Option pricing | Cutting edge

Exotic spectra

Eigenfunction expansions, well known to physicists and engineers, can also be applied to finance. As Vadim Linetsky demonstrates, the method is particularly suited to barrier and Asian options, with convergence properties that compare favourably with Monte Carlo

In this article, we describe a derivatives pricing methodology based on unbundling all European-style derivatives written on a given underlying assumed to follow some diffusion process into portfolios of primitive securities – building blocks called eigensecurities. Eigensecurities are eigenfunctions of the pricing operator.

The eigenfunction expansion method is a powerful tool for generating analytical solutions to partial differential equations (PDEs). It is one of the main tools for solving the Schrödinger equation in quantum mechanics, as well as many other important PDEs of mathematical physics (Morse & Feshbach, 1953). In probability theory, applications of the eigenfunction expansion method go back to Karlin & McGregor (1960), Itô & McKean (1974, chapter 4) and Wong (1964), who studied spectral representations for transition probability densities of Markov processes. In finance, the eigenfunction expansion method has an especially appealing intuition. The pricing operator is a fundamental object in finance. Being a linear operator, it is then natural to subject it to spectral analysis and construct a spectral representation of the state-price density. If the spectral representation can be constructed explicitly, it provides analytical solutions to pricing problems.

Here, we demonstrate the power of the method on two specific option pricing applications: barrier options under the constant elasticity of variance (CEV) process with volatility skew and arithmetic Asian options under stochastic volatility. For mathematical details, proofs and further results, we refer the reader to Davydov & Linetsky (2001b) and Linetsky (2001).

Among other papers employing the eigenfunction expansion method in finance, Hansen, Scheinkman & Touzi (1998) develop spectral methods for transition probability densities of Markov processes. They are also eigenfunctions of the pricing operator: eigensecurities. Eigensecurities are eigenfunctions of the infinitesimal generator of the underlying diffusion. They are also eigenfunctions of the pricing operator: eigensecurities are eigenfunctions of the infinitesimal generator of the underlying diffusion.

To give an idea of the method, consider the pricing of a European-style derivatives security whose payout at expiry \(V(t, X) = V(t, U) = 0 \) (we assume that the short rate \(r \) is also a function only of \(x \) and \(t \)). The solution may be written in the form:

\[
V(t, x) = \sum_{n=1}^{\infty} c_n e^{-\lambda_n (T-t)} \phi_n(x) \quad (3)
\]

where \(\{\phi_n, n = 1, 2, \ldots\} \) are the eigenvalues of the Sturm-Liouville boundary value problem:

\[
-1/2a^2(x)\phi''_n - b(x)\phi'_n + r(x)\phi_n = \lambda_n \phi_n, \quad \phi(L) = \phi(U) = 0 \quad (4)
\]

and \(\{\phi_n, n = 1, 2, \ldots\} \) are the corresponding eigenfunctions. It is classical that the eigenfunctions form a complete and orthogonal basis in the Hilbert space \(H := L^2([L, U], m) \) of functions on the interval \([L, U] \) square-integrable with the speed density of the underlying diffusion:

\[
m(x) = 2/a^2(x) \exp\left\{ \int_0^x \frac{2b(y)}{a^2(y)} dy \right\}
\]

and with the inner product \(\langle f, g \rangle = \int_L^U f(x)g(x) m(x) dx \). Any payout \(f \in H \) can be written as a linear combination of these solutions with the coefficients:

\[
c_n = \langle f, \phi_n \rangle / \| \phi_n \|^2
\]

or simply \(c_n = \langle f, \phi_n \rangle \) if the eigenfunctions are normalised so that \(\| \phi_n \|^2 = 1 \). We call \(\{\phi_n, n = 1, 2, \ldots\} \) an eigenspectrum. From equation (4), eigensecurities are eigenfunctions of the infinitesimal generator of the underlying diffusion. They are also eigenfunctions of the pricing operator:

\[
E^L \int_{\{X_t = \lambda_n \}} \phi_n(x) \mathbb{1}_{\{T_L \leq T\}} X_t = x \quad e^{-\lambda_n T} \phi_n(x) \quad (5)
\]

where \(T_L := \inf\{t \geq 0 : X_t \not\in (L, U)\} \) is the first exit time from the interval \((L, U) \). The eigenvalue here is \(e^{-\lambda_n T} \), where \(\lambda_n \) is the eigenvalue of the infinitesimal generator and \(T \) is time to expiry.

In the problem with two absorbing barriers, the eigenvalues \(\lambda_n \) grow as \(n^2 \) as the eigenvalue number increases. An observation of practical interest is that the contributions from higher eigenfunctions in the expansion (3) are suppressed by the factors \(e^{-\lambda_n T} \). The longer the time to expiry, the faster the eigenfunction expansion converges. This convergence behaviour contrasts with many other methods, including numerical PDE schemes and Monte Carlo simulation (see Lipton, 2001, chapter 12).

Here we have discussed a regular problem with two knock-out barriers. Both end-points of the interval of interest are regular points for the underlying diffusion process and we have imposed absorbing boundary conditions at the end-points. In cases where only one knock-out barrier or no barriers, the situation is more complicated. Consider a diffusion process (1) on some interval with the left and right end-points \(L \) and \(R \). Feller’s boundary classification classifies end-points into four categories: regular, exit, entrance and natural. Further, natural boundaries can be attracting or unattracting. This refers to the behaviour of the diffusion process near the end-points (Karlin & Taylor, 1981, chapter 15). If there are no natural boundaries, the spectrum is simple and purely discrete. However, if one or both end-points are natural boundaries, the spectrum may be discrete, continuous or mixed (a continuous portion plus some discrete eigenvalues). Furthermore, it may not be

WWW.RISK.NET • APRIL 2002 RISK 85
1. Vanilla calls with CEV

<table>
<thead>
<tr>
<th>Moneyness K/S</th>
<th>CEV call price</th>
<th>Black-Scholes implied volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

It is classical that the functions:

\[\varphi_n(x) = \alpha_n x^\beta / \sqrt{\ln(U/L) \ln(L/U)} \]

form a complete set of normalised eigenfunctions for the problem (8) with \(Q = 0 \) and eigenvalues \(n^2 \pi^2 / B^2 \). Then the same functions are eigenfunctions of the problem with constant \(Q \), but with the eigenvalues \(\lambda_n = Q + n^2 \pi^2 / B^2 \). Inverting the Liouville transformation (7) yields the eigenfunctions of the original problem (6):

\[\varphi_n(x) = x^\beta / \sqrt{\ln(U/L) \ln(L/U)} \]

where:

\[\varphi(q) = \begin{cases}
\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{q^2}{2\sigma^2}}, & \text{if } q > 0 \\
0, & \text{if } q = 0 \\
\frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{q^2}{2\sigma^2}}, & \text{if } q < 0
\end{cases} \]

The double-barrier call price is given by the eigenfunction expansion (3) with the eigenvalues and eigenfunctions (9) and coefficients (10).

Barrier options under the CEV process with volatility skew

Assume that under the risk-neutral measure the underlying follows Cox’s CEV process:

\[dS_t = (\sigma(S_t))^{1/2} dB_t + \mu S_t \frac{dS_t}{S_t}, \quad S_0 = x \]

When \(\beta = 0 \), the process reduces to the standard geometric Brownian motion. For \(\beta = 1 \), the local volatility is decreasing of the function of the underlying and the model exhibits volatility skew similar to the skew observed in the equity index options market. Typical values of the CEV elasticity implicit in S&P 500 stock index option prices are around \(\beta = -2.5 \) to \(-4\). For \(-1/2 \leq \beta \leq 0 \), zero is an exit boundary. For \(\beta < -1/2 \), zero is a regular boundary point, and is specified as an absorbing boundary by adjoining an absorbing boundary condition (see Davydov & Linetsky, 2001a and 2001b, for detailed discussions of the CEV process and Albanese et al., 2001, for interesting generalisations of the CEV process). Here, we focus on the CEV process with \(\beta < 0 \) and \(r > q \) Figure 1 plots the plain vanilla call price and the Black-Scholes implied volatility as functions of the strike price for different values of the elasticity parameter \(\beta \). For each \(\beta \), the second CEV parameter \(\delta \) is selected so that at-the-money local volatility is 25%, i.e., for each \(\beta \) we have \(\sigma_0 = \sigma(100) = \delta(100) = 0.25 \). The larger the absolute value of \(\beta \), the steeper the skew.

The Sturm-Liouville problem now takes the form:

\[-1/2 \sigma^2 x^2 \varphi'' + (r - q) \varphi' + \lambda \varphi = 0 \]

The transformation:

\[y := \sqrt{2} / \sigma \ln(x/L), \quad \varphi(x) = 2^{\beta/2} \sigma^{1/2} \varphi(y(x)) \]

reduces the Sturm-Liouville problem to the Liouville normal form with the constant potential:

\[-v_{yy} + Qv = \lambda v, \quad v(0) = 0, \quad v(b) = 0, \quad B := \sqrt{2} / \sigma \ln(U/L), \quad Q := r + v^2 / 2 \]
with the potential function:

\[Q(y) = b_2/y^2 + b_0 + b_2 y^2, \quad b_2 = 1/4(1/\beta^2 - 1), \]
\[b_0 = r + \mu(\lceil \beta \rceil - 1/2), \quad b_2 = \mu^3/4 \]

(17)

The ODE of the form (16–17) is known in mathematical physics as a stationary Schrödinger equation with the radial harmonic oscillator potential. The eigenfunctions can be expressed in terms of the Whittaker functions \(M_{\kappa,\mu}(c) \) and \(W_{\kappa,\mu}(c) \) (Abramowitz & Stegun, 1972, page 505). Introduce the following notation:

\[m := 1/(\lceil \beta \rceil + \lceil \beta \rceil + 3/2), \quad l := \mu(\lceil \beta \rceil + 3/2) \]
\[u := \mu(\lceil \beta \rceil + 1/2) \]

(18)

and define the function \(\Delta(z) \) (the standard gamma function):

\[\Delta(k,m) := \frac{1}{\Gamma(1 + 2m)} \left[M_{k,m}(z)M_{k,m}(\gamma) - M_{k,m}(z)W_{k,m}(\gamma) \right] \]

(19)

Then the eigenvalues \(\lambda_n = n^2 \) of the problematic (14) and (16) are:

\[\lambda_n = r + 2\mu(\lceil \beta \rceil - m + 1/2) \]

(20)

where \(\{\lambda_n, n = 1, 2, \ldots\} \) are the (simple) roots of the equation \(\Delta_{k,m}(l,u) = 0 \) in the interval \(m + 1/2 < \infty \) (for fixed \(l < u \) and \(m \) defined in (18)). These roots are determined numerically. Let:

\[D_{k,m}(l,u) := \left[-\frac{\partial}{\partial \lambda_n} \Delta_{k,m}(l,u) \right]_{\lambda_n} \]

The corresponding normalised eigenfunctions are:

\[\varphi_n = \frac{1}{N_n} e^{-\frac{1}{2} \Delta_{k,m}(l,z)} \]
\[N_n = \frac{\delta(\lceil \beta \rceil + 1/2)}{D_{k,m}(l,u)W_{k,m}(\gamma)} \]

(21)

The eigenvalues (20) and eigenfunctions (21) are CEV counterparts of the eigenvalues and eigenfunctions (9). We now have Whittaker functions instead of trigonometric functions. The eigenfunctions form a complete orthonormal basis in the Hilbert space \(L^2[L, U, m] \) with the speed density of the CEV process:

\[m(x) = 2/\lceil \beta \rceil + 3/2 \exp(\mu(\lceil \beta \rceil + 1/2)) \]

The call payout can be decomposed on this basis by calculating its inner product with the eigenfunctions:

\[c_p = \Gamma(\lceil \beta \rceil + 1/2) \Gamma(\lceil \beta \rceil + 1/2) \left[W_{k,m}(\gamma) \right]_{\lambda_n} \left[W_{k,m}(\gamma) \right]_{\lambda_n} \]

(22)

\[I_n := \frac{1}{\delta(\lceil \beta \rceil + 1/2)} \left[\frac{U_k}{2m+1} e^{2(M_{k,m+\lambda_0+1}(\gamma) - 2mK_k^{\lceil \beta \rceil + 1/2})} - \frac{K_k^{\lceil \beta \rceil + 1/2}}{2m+1} e^{2(M_{k,m+\lambda_0+1}(\gamma) - 2mK_k^{\lceil \beta \rceil + 1/2})} \right] \]

(23)

\[J_n := \frac{1}{\delta(\lceil \beta \rceil + 1/2)} \left[\frac{U_k}{2m+1} e^{2(W_{k,m+\lambda_0+1}(\gamma) - 2mK_k^{\lceil \beta \rceil + 1/2})} - \frac{K_k^{\lceil \beta \rceil + 1/2}}{2m+1} e^{2(W_{k,m+\lambda_0+1}(\gamma) - 2mK_k^{\lceil \beta \rceil + 1/2})} \right] \]

(24)

To calculate double-barrier calls, substitute the eigenvalues (20), eigenfunctions (21) and coefficients (22–24) in the expansion (3). The Whittaker functions entering the formulas are related to the confluent hypergeometric functions available in Mathematica and Maple. ¹ Note that both the eigenfunctions and the coefficients are given in closed form and we do not need to calculate any integrals numerically or invert Laplace transforms. The only required numerical procedure is the root finding for \(k \).² Table A illustrates convergence of the eigenfunction expansions. The eigenvalues \(\lambda_n \) grow as \(n^2 \) with the higher terms are suppressed by \(e^{-m} \), so the expansion converges very fast. One term is enough for one year to expiry, and five or six terms are needed for one month. In both cases, computation times are a fraction of a second. The table also gives the results from Davydov & Lipton (2001a) and Maple transformation inversion. The values for \(\beta = 0 \) (geometric Brownian motion) are calculated using the analytical formulas in the previous section.

Arithmetic Asian options

We now turn to arithmetic Asian options. We assume that under the risk-neutral measure the underlying follows a geometric Brownian motion \(S_t = S_0 e^{(r-q) \delta \sigma^2 t} \), \(t \geq 0 \). Define a continuous arithmetic average process: \(A_t = \frac{1}{T} \int_0^T S_u du \). An arithmetic Asian call (put) with strike \(K \) and expiry \(T \) delivers the payout \((A_T - K)^+ \). It is sufficient to consider Asian puts. Asian calls can be recovered by applying the well-known put-call parity result for Asian options (Geman & Yor, 1993).

Consider a generalised Asian put payout: \((K - wS_T - (1-w)A_T)^+ \), where \(0 \leq w < 1 \) is the weight parameter. For \(w = 0 \), this payout reduces to the standard Asian put. Following Geman & Yor (1993), standardise the problem as follows:

\[e^{-\mu T} E\left[(K - wS_T - (1-w)A_T)^+\right] = e^{-\mu T} \left(\frac{4S_0(1-w)}{\sigma^2 T} \right)^{p(1)}(x,\kappa,\tau) \]

(25)

where the function \(P(1)(x,\kappa,\tau) \) is defined by:

\[P(1)(x,\kappa,\tau) := E\left[(K - x e^{2(\kappa + \nu) + \nu}))^{1/2} \right] \]

(26)

\[A(x) \] is a Brownian functional, \((\kappa + \nu) \) and \(\nu \) are the standardised parameters \((\kappa < 0) \) (dimensionless time to expiry), \(x \), and \(\nu \) are:

\[\kappa := \frac{\sigma^2 T}{4}, \quad \nu := \frac{\kappa - \kappa K - \frac{T}{S_0(1-w)}}{1-w}, \quad \nu := \frac{2(\kappa - \nu)}{\sigma^2} - 1 \]

(27)

This reduction follows from the scaling property of Brownian motion.

Our starting point is the identity in law for any fixed \(\tau \geq 0 \) due to Dufresne (1989):

\[x e^{2(\kappa + \nu) + \nu}) X = X \]

(28)

where the process \(\{X_t, t \geq 0\} \) is defined by:

\[X_t = e^{2(\kappa + \nu) + \nu}) X_t + \int_0^t x e^{2(\kappa + \nu) + \nu}) dB_t \]

(29)

has an Itô differential:

\[dx_t = [2(v+1)X_t + 1] dt + 2X_t dB_t \]

(30)

and starts at \(X_0 = x \). Thus, for any fixed \(t \geq 0 \), the process \(x e^{2(\kappa + \nu) + \nu}) \) has the same distribution as a one-dimensional diffusion process on \((0, \infty) \) starting at \(x \geq 0 \). Hence, the problem of pricing the arithmetic Asian put reduced to the problem of pricing a vanilla put on the diffusion (30): \(P(1)(x, k, \tau) = E[k - X_\tau \mid X_0 = x] \). One strategy is to consider an option on this diffusion process starting at an independent exponential time and paying out at that (random) time. This can be worked out in closed form in terms of Whittaker functions (Donati-Martin, Ghomrasni & Yor, 2001). For an alternative PDE-based derivation, see Lipton (1999). To recover the option expiring at a fixed time \(T > 0 \) one needs to invert the Laplace transform numerically.

An alternative approach is to develop an eigenfunction expansion (Linetsky, 2001). Diffusion (30) has an entrance boundary at zero and a natural boundary at infinity. For \(v < 0 \), the process has a stationary distribution that is reciprocal gamma (Wong, 1964). The associated Sturm-Liouville problem is:

₅ We used Mathematica 4.0 for all calculations in this article

₆ This can be accomplished with arbitrarily high precision in Mathematica and Maple
A. CEV double-barrier calls

<table>
<thead>
<tr>
<th>N</th>
<th>Double-barrier call T = 12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.8723 5.2942 5.7393 6.7041 7.7843 9.0208</td>
</tr>
<tr>
<td>2</td>
<td>3.0908 3.1116 3.1043 3.9892 7.2103 2.2176</td>
</tr>
<tr>
<td>3</td>
<td>2.9023 3.0386 3.1039 3.1770 3.2347 3.3242</td>
</tr>
<tr>
<td>5</td>
<td>3.0154 3.0820 3.1376 3.2169 3.2598 3.2764</td>
</tr>
</tbody>
</table>

Laplace transform is given by the following eigenfunction expansion. We now present the resulting formulas. Details of the proof can be found in Linetsky (2001).

\[-2x^2\psi_n - 2(2n+1)x + 1] = \lambda \psi_n, \quad x \in (0, \infty) \tag{31}\]

This problem is singular at both end-points 0 and \(\infty\). Both end-points are of the limit point type in Weyl's classification and no additional boundary conditions are allowed at the end-points. The Liouville transformation:

\[
y := 1/\sqrt{2} \ln x, \quad \varphi(x) = x^{-\nu} \psi(y(x))
\]

reduces the ODE (31) to the Liouville normal form:

\[-\nu \varphi + Q(y) \varphi = \lambda \varphi, \quad Q(y) = \frac{1}{8} e^{-3\delta y} + \frac{v-1}{2} e^{-\delta y} + \frac{v^2}{2} - \infty < y < \infty \tag{32}\]

The ODE (32) has the form of the stationary Schrödinger equation with Morse potential well known in quantum mechanics (Morse, 1929, and Morse & Feshbach, 1953, pages 1671-1672). For \(v > 0\), this problem has a purely continuous spectrum in \((v^2/2, \infty)\). For \(v < 0\), there are \(|v|/2 + 1\) additional discrete eigenvalues in the interval \([0, v^2/2]\). The natural boundary at infinity is oscillatory for the ODE (31) for \(k > v^2/2\) (any solution has an infinite number of zeros increasing towards infinity) and this results in the continuous spectrum in \((v^2/2, \infty)\). Therefore, the corresponding eigenfunction expansion contains an integral that has to be calculated numerically.

To avoid numerical integration, fix a large number \(b > 0\) and consider an up-and-out put on the diffusion (30) with the knock-out barrier placed at \(b\). For sufficiently large \(b\) the value of this up-and-out put:

\[
R_b^{(v)}(x, k, \tau) = \mathbb{E}_T \left[1_{1_{T > \tau}} \left(k - X_T\right)^+ | X_0 = x\right], \quad T := \inf \{t \geq 0 : X_t = b\}
\]

will closely approximate the vanilla put on diffusion (30), \(P^{(v)}(x, k, \tau) = \mathbb{E}_T \left[k - X_T\right]^+ | X_0 = x\). The problem on the finite interval \((0, b]\) with the absorbing boundary condition at \(b\) has a purely discrete spectrum. The eigenfunctions \(\psi_n\) and coefficients \(c_n\) can be found in closed form, and we obtain an analytical expression for \(P_b^{(v)}(x, k, \tau)\). Taking the limit \(b \to \infty\), we recover the eigenfunction expansion for the original problem on the infinite interval \((0, \infty)\) with continuous spectrum. As a final step, note that the starting value \(x\) of the process (30) depends on \(w\) (equation (27)). The standard American put payoff is obtained in the limit \(w \to 0\). This corresponds to the process (30) at zero (zero is an entrance boundary and, hence, the process can be started there). Taking the limit \(x \to 0\) in the eigenfunction expansions for \(P_b^{(v)}(x, k, \tau)\) and \(P^{(v)}(x, k, \tau)\) produces the desired pricing formulas for the standard American put upon substituting in equation (26) and setting \(w = 0\). We now present the resulting formulas. Details of the proof can be found in Linetsky (2001).

The formulas for the functions \(P_b^{(v)}(x, k, \tau) = \lim_{b \to \infty} P_b^{(v)}(x, k, \tau)\) and \(P^{(v)}(x, k, \tau) = \lim_{b \to \infty} P_b^{(v)}(x, k, \tau)\) will be expressed in terms of the Whittaker functions, gamma function, the incomplete gamma function \(\Gamma(a, z)\) and the generalised Laguerre polynomials \(L_\nu^{(0)}(z)\) (Abramowitz & Stegun, 1972).

Fix a large number \(b > k\). Let \(\{p_{n, b}, n = 0, 1, 2, ...\}\) be the zeros on the positive real line \(p > 0\) of the Whittaker function \(W_{\nu, \kappa}(x)\) with the fixed index \(\kappa = (1 - v^2)/2\), fixed argument \(z = b/(2b)\) and the purely imaginary second index \(\mu = iv/2\), \(p > 0\). That is, \(p_{n, b}\) are the positive roots of the equation:

\[
W_{\nu, \kappa}(x) = 0
\]

This equation has an infinite set of simple roots on the positive real axis. If the roots are ordered by \(0 < p_{n, b} < p_{n+1, b} < \ldots\), then \(p_{n, b} \to \infty\) as \(n \to \infty\). Let:

\[
\eta_{n, b}(b) := \left(-\frac{\partial W_{\nu, \kappa}(x)}{\partial \mu}\right)_{x = b}
\]

Furthermore, let \(m_b(n) \geq 0\) be the total number of roots of the equation:

\[
W_{\nu, \kappa}(x) = 0
\]

in the interval \(0 \leq q \leq \eta_{n, b}(b)\). Let \(\{m_b(n), n = 0, 1, \ldots, m_b(n)\}\) be the corresponding roots. Let:

\[
\eta_{n, b}(b) := \left(-\frac{\partial W_{\nu, \kappa}(x)}{\partial \mu}\right)_{x = b}
\]

Then the function \(P^{(v)}(b, k, \tau)\) is given by the following eigenfunction expansion (\(\Sigma_{n=0}^\infty \) by convention):

\[
P^{(v)}(k, \tau) = \sum_{n=0}^\infty e^{-m_b(n)} \frac{m_b(n)}{4\nu^{(0)}(b)} k^{1/2} e^{-\nu/2} W_{\nu, \kappa}(1 + m_b(n)) \frac{1}{2\kappa} M \frac{1}{2\nu/ \kappa} (1 - e^{-\nu/2})
\]

As \(b\) increases towards infinity, the eigenvalues are spaced closer and closer together and in the limit merge into the continuous spectrum. In the limit \(\lim_{b \to \infty} P^{(v)}(b, k, \tau) = P^{(v)}(k, \tau)\) the series formula (33) yields the integral formula (1) denotes the integer part of \(x\).

B. Asian call option prices \((q = 0\) and \(K = 2.0))

<table>
<thead>
<tr>
<th>Case</th>
<th>(r)</th>
<th>(\sigma)</th>
<th>(T)</th>
<th>(S_0)</th>
<th>(\nu)</th>
<th>(\tau)</th>
<th>(EE)</th>
<th>(MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
<td>0.10</td>
<td>1</td>
<td>2.0</td>
<td>3</td>
<td>0.025</td>
<td>0.0559860415 (400)</td>
<td>0.05802 (0.00017)</td>
</tr>
<tr>
<td>2</td>
<td>0.18</td>
<td>0.30</td>
<td>1</td>
<td>2.0</td>
<td>3</td>
<td>0.025</td>
<td>0.218375466 (571)</td>
<td>0.2185 (0.00059)</td>
</tr>
<tr>
<td>3</td>
<td>0.025</td>
<td>0.25</td>
<td>2</td>
<td>2.0</td>
<td>0.6</td>
<td>0.3125</td>
<td>0.172268410 (41)</td>
<td>0.1725 (0.00063)</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>0.50</td>
<td>1</td>
<td>1.9</td>
<td>0.6</td>
<td>0.025</td>
<td>0.193173790 (24)</td>
<td>0.1933 (0.00084)</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.50</td>
<td>1</td>
<td>2.0</td>
<td>0.6</td>
<td>0.3125</td>
<td>0.246156905 (23)</td>
<td>0.2465 (0.00095)</td>
</tr>
<tr>
<td>6</td>
<td>0.05</td>
<td>0.50</td>
<td>2</td>
<td>2.0</td>
<td>0.6</td>
<td>0.3125</td>
<td>0.3062203648 (23)</td>
<td>0.3064 (0.00106)</td>
</tr>
<tr>
<td>7</td>
<td>0.05</td>
<td>0.50</td>
<td>2</td>
<td>2.0</td>
<td>0.6</td>
<td>0.3125</td>
<td>0.3500952190 (13)</td>
<td>0.3503 (0.00146)</td>
</tr>
</tbody>
</table>
The eigenfunction expansion approach is a powerful tool for generating analytical option pricing formulas. While general-purpose numerical methods are required in practice to handle numerous market realities such as time-dependent parameters, discrete dividends, discrete sampling, day count conventions, etc, analytical formulas provide important accuracy benchmarks. Importantly, there is no loss of precision in calculating the Greeks. The analytical eigenfunction expansion approach can also handle long-dated contracts. For longer times to expiry, a few terms are often enough to produce high accuracy.

Vadim Linetsky is associate professor in the department of industrial engineering and management sciences at the McCormick School of Engineering and Applied Sciences at Northwestern University.

http://users.iems.nwu.edu/~linetsky

REFERENCES

Abramowitz M and I Stegun, 1972
Handbook of mathematical functions
Dover, New York

Albanese C, G Campolieti, P Carr and A Lipton, 2001
Black-Scholes goes hypergeometric
Risk December, pages 99–103

Beagley D, 1991
Tax clientele and stochastic processes in the gilt market
Working paper, Graduate School of Business, University of Chicago

Davydov D and V Linetsky, 2001a
Pricing and hedging path-dependent options under the CEV process
Management Science 47, pages 949–965

Davydov D and V Linetsky, 2001b
Pricing options on scalar diffusions: an eigenfunction expansion approach
Submitted for publication

Davydov D and V Linetsky, 2002
Structuring, pricing and hedging double-barrier step options
Journal of Computational Finance, winter, pages 55–87

Donati-Martin C, R Gohmrasni and M Yor, 2001
On certain Markov processes attached to eigenfunctions of Brownian motion: applications to Asian options
Revista Matematica Iberoamericana 17(1), pages 179–193

Dufresne D, 1989
Weak convergence of random growth processes with applications to insurance
Insurance: Mathematics and Economics 8, pages 187–201

Dufresne D, 2000
Laguerre series for Asian and other options

Mathematical Finance 10, pages 407–428

Eydeland A and H Geman, 1995
Dominio efecto
Risk April, pages 65–67

Fu M, D Madan and T Wang, 1997
Pricing Asian options: a comparison of analytical and Monte Carlo methods
Journal of Computational Finance 2, pages 49–74

Geman H and M Yor, 1993
Bessel processes, Asian options and perpetuities
Mathematical Finance 3, pages 349–375

Geman H and M Yor, 1996
Pricing and hedging double barrier options: a probabilistic approach
Mathematical Finance 6, pages 365–378

Goldstein R and W Keirstead, 1997
On the term structure of interest rates in the presence of reflecting and absorbing boundaries
Working paper, Ohio State University

Hansen L, J Scheinkman and N Touzi, 1999
Spectral methods for identifying scalar diffusions
Journal of Econometrics 86, pages 1–32

Ito K and H McKean, 1974
Diffusion processes and their sample paths
Springer, Berlin

Karlin S and J McGregor, 1960
Classical diffusion processes and total positivity
Journal of Mathematical Analysis and Applications 1, pages 183–183

Karlin S and H Taylor, 1981
A second course in stochastic processes
Academic Press, San Diego

Kunitomo N and M Ikeda, 1992
Pricing options with curved boundaries
Mathematical Finance 2, pages 275–296

Lewis A, 1998

Applications of eigenfunction expansions in continuous-time finance
Mathematical Finance 8, pages 349–383

Lewis A, 2000
Option valuation under stochastic volatility
Finance Press, California

Linetsky V, 2001
Exact pricing of Asian options: an application of spectral theory
Submitted for publication

Lipton A, 1999
Similarities via self-similarities
Risk September, pages 101–105

Lipton A, 2001
Mathematical methods for foreign exchange
World Scientific, Singapore

Morse P, 1929
Diatomic molecules according to the wave mechanics. II. Vibrational levels
 Physical Review 34, pages 57–64

Morse P and Feshbach, 1953
Methods of theoretical physics, parts I and II
McGraw-Hill

Pelsser A, 2000
Pricing double barrier options using analytical inversion of Laplace transforms
Finance and Stochastics 4, pages 95–104

Wong E, 1964
The construction of a class of stationary Markoff processes

Yor M, 2001
Exponential functions of Brownian motion and related processes
Springer, Berlin