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The virtues of barrier options that knock in and knock out gradually.

nock-out options relate to ordinary options

“the way crack relates to cocaine”, George

Soros said in his 1995 book. He went on to
explain why he thought they should be banned: “I
would not have said that a few months ago, when I
testified before Congress, but we have had a verita-
ble crash in currency markets since then. As I have
said before, knock-out options played the same role
in the 1995 yen explosion as portfolio insurance did
in the stock market crash of 1987, and for the very
same reason. Portfolio insurance was subsequently
rendered inoperable by the introduction of the so-
called circuit breakers. Something similar needs to
be done now with knock-out options”

While there is no doubt that knock-out options
can have adverse effects on the markets, there is a
solution, “step options” - barrier options with a
finite knock-out (or knock-in) rate -~ which we put
forward in this article.
investors
because they are cheaper than vanilla contracts. By
including a barrier provision in the option contract,

Barrier options are attractive to

an investor can avoid paying for those scenarios he
feels are unlikely, and the reduction in premium can
be substantial, especially when volatility is high.
However. these benefits come at a cost. Knock-out
options are extinguished when the price of the
underlying asset hits a pre-specified price level (bar-
rier) from above, for down-and-out options, or
below, for up-and-out options (Rubinstein and
Reiner, 1991, give closed-form pricing formulas for
all eight types of barrier options).

The discontinuity at the barrier inherent in
knock-out contracts creates risk management prob-
lems both for option buyers and sellers. An erro-
neous price movement through the barrier can
extinguish the option, leaving the buyer without his
position. Even if the investor is generally right on
market direction, an accidental price spike can lead
to the loss of his entire investment.

Furthermore, when large positions of options with
the same barrier level are accumulated in the market,

traders can drive the underlying to the barrier, thus
triggering it and creating massive losses. This is vividly
illustrated by the events in the foreign exchange mar-
ket in 1995. According to the Wall Street Journal of
May 5, 1995: “Knock-out options can roil even the
mammoth foreign exchange markets for brief periods.
David Hale, chief economist at Kemper Financial in
Chicago, notes that in the past year, many Japanese
exporters moved to hedge against a falling doHar with
currency options. Confident at the time that the dollar
would fall no further than 95 yen, the exporters chose
options that would knock out at that level. Once the
dollar plunged through 95 ven early last month, ‘they
lost everything’; he says. The dollar then tumbled as
the Japanese companies, ‘which had lost their hedges,
scrambled to cover’ their large exposures by dumping
dollars.

“Making matters more volatile, dealers say that
pitched battles often erupt around knock-out barri-
ers, with traders hollering across the trading floor
of looming billion-dollar transactions ... In three or
four minutes, it is all over. But, in that time, every
trade gets sucked into the vortex.”

This situation prompted some market partici-
pants to appeal for regulation of barrier options. As
we have seen, George Soros went as far as to sug-
gest an all-out ban.

The barrier option’s delta is discontinuous at the
barrier, thus creating hedging problems for options
sellers as well. To hedge barrier options, dealers
establish positions in a series of standard vanilla
options that provide a good hedge for a wide range
of underlying prices. However, when the underly-
ing nears the barrier level, these static hedges need
to be rebalanced, which results in a flurry of trading
activity in vanilla options. This, in turn, results in
further trading activity in the underlying asset as
dealers who sold vanilla options to hedgers of
knock-out options need 1o hedge their exposure
dynamically. This increases market volatility around
popular barrier levels and increases the cost of
hedging barrier options.
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Thus it is desirable to modify the barrier provi-
sion to retain as much of the premium savings
afforded by the standard barrier provision as possi-
ble; but at the same time to achieve continuity of
both the option’s payout and delta at the barrier.
And this is where the “step option” comes in.

Step options

Consider a standard call with strike K and time to
expiry T = T - t, where t and T denote the contract
inception and expiry times respectively. A down-
and-out provision renders the option worthless as
soon as the underlying price hits a pre-specified
barrier level B. Accordingly, the payout of a down-
and-out call can be written as:’

1, 5, max(S; —K0) (1)

{t,>B}

where S is the underlying price at expiry, L, is the
lowest price of the underlying between inception t
and expiry T, and 1, is the indicator function
equal to one if L ; > B and zero otherwise.

The stochastic model of barrier options is that of
Brownian motion instantaneously killed when the
barrier is hit. To eliminate the discontinuity, we
consider Brownian motion with killing at a finite
rate below the barrier (see, for example, Karlin and
Taylor, 1981).2 '

Price

1. Calculation of occupation time below a specified
barrier level B
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We introduce a finite knock-out rate r, and
define the payout by the formula (Linetsky, 1996):

exp(—t7; )max(S; ~K,0) (2

where T, is the total time during the life of the
option when the underlying price is lower than the
barrier level B (occupation time of the underlying
price process). See, for example, Karatzas and
Shreve (1992).

Figure 1 illustrates the calculation of 75 At -
expiry, the payout of an otherwise identical vanilta
option is first determined and then discounted at
continuously compounded rate 1, for the time the
underlying spent below the barrier during the
option’s lifetime. We call the discount factor
exp(- r; 73) the knock-out factor. It is defined on
price paths and can be represented in the form:

exp(—T; ) = exp(— I "tHB-S, )’du)

where H(x) is the Heaviside step function defined
by H(x) := 1(0) for x 2 0 (x < 0). The integrand
rgH(B-S) is called the step potential. It has the
shape of a step of height Iy (see Figure 2).
Accordingly, we call 2 one-parameter family of path-
dependent options with the payout given by equa-
tion (2) step options. It is easy to see that the
payout (2) coincides with the standard European-
style call max(S - K,0) in the limit of a zero knock-
out rate, and tends to the payout of an otherwise
identical barrier option (1) in the limit of an infi-
nitely high knock-out rate. Thus we have a
sequence of step options approaching the barrier
option - hence the headline of this article.’

A holder of a downand-out step option is
penalised at rate I, for the time the underlying price
spends below the barrier. For a standard barrier, the
knock-out rate is infinitely high and the entire
option payout is instantaneously lost by the option
holder should the underlying price hit the barrier
even momentarily. For any finite knock-out rate,
however, it takes some time below the barrier to
reduce the option payout to close to zero: the
option knocks out gradually.

We define a 90% knock-out time, T g, as time
below the barrier needed to reduce the terminal
payout of a down-and-out step option by 90%, ie,
exp(-r,T ) = 0.1. That is, the holder of a down-and-
out step call receives only 10% of the payout of an
otherwise identical vanilla call at expiry if the asset
spent time T ; below the barrier during the life of
the contract. Another useful measure of knock-out
speed is a single-day knock-out factor B, = exp(-r,
/250), where we have assumed 250 trading days a
year. This is a factor by which the terminal payout is
discounted for every trading day the underlying

3)



spends below the barrier. Obviously, B, is zero for
barrier options and one for vanilla options.

One of the advantages of step options is the abil-
ity to structure contracts with any desired knock-out
rate. By choosing a finite rate, an option buyer
assures himself that the option will never lose its
entire value due to a short-term price movement. An
investor can customise the option by selecting an
knock-out rate appropriate to his risk aversion and
the degree of confidence in the barrier not being hit
during the option’s lifetime. On the other hand,
since the step option delta is continuous at the bar-
rier, the advantage for the dealer is the ability to
hedge step options by trading the underlying. Thus,
step options with finite knock-out rates (gradual
knock-outs) have risk management advantages both
for buyers and sellers.

Let us also mention another positive effect of
regularising barrier options by introducing finite
knock-out rates. Since different market participants
will select different rates, even though they may all
set the barrier at the same obvious support or resis-
tance level, any short-term manipulation by traders
will not cause massive simultaneous knock-outs.
This would help reduce the volatility around popu-
lar barrier levels.

One may also wish to consider other payout
structures of the form:

f(t;)max(S, ~K0) (4)

where f is a given function of the occupation time
(occupation time-based principal amortising fac-
tor). Here, we assume f(0) = 1. The exponential
step call shown in equation (2) is a particularly sim-
ple example with f = exp(- r,75). It corresponds to
continuous amortising at knock-out rate r, below
the barrier. Another choice is a simple linear amorti-
sation:*

max(1-R,1; ,O)ma)((ST -K0) (5)

We call options with the payout (5) linear step
options. ‘The optionality in occupation time is
needed to limit the option buyer’s liability to the
premium paid for the option. Thus, linear step
options are options on both the terminal asset price
and the occupation time. A knock-out time T ; for
the linear step option is defined as the minimum
occupation time below the barrier needed to
reduce the option payout to zero, T; = 1/R;. The
option buyer just needs to specify the desired
knock-out time as a fraction of time to maturity.

Valuation
To value step options we assume the underlying asset
price follows a geometric Brownian motion with

volatility 6 and continuous dividend yield g, and we
live in the Black-Scholes world with constant contin-
uvously compounded riskfree interest rate .
According to the risk-neutral valuation approach, at
inception t the present value of an option with pay-
out (4) is given by the discounted conditional expec-
tation under the risk-neutral measure:

& E, [f(t;)max(S; ~K0)] (6)

This expectation can be calculated in closed form for
any function f by using the Feynman-Kac approach
and solving the corresponding parabolic partial dif-
ferential equation (Linetsky, 1998). The resulting
closed-form pricing formula for the down-and-out
step call (Linetsky, 1996) is, in the case S 2 B:
Step(S,t) = DOC(S, t) + (&)’ Rt

0 J2n(t-v G
(voe ™ (EIN(d;) - vie " KN(d)))d’

where DOC(S,t) is the standard down-and-out call
(Rubinstein and Reiner, 1991), N(x) and n(x) are the
cumulative standard normal distribution function
and its density, respectively, and we have intro-
duced the following notation:

p=r-q-g,y=%,

(7
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In the case S < B, we have:

BY (e Fr—r)e ()

S b X{lel
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exp( ey )dt

Step(S,t) = e “KN(d;

- n(d;)}

(9)

— vy —-Lp,(y)=p/(y)+oy (10)

The function F(1 — 7’) in equations (7) and (9) is
obtained from the discount function f in equation
(4) by integration:

F(r-1)= J’” f(t”)dt”

and for the exponential (2) and linear (5) step
options it is given by:

Fo(t—7)=

exp

(11)

1-e=")
%

(12)
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Table 1. Call values and deltas as functions of the
underlying price S

S ¢ A EStep A LStep A DAG A

85 9.8517  0.4554 1.6062 02376 0.7200  0.1730 0 0
90 12.2641  0.5091 3.2951  0.4602 2.1528  0.4291 0 0
95 14,9373  0.5597 6.5008  0.8598 53548  0.8908 0 1.0058

100 17.8551 006068 10.7342  0.8583 97953 08862 49958  0.9932
105 20.9994 06503 15.0904 0.8607 14.2229  0.8855 9.9376 09841

3. Vanilla, down-and-out exponential
step, linear step and barrier call values*

20 H
Vanilla call
15 A
_—;j L Exponential g
S step call .~
s+ Barrier call
_________ Linear
-------------- step cali
0 T T T |
85 90 95 100 105
Underlying price

* As functions of the current asset price S. The option parameters are: K = 100, B = 95,6 = 0.6,
r = 0.05. t = 0.5 {six months). The exponential step cali parameters are: Bg = 0.9 (ry = 26.34,

Tg = 21.85 trading days). The linear step call parameters are: py = 0.1
. (Rg =25 Tg = 10 trading days, Bz = 0.9)

4. Vanilla, down-and-out exponential
step, linear step and barrier call deltas*

1.0

0.8 7 Exponential step call

06 - .

% Vanilla call
S 044
7" Linear
02 L= step cal Barrier calt
0.0 T T 1
85 90 95 100 105
Underlying price

* As functions of the current asset price S. The option parameters are: K = 100, B = 95,0 = 0.6,
r=0.05, t = 0.5 (six months). The exponential step call parameters are: Bg = 0.9 (ry = 26.34,

Tg = 21.85 trading days). The linear step call parameters are: pg = 0.1
{Rg = 25, Ty = 10 trading days, Bz = 0.9)

finy

2 O<stv<s1-4+
o P % (13)
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We see from equation (7) that the step option
price consists of two parts: the standard down-
and-out call and a step premium that investors
have to pay for the privilege of having the option
knock out gradually with the pre-specified finite

rate. The higher the knock-out rate, the lower the
premium. In the limits r;, = o (R; — o) the
options knock out instantly as soon as the barrier
is hit, and the step premium is equal to zero.

The lower the knock-out rate, the higher the
premium; in the limit of a zero knock-out rate the
premium is the highest and such that the step
option -coincides with an otherwise identical
vanilla option. The knock-out rate controls the
trade-off between premium savings and knock-out
speed. A crucial property of step options is that,’
unlike standard barrier options, their deltas are
continuous at the barrier for any finite knock-out
rate I, (Linetsky, 1996), allowing us to replicate
step options dynamically by trading the underlying
asset and borrowing.

An example calculation is given in Table 1. The
option parameters are: K = 100, B = 95,1 = 0.5
(six months), 6 = 0.6, g = 0 and r = 0.05. The
continuously compounded knock-out rate fy for
the exponential step call is chosen so that the
single-day knock-out factor is B, = 0.9 (ry =
-250InB, = 26.34), ie, 10% of the payout is fost
in the first trading day below the barrier. The cor-
responding 90% knock-out time is about 22 days,
ie, 90% of the payout is lost if the underlying
spends 22 trading days below the barrier during
the contract’s life.

For comparison, the simple knock-out rate R,
for the linear step call is also chosen so that 10% of
the payout is lost in the first day below the barrier,
R, = 250(1 - B,) = 25. The knock-out rate per
trading day is defined as p, := R;/250, and is equal
to 0.1 in our example. The linear step option

-knocks out faster and is extinguished after 10 days

below the barrier. Table 1 and Figures 3 and 4
show vanilla (C), exponential step (EStep), linear
step (LStep) and standard barrier (DAO) call values
and deltas as functions of the underlying price S.
Figure 3 shows that the step option value holds up
well when the underlying falls slightly below the
barrier, but deteriorates quickly as the underlying
continues to fall further, as the probability of get-
ting back up above the barrier decreases and the
expected value of the occupation time below bar-
rier increases. Figure 4 illustrates continuity of the
step option delta at the barrier.

Related exotic options
Another example of the payout of the form (4) is
given by:

l{rgsm} maX(ST - K’O) (14)

for a given constant ¢, O < o < 1. This option is a
down-and-out call that knocks out when the occu-

S r manqve



pation time below the barrier exceeds the fraction
o of the option’s lifetime. The closed-form pricing
formula is given by the general expressions (7) and
(9), where the function F specifies:

ar, O0<tv<(l-ap
Fdelay(T—T’) ={ ( )

(15
-7, (l-a)t<t' <1 )

Delayed barrier options and step options (2) and
(5) have quite different properties. Step options
knock out gradually, amortising their principal for
each unit of time the underlying is below the bar-
rier. In contrast, the holder of a delayed barrier
option receives either the full payout from an oth-
erwise identical vanilla option (if the occupation
time did not exceed the fraction o of the option’s
lifetime) or nothing.

Several new classes of exotic options have
recently appeared in the literature that either pur-
sue similar goals of reducing the knock-out risk of
barrier options or involve occupation times for
other purposes. The Parisian barrier options of
Chesney et al (1997) are delayed barrier options
based on the age of the excursion of price process
below (or above) a given barrier. The owner of a
down-and-out Parisian option loses his entire

1 For brevity in this paper, we discuss down-and-out calls
only. Further details are given in Linetsky (1996).

2 Another interpretation in physics is that of a quantum
particle in an infinitely bigh potential barrier. Here we con-
sider a finite ratber than infinite potential barrier, or a step
potential of finite beight (see, for example, Messiah, 1961,
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