Preface

Part I – Modeling Systems

Chapter 1. Introduction

Chapter 2. Modeling System Components
1. Models and Mathematical Programs
2. Modeling Languages and Environments
3. Instance Representation and Interfaces
4. Optimization Servers and Registries
5. Communications Clients
6. Analyzers
7. Optimization Algorithms and Solvers
8. Function Evaluators and Simulations
9. Modeling Customers

Chapter 3. Optimization Problem Types
1. Background
2. Mixed Integer Linear Programming
   • LP
   • MIP
   • LP Algorithms
   • MIP Algorithms
   • Heuristics
   • LP Software
   • MIP Software
   • Representation and Interfacing
3. Nonlinear Programming
   • Algorithms
   • Software
   • Representation and Interfacing
4. Network Programming
   • Algorithm
   • Software
   • Representation and Interfacing
5. Stochastic Programming
   • Algorithm
   • Software
   • Representation and Interfacing
6. Combinatorial and Discrete Optimization
   • Algorithm
   • Software
• Representation and Interfacing
7. Constraint and Logic Programming
  • Algorithm
  • Software
  • Representation and Interfacing
8. Nondifferentiable Optimization and Optimization of Simulation
  • Algorithm
  • Software
  • Representation and Interfacing
9. Global Optimization
  • Algorithm
  • Software
  • Representation and Interfacing

Chapter 4. Instance Representations
1. Coefficient List Representations
   • Linear Instances - MPS
   • Quadratic Instances
2. Expression Tree Representations
   • Nonlinear Instances
   • Logical Instances and Combinatorial Extension
3. Extensions
   • Network Problem Extensions
   • Stochastic Extensions
   • Other Extensions

Chapter 5. Instance Interfacing and Communications
1. Optimization in a Local Environment
   • Early Way - Matrix Generators
   • Modern Way – Modeling Language Environments
   • Iterative Communications
   • Parallel Computation
2. Optimization over Internet and Distributed Systems
   • Current Development
   • Online Optimization Resources
   • Optimization Servers
   • Communications Clients
   • Application Service Providers (ASP)

Part II – Computing and Distributed Technologies

Chapter 6. Computing Background
1. Operating Systems
2. Programming Languages, Parsers and Compilers
3. Data Structures and Algorithm Analysis
4. Objected Oriented Programming and UML
5. Database Systems and Interfaces
6. Markup Languages
7. Networking Protocols
8. Open Source Environments

Chapter 7. Distributed Technologies
1. Internet, World Wide Web and HTTP/HTML
2. Distributed Computing
3. Mainframe – The Old Paradigm
5. Client Side Technologies
6. Server Side Technologies
7. COM/DCOM – The Microsoft Distributed Computing Model
8. RMI – The Java Distributed Computing Model
9. CORBA – The OMG Distributed Computing Model
10. J2EE – The Java Architecture
11. .NET – The Microsoft Architecture
12. Modularization and Component Technology
13. Multi-tier Architecture
14. Parallel Computing
15. Grid Computing
16. Security

Chapter 8. XML Technologies
1. W3C and the Standardization Process
2. XML – The Ultimate Representation
3. XHTML – The Standard HTML
4. MathML – A Dialect
5. Schema – The New XML Way of Validation
6. XSLT and Xpath – XML Transformation
7. DOM – Tree Based XML Parsing
8. SAX – Sequential XML Parsing
9. Xlink and Xpointer – XML Linking
10. Xquery – XML Query
11. XML Applications

Chapter 9. Service Oriented Architectures (SOA)
1. Background
2. Web Services (WS) – The Future of Computing
3. SOAP – The XML Communication Protocol
4. WSDL – The Service Description
5. WSIL/UDDI – The Registration and Discovery Mechanism
6. WSFL – The Synchronization and Orchestration Mechanism
7. Other Web Services Languages
8. Jini Technology
Chapter 10. XML and Modeling
1. Modeling Level I
2. Modeling Level II
3. Modeling Level III
4. Modeling Level IV

Part III – Optimization Services (OS)

Chapter 11. OS Design and Framework
1. Previous Efforts
2. General Design and Components
3. OSxL and Framework

Chapter 12. OS Representation
1. OSIL (linear) – in honor of the original LP-FML
2. OSgL (general) – general schema
3. OSnL (nonlinear nodes) – nonlinear node definitions
4. OSiL (instance) – optimization instance
5. OSrL (result) – optimization result
6. OSoL (option) – solver option
7. OSaL (analysis) – analyzer metadata
8. OSSL (simulation) – simulation engine input and output
9. OSTL (template) – template holding other representations
10. OSmL (modeling) – XML query based modeling language

Chapter 13. OS Communication
1. OScL (call) – call simulation engines
2. OShL (hook) – hook up solvers
3. OSDL (discover) – discover optimization services
4. OSjL (join) – join OS registries
5. OSfL (flow) – orchestrate flow of OS invocations
6. OSvL (validate) – validate OS representations

Chapter 14. OS Registration and Discovery
1. OSeL (entity) – endpoint OS component static description
2. OSPL (process) – OS component runtime process description
3. OSzL (zero) – dummy instance for sending signals
4. OSqL (query) – query language for OS components
5. OSuL (URL) – query result containing OS component URL addresses
6. OSyL (yellow pages) – organization of registry information
7. OSbL (benchmarking) – benchmark information of OS solvers
8. OSkL (knowledge) – knowledge template holding other component information
9. OSwL (web page) – XSLT for standard web publication of OS components
Chapter 15. OS Libraries

1. Package Design
2. Common Libraries
3. Solver Related Libraries
4. Simulation Related Libraries
5. Analyzer Related Libraries
6. Client Related Libraries
7. Model Related Libraries
8. Registry Related Libraries
9. Sample Classes Using the Libraries

Chapter 16. Future Directions

Appendix

A. OS Web Site
B. OSIL – From the Original LP-FML
C. OS Schemas
D. OSxL Instance Examples
E. OS Library Documentation
F. Technical Appendix
G. Solver Software
H. XML Related Software
I. Suggested Readings
J. Glossary

Bibliography

Index