reached.
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Method DW2 FP-OPT

Problem Obj Gap Time Obj Gap Time

trimloss2 5.3* 0 0.34 5.3* 0 0.33
trimloss4 8.3 0 ‡ 8.3* 0 173.69
trimloss5 10.3 0 ‡ 11.3 9.71 ‡
trimloss6 15.6 1.96 ‡ 15.6 1.96 ‡
trimloss7 23 48.39 ‡ – NA ‡
trimloss12 – NA ‡ – NA ‡
BatchS101006M 769440* 0 54.48 769440* 0 86.06
BatchS121208M 1241125* 0 123.68 1241125* 0 227.18
BatchS151208M 1543472 0 ‡ 1543472 0 ‡
BatchS201210M 2310423 0.66 ‡ 2324008 1.25 ‡
CLay0304H 40262.4* 0 46.28 40262.4* 0 10.81
CLay0304M 40262.4* 0 28.22 40262.4* 0 5.8
CLay0305H 8092.5* 0 37.95 8092.5* 0 26.75
CLay0305M 8092.5* 0 30.06 8092.5* 0 47.95
FLay05H 64.5* 0 87.53 64.5* 0 87.2
FLay05M 64.5* 0 73.71 64.5* 0 21.01
FLay06H 66.93 0 ‡ 66.93 0 ‡
FLay06M 66.93 0 ‡ 66.93 0 ‡
fo7 20.73* 0 111.02 20.73* 0 110.98
fo7 2 17.75* 0 45.71 17.75* 0 63.1
fo8 22.38* 0 208.91 22.38* 0 230.86
fo9 23.46 0 ‡ 23.46 0 ‡
o7 131.64 0 ‡ 131.64 0 ‡
o7 2 116.94 0 ‡ 116.94 0 ‡
RSyn0830M -510.07* 0 22.59 -510.07* 0 11.23
RSyn0830M02H -730.51* 0 74.27 -730.51* 0 53.01
RSyn0830M02M -730.51* 0 141.46 -730.51* 0 145.5
RSyn0830M03H -1543.06* 0 279.16 -1543.06* 0 200.91
RSyn0830M03M -1526.02 1.1 ‡ -1520.02 1.49 ‡
RSyn0840M -325.55* 0 39.84 -325.55* 0 16.55
RSyn0840M02H -734.98* 0 72.55 -734.98* 0 68.31
RSyn0840M02M -734.98 0 ‡ -718.31 2.27 ‡
RSyn0840M03H -2741.99* 0 68.11 -2741.99* 0 68.03
RSyn0840M03M -2507.26 8.58 ‡ -2673.3 2.53 ‡
SLay07H 64749* 0 38.66 64749* 0 33.45
SLay07M 64749* 0 19.34 64749* 0 49.12
SLay08H 84960* 0 83.6 84960* 0 74.63
SLay08M 84960* 0 47.8 102755.7 20.95 ‡
SLay09H 107806 0 ‡ 108781.1 0.9 ‡
SLay09M 107806* 0 190.77 130353.5 20.91 ‡
SLay10H 132926.2 2.58 ‡ 152751.8 17.88 ‡
SLay10M 129580 0 ‡ 268114.8 106.91 ‡
Syn30H -138.16* 0 1.11 -138.16* 0 1.12
Syn30M -138.16* 0 1.01 -138.16* 0 1.01
Syn30M02H -399.68* 0 4.34 -399.68* 0 4.4
Syn30M02M -399.68* 0 10.39 -399.68* 0 9
Syn30M03H -654.15* 0 9.64 -654.15* 0 9.67
Syn30M03M -654.15* 0 39.52 -654.15* 0 21.14
Syn30M04H -865.72* 0 32.42 -865.72* 0 32.37
Syn30M04M -865.72* 0 87.83 -865.72* 0 49.73
Syn40H -67.71* 0 1.78 -67.71* 0 1.76
Syn40M -67.71* 0 3.79 -67.71* 0 2.89
Syn40M02H -388.77* 0 6.33 -388.77* 0 6.35
Syn40M02M -388.77* 0 39.76 -388.77* 0 17.86
Syn40M03H -395.15* 0 52.07 -395.15* 0 42.59
Syn40M03M -395.15* 0 96.58 -395.15* 0 66.32
Syn40M04H -901.75* 0 39.79 -901.75* 0 39.95
Syn40M04M -901.75* 0 186.73 -901.75* 0 87.61

Avg 1.11 63.02 3.34 56.53

1 NA: Statistics not available.
2 *: Proven optimality.
3 –: No solution found.
4 ‡: 5-minute time limit reached.

Table 3: Random walk performance on CMU-IBM library
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Method HR

Problem MinGap AvgGap MaxGap StDevGap AvgTime
trimloss2 0 0 0 0 0.34
trimloss4 0 0 0 0 299.75
trimloss5 0.00 4.85 10.68 5.45 ‡
trimloss6 0.00 0 0 0 ‡
trimloss7 48.39 49.29 50.32 0.87 ‡
trimloss12 NA NA NA NA ‡
BatchS101006M 0 0 0 0 68.58
BatchS121208M 0 0 0 0 233.15
BatchS151208M 0 0.47 1.46 0.67 ‡
BatchS201210M 0.33 1.88 2.61 0.89 ‡
CLay0304H 0 0 0 0 95.88
CLay0304M 0 0 0 0 32.3
CLay0305H 0 0 0 0 38.82
CLay0305M 0 0 0 0 105.41
FLay05H 0 0 0 0 87.58
FLay05M 0 0 0 0 82.84
FLay06H 0 0 0 0 ‡
FLay06M 0 0 0 0 ‡
fo7 0 0 0 0 112.09
fo7 2 0 0 0 0 39.72
fo8 0 0 0 0 147.88
fo9 0 0 0 0 ‡
o7 0 0 0 0 ‡
o7 2 0 0 0 0 ‡
RSyn0830M 0 0 0 0 24.8
RSyn0830M02H 0 0 0 0 64.79
RSyn0830M02M 0 0 0 0 156.43
RSyn0830M03H 0 0 0 0 258.07
RSyn0830M03M 1.4 2.3 3.51 0.88 ‡
RSyn0840M 0 0 0 0 31.7
RSyn0840M02H 0 0 0 0 73.06
RSyn0840M02M 0 0.06 0.32 0.14 ‡
RSyn0840M03H 0 0 0 0 71.99
RSyn0840M03M 7.08 8.91 11.2 1.8 ‡
SLay07H 0 0 0 0 39.17
SLay07M 0 0 0 0 19.35
SLay08H 0 0 0 0 73.6
SLay08M 0 0 0 0 37.49
SLay09H 0 0 0 0 292.66
SLay09M 0 0.06 0.3 0.13 244.73
SLay10H 1.23 6.27 15.67 5.86 ‡
SLay10M 0 0.18 0.46 0.25 ‡
Syn30H 0 0 0 0 1.11
Syn30M 0 0 0 0 1.03
Syn30M02H 0 0 0 0 4.36
Syn30M02M 0 0 0 0 10.43
Syn30M03H 0 0 0 0 9.79
Syn30M03M 0 0 0 0 36.92
Syn30M04H 0 0 0 0 32.42
Syn30M04M 0 0 0 0 92.61
Syn40H 0 0 0 0 1.76
Syn40M 0 0 0 0 3.67
Syn40M02H 0 0 0 0 6.33
Syn40M02M 0 0 0 0 33.57
Syn40M03H 0 0 0 0 52.18
Syn40M03M 0 0 0 0 105.35
Syn40M04H 0 0 0 0 39.92
Syn40M04M 0 0 0 0 171.28

Avg 1.03 1.3 1.69 0.3 65.38

1 NA: Statistics not available.
2 ‡: 5-minute time limit reached.
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Method DW1

Problem MinGap AvgGap MaxGap StDevGap AvgTime
trimloss2 0 0 0 0 0.37
trimloss4 0 0 0 0 ‡
trimloss5 0.00 1.55 3.88 1.76 ‡
trimloss6 0.00 1.83 5.23 1.98 ‡
trimloss7 48.39 49.55 53.55 2.25 ‡
trimloss12 NA NA NA NA ‡
BatchS101006M 0 0 0 0 74.34
BatchS121208M 0 0 0 0 234.03
BatchS151208M 0 0.19 0.92 0.41 ‡
BatchS201210M 2.11 2.42 2.92 0.33 ‡
CLay0304H 0 0 0 0 85.47
CLay0304M 0 0 0 0 30.44
CLay0305H 0 0 0 0 37.5
CLay0305M 0 0 0 0 62.78
FLay05H 0 0 0 0 87.98
FLay05M 0 0 0 0 69
FLay06H 0 0 0 0 ‡
FLay06M 0 0 0 0 ‡
fo7 0 0 0 0 112.45
fo7 2 0 0 0 0 37.32
fo8 0 0 0 0 151.55
fo9 0 0 0 0 ‡
o7 0 0 0 0 ‡
o7 2 0 0 0 0 ‡
RSyn0830M 0 0 0 0 25.29
RSyn0830M02H 0 0 0 0 64.55
RSyn0830M02M 0 0 0 0 144.37
RSyn0830M03H 0 0 0 0 258.35
RSyn0830M03M 0.59 1.13 1.56 0.48 ‡
RSyn0840M 0 0 0 0 33.88
RSyn0840M02H 0 0 0 0 73.3
RSyn0840M02M 0 0 0 0 ‡
RSyn0840M03H 0 0 0 0 68.29
RSyn0840M03M 0 7.33 10.09 4.16 ‡
SLay07H 0 0 0 0 37.71
SLay07M 0 0 0 0 17.84
SLay08H 0 0 0 0 84.61
SLay08M 0 0 0 0 42.01
SLay09H 0 0 0 0 280.41
SLay09M 0 0.06 0.3 0.13 261.3
SLay10H 2.06 6.71 11.58 3.61 ‡
SLay10M 0.06 1.21 4.52 1.86 ‡
Syn30H 0 0 0 0 1.11
Syn30M 0 0 0 0 1.03
Syn30M02H 0 0 0 0 4.36
Syn30M02M 0 0 0 0 10.5
Syn30M03H 0 0 0 0 9.67
Syn30M03M 0 0 0 0 35.29
Syn30M04H 0 0 0 0 32.46
Syn30M04M 0 0 0 0 94.25
Syn40H 0 0 0 0 1.77
Syn40M 0 0 0 0 3.76
Syn40M02H 0 0 0 0 6.33
Syn40M02M 0 0 0 0 51.22
Syn40M03H 0 0 0 0 51.97
Syn40M03M 0 0 0 0 103.76
Syn40M04H 0 0 0 0 40.01
Syn40M04M 0 0 0 0 171.89

Avg 0.93 1.26 1.66 0.3 65.11

1 NA: Statistics not available.
2 ‡: 5-minute time limit reached.
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Method DW2

Problem MinGap AvgGap MaxGap StDevGap AvgTime
trimloss2 0 0 0 0 0.35
trimloss4 0 0 0 0 ‡
trimloss5 0.00 3.69 9.71 4.03 ‡
trimloss6 0.00 0.78 1.96 1.07 ‡
trimloss7 48.39 49.16 49.68 0.54 ‡
trimloss12 NA NA NA NA ‡
BatchS101006M 0 0 0 0 57.79
BatchS121208M 0 0 0 0 246.93
BatchS151208M 0 0.37 1.11 0.49 293.76
BatchS201210M 0.66 1.74 2.5 0.69 ‡
CLay0304H 0 0 0 0 56.59
CLay0304M 0 0 0 0 29.46
CLay0305H 0 0 0 0 38.65
CLay0305M 0 0 0 0 34.23
FLay05H 0 0 0 0 87.99
FLay05M 0 0 0 0 65.48
FLay06H 0 0 0 0 ‡
FLay06M 0 0 0 0 ‡
fo7 0 0 0 0 112.19
fo7 2 0 0 0 0 38.47
fo8 0 0 0 0 156.75
fo9 0 0 0 0 ‡
o7 0 0 0 0 ‡
o7 2 0 0 0 0 ‡
RSyn0830M 0 0 0 0 25.57
RSyn0830M02H 0 0 0 0 67.81
RSyn0830M02M 0 0 0 0 142.48
RSyn0830M03H 0 0 0 0 270.28
RSyn0830M03M 1.1 2.47 3.19 0.98 ‡
RSyn0840M 0 0 0 0 34.26
RSyn0840M02H 0 0 0 0 73.41
RSyn0840M02M 0 0.1 0.5 0.22 ‡
RSyn0840M03H 0 0 0 0 72.81
RSyn0840M03M 6.3 8.65 10.88 1.92 ‡
SLay07H 0 0 0 0 39.01
SLay07M 0 0 0 0 18.1
SLay08H 0 0 0 0 76.11
SLay08M 0 0 0 0 48.93
SLay09H 0 0 0 0 294.15
SLay09M 0 0 0 0 240.26
SLay10H 2.06 3.6 5.96 1.61 ‡
SLay10M 0 1.22 5.08 2.18 ‡
Syn30H 0 0 0 0 1.11
Syn30M 0 0 0 0 1.03
Syn30M02H 0 0 0 0 4.36
Syn30M02M 0 0 0 0 10.22
Syn30M03H 0 0 0 0 9.66
Syn30M03M 0 0 0 0 37.45
Syn30M04H 0 0 0 0 32.46
Syn30M04M 0 0 0 0 90.28
Syn40H 0 0 0 0 1.78
Syn40M 0 0 0 0 3.69
Syn40M02H 0 0 0 0 6.35
Syn40M02M 0 0 0 0 45.4
Syn40M03H 0 0 0 0 52.27
Syn40M03M 0 0 0 0 103.59
Syn40M04H 0 0 0 0 39.98
Syn40M04M 0 0 0 0 181.84

Avg 1.03 1.26 1.59 0.24 63.85

1 NA: Statistics not available.
2 ‡: 5-minute time limit reached.

Table 4: 30 Runs of random walk performance on CMU-IBM library
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Method HR

Problem Start Obj Start Gap End Obj End Gap Time

Trimolss7 23.2 49.68 18.9 21.94 ‡
BatchS201210M 2302924 0.33 2295349* 0 1618.83
RSyn0830M03M -1498.04 2.92 -1543.06* 0 1503.2
RSyn0840M03M -2486.93 9.32 -2742.65* 0 1427.04
SLay10H 139824.1 7.91 130969.4 1.07 ‡

Method DW1

Problem Start Obj Start Gap End Obj End Gap Time

Trimolss7 23 48.39 18.4 18.71 ‡
BatchS201210M 2345035 2.16 2295349* 0 1377.54
RSyn0830M03M -1523.37 1.28 -1543.06* 0 985.91
RSyn0840M03M -2513.14 8.37 -2742.65* 0 1440.42
SLay10H 144585 11.58 129971.1 0.3 ‡

Method DW2

Problem Start Obj Start Gap End Obj End Gap Time

Trimolss7 23 48.39 18.4 18.71 ‡
BatchS201210M 2310423 0.66 2295349* 0 1820.36
RSyn0830M03M -1526.02 1.1 -1543.06* 0 904.76
RSyn0840M03M -2507.26 8.58 -2742.65* 0 1386.98
SLay10H 132926.2 2.58 130996.5 1.09 ‡

Method FP-OPT

Problem Start Obj Start Gap End Obj End Gap Time

Trimolss7 – NA 18.6 20 ‡
BatchS201210M 2324008 1.25 2295349* 0 1001.36
RSyn0830M03M -1520.02 1.49 -1543.06* 0 1084.5
RSyn0840M03M -2673.3 2.53 -2742.65* 0 1133.8
SLay10H 152751.8 17.88 131351.7 1.37 ‡
1 *: Proven optimality.
2 ‡: One hour time limit reached.

Table 5: Numerical experiments of the long run test
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Problem Conti Int LRows NZeros QNZeros

ibell3a 62 60 104 390 59
ibienst1 477 28 576 2185 27

ilaser0 850 151 1000 3000 3231
iportfolio 233 967 202 202200 200

iqiu 792 48 1192 3744 47
iqsp 950 50 250 3552 17801

isqp0 950 50 250 3552 17801
isqp1 900 100 250 3552 17801

itointqor 0 50 1 48 115

Table 6: Problem profiles of selected MIQPs from the Hans D. Mittelmann’s
collections

Method DW2 Cplex

Problem Obj Gap
Time Time

Obj Gap
Time Time

(Found) (Proven) (Found) (Proven)

ibell3a 87875.03* 0 21.14 36.47 87875.03* 0 5.56 6.47
ibienst1 34.21 0 23.74 ‡ 34.21 0 226.87 ‡
ilaser0 2412537.96 0.001 287.57 ‡ 2412505.12 0 33.24 ‡
iportfolio -0.49* 0 58.71 260.83 – NA ‡
iqiu -126.66 0 101.19 ‡ -127.08* 0 140.95 206.87
isqp -21000.45 0 154.45 ‡ -21000.45 0 8.11 ‡
isqp0 -20319.51 0 7.24 ‡ -20319.51* 0 2.03 19.71
isqp1 -18992.68 0 8.48 ‡ -18992.68* 0 3.74 36.47
itointqor -1146.7* 0 118.14 287.61 -1146.7 0 141.5 ‡
1 NA: Statistics not available.
2 * : Proven optimality.
3 –: No solution found.
4 ‡: 5-minute time limit reached.

Table 7: Computational comparison of DW2 with Cplex 12.1
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16. P. Bonami and J. Gonçalves. Heuristics for convex mixed integer nonlinear programs.
Computational Optimization and Applications, 51(2):729–747, 2012.
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