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1. INTRODUCTION

In this paper we develop an option pricing methodology
based on unbundling all contingent claims into portfolios
of primitive securities called eigensecurities. Eigensecuri-
ties are eigenvectors of the pricing operator (present value
operator).

Arrow-Debreu securities, each paying one dollar in one
specific state of nature and nothing in any other state, are
the fundamental building blocks in asset pricing theory
(see Duffie 2001). In a continuum of states, the prices of
Arrow-Debreu securities are defined by the state-price den-
sity, which gives for each state x the price of a security
paying one dollar if the state falls between x and x+dx.
If we know the functional form of the state-price density,
we can price any European-style contingent claim by inte-
grating the terminal payoff against the state-price density.
In the diffusion setting, the state-price density can be found
as a fundamental solution of the pricing partial differen-
tial equation (PDE) subject to some boundary conditions.
Unfortunately, the task of solving the pricing PDE in closed
form is often formidable, and no explicit analytical expres-
sions for the state-price density are available in many cases
of interest in applications.

Here we develop an alternative valuation methodology.
Instead of using Arrow-Debreu securities to span the space
of European-style contingent claims written on a scalar dif-
fusion process, we introduce a concept of eigensecurities,
or eigenvectors of the pricing operator, as fundamental
building blocks in our approach.1 Eigensecurities diagonal-
ize the pricing operator. All other European-style contin-

gent claims with square-integrable payoffs are represented
as portfolios of eigensecurities. Furthermore, the connec-
tion between eigensecurities and Arrow-Debreu securities
can be established as follows. Arrow-Debreu securities
themselves can be formally unbundled into portfolios of
eigensecurities. This produces an eigenfunction expansion
of the state-price density (spectral representation of the
state-price density). Depending on the nature of the diffu-
sion process and boundary conditions, the spectrum can be
discrete, continuous, or mixed (see McKean 1956; Wong
1964; Ito and McKean 1974, pp. 149–161; Karlin and
Taylor 1981, pp. 330–340; and Schoutens 2000 for applica-
tions of eigenfunction expansions, called eigen-differential
expansions by Ito and McKean, to diffusion processes).

The eigenfunction expansion method is a powerful com-
putational tool for derivatives pricing. First, while the state-
price density solves the boundary-value problem for the
pricing PDE, the eigensecurities are solutions to the static
pricing equation without the time derivative term. In the
scalar diffusion context, this static pricing equation can be
interpreted as a second-order ordinary differential equa-
tion (ODE) of the Sturm-Liouville type (see Dunford and
Schwartz 1963, Levitan and Sargsjan 1975, Stakgold 1998,
Titchmarsh 1962, and Zwillinger 1998 for the account of
the Sturm-Liouville theory). Second, in cases where the
state space is a finite interval with two unmixed (e.g.,
absorbing or reflecting) boundary conditions at the end-
points, the spectrum of the associated Sturm-Liouville
problem is guaranteed to be simple, purely discrete, and
bounded below. Accordingly, eigenfunction expansions for
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security prices are infinite series. Moreover, eigenvalues
�n, n = 1�2� � � � , grow as n2 and eigenfunction expan-
sions converge rapidly, with contributions from the higher
eigenfunctions suppressed by the factors e−�nT (where T is
time to maturity). Only a limited number of terms in the
expansion are typically needed to achieve high accuracy in
applications.

Several applications of the spectral method to prob-
lems in financial economics have already been considered
in the literature. Hansen et al. (1998) and Florens et al.
(1998) develop spectral methods for econometric applica-
tions (estimation of scalar diffusions). Beaglehole (1991)
and Goldstein and Keirstead (1997) apply the eigenfunc-
tion expansion approach to the pricing of bonds when the
short-rate process follows a scalar diffusion. In an interest-
ing recent paper, Lewis (1998) applies the eigenfunction
expansion approach to solve two problems in continuous-
time finance: pricing options on stocks that pay dividends
at a constant dollar rate and pricing bonds under a short-
rate process with nonlinear drift. Lewis (2000) applies
the eigenfunction expansion approach to the analysis of
stochastic volatility models.

In this paper, we develop a general eigenfunction expan-
sion method for claims contingent on scalar diffusions
and study two specific applications: Pricing vanilla, single-
barrier, and double-barrier options under Cox’s constant
elasticity of variance (CEV) process and interest rate
knock-out options in the Cox-Ingersoll-Ross (CIR) term-
structure model.

To give a rough idea of the method, consider the pric-
ing of a European-style derivative security whose payoff at
expiration time T is a function f of a single state variable
X, which follows a scalar diffusion process under the risk-
neutral measure:

dXt = b
Xt�dt+a
Xt�dBt� X0 = x�

Suppose the derivative contract has a double-barrier pro-
vision: If at any time between the contract inception and
expiration either a lower barrier L or an upper barrier U is
violated, the contract is canceled (knocked out). It is well
known that the value V of the derivative security, consid-
ered as a function of current time t and state x, solves the
fundamental pricing PDE

1
2
a2
x�

�2V

�x2
+b
x�

�V

�x
− r
x�V =−�V

�t
�

with the payoff condition at expiration V 
x�T � = f 
x�
and two boundary conditions at the barriers V 
L� t� =
V 
U� t� = 0 (we have assumed that the instantaneous risk-
free interest rate r is also a function only of x). We look
for solutions in the form

V 
x� t� =
�∑

n=1

cn e−�n
T−t��n
x��

Due to the linear form of the PDE, each of the �n
x� satisfy
the ODE

−1
2
a2
x�

d2�n

dx2
−b
x�

d�n

dx
+ r
x��n = �n�n�

with the boundary conditions �n
L�=�n
U�= 0. It is clas-
sical that solutions ��n�

�
n=1 to this boundary-value ODE

problem form a complete and orthogonal basis in the
Hilbert space of all square-integrable functions on the inter-
val �L�U � with the weight �
x� given by Equation (4), and
thus any such function can be written as a linear combina-
tion of these solutions (eigenfunctions). In cases with only
one barrier or no barriers, the problem may have a contin-
uous spectrum, and there is an integral in place of the sum.

The remainder of this paper is organized as follows. In
§2 we formally introduce eigensecurities and develop the
general methodology of pricing options on scalar diffusions
via eigenfunction expansions. Section 2.1 deals with regu-
lar problems. Section 2.2 discusses singular problems. In §3
we apply the method to vanilla, single-barrier, and double-
barrier options under the CEV process. Our main result is
the analytical inversion of the Laplace transforms in time
to expiration for CEV barrier option prices obtained by
Davydov and Linetsky (2001). In §4 we apply the method
to interest rate knock-out options in the CIR term-structure
model. In §5 we give computational results, illustrate con-
vergence of eigenfunction expansions for barrier options,
and compare their computational performance with numer-
ical finite-difference PDE schemes. Section 6 concludes the
paper. Proofs are collected in the appendix.

2. AN EIGENFUNCTION EXPANSION APPROACH
FOR OPTIONS ON SCALAR DIFFUSIONS

2.1. Regular Problems

2.1.1. General Set-Up. In this paper, we take an equiv-
alent martingale measure Q as given and assume that
under Q the state variable in our economy follows a
one-dimensional, time-homogeneous diffusion process �Xt�
t � 0� taking values in some interval D ⊂ � with the end-
points � and �, −�� �< ���, and with the infinitesimal
generator


�f �
x� = 1
2
a2
x�f ′′
x�+b
x�f ′
x�� (1)

We assume that diffusion and drift coefficients a
x� and
b
x� are continuous and a
x� > 0 for all x ∈ 
����. The
boundary behavior at the end-points � and � depends on the
behavior of functions a
x� and b
x� as x → � and x → �.2

If any of the end-points is a regular boundary, we adjoin
a killing boundary condition at that end-point, sending the
process to a cemetery state � at the first hitting time of the
end-point. We also assume that the instantaneous risk-free
interest rate is a function of the state variable, rt = r
Xt�,
and r
x� is nonnegative and continuous for all x ∈ 
����.

Let I = 
L�U� be an interval in the interior of D,
�< L < U < �, and assume that the initial state x ∈ 
L�U�.
Let f be a square-integrable function on I . Consider a
double-barrier claim that pays off an amount f 
XT � at expi-
ration T > 0 if the process X does not leave the interval

L�U� prior to expiration, and zero otherwise. Then the
price of this double-barrier claim at time t = 0 is given by
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the risk-neutral expectation of the discounted payoff

V 
x�T � = Ex

[
e−

∫ T
0 r
Xt�dtf 
XT �1��
L�U�>T �

]
� (2)

where the subscript x in Ex signifies that the process X
starts at x at t = 0, �
L�U� = inf�t � 0" Xt 	 
L�U�� is the
first exit time from 
L�U�, and 1�A� is the indicator function
of the event A. The following proposition summarizes the
eigenfunction expansion method in this setting.

Proposition 1. Let � and � be the scale and speed
densities3 of the diffusion process (1):

�
x� = exp
{
−
∫ x 2b
y�

a2
y�
dy

}
� (3)

�
x� = 2
a2
x��
x�

� (4)

Let � = L2
�L�U ���� be the Hilbert space of functions
on 
L�U� square-integrable with the speed density � and
endowed with the inner product


f � g� =
∫ U

L
f 
x�g
x��
x�dx� (5)

(i) � admits a complete orthonormal basis ��n
x��
�
n=1,
�n��m� = 1 
0� if n=m (n �=m), such that �n are eigen-

vectors (eigenfunctions) of the pricing operator

Ex

[
e−

∫ T
0 r
Xt�dt1��
L�U�>T ��n
XT �

]
= e−�nT �n
x� (6)

for some 0 < �1 < �2 < · · · < �n < · · · with �n → � as
n→�. Any payoff f ∈� is in the span of eigenpayoffs �n:

f =
�∑

n=1

cn �n� (7)

cn = 
f ��n�� (8)

and convergence is in the norm of the Hilbert space.
(ii) Let 	 be the second-order differential operator (the

negative of the infinitesimal generator of the pricing semi-
group)


	f �
x� "=−1
2
a2
x�f ′′
x�−b
x�f ′
x�+ r
x�f 
x�

= − 1
�
x�

(
f ′
x�
�
x�

)′
+ r
x�f 
x�� (9)

where the second equality in 
9� follows from the defini-
tions of the scale and speed densities 
3� and 
4�. The
eigenvalue–eigenfunction pairs 
�n��n� solve the second-
order ODE with the two Dirichlet boundary conditions
(regular Sturm-Liouville boundary-value problem):4


	u�
x� = �u
x�� u
L� = 0� u
U� = 0� (10)

(iii) The price of the double-barrier claim 
2� is given
by the eigenfunction expansion

V 
x�T � =
�∑

n=1

cn e−�nT �n
x�� (11)

Proof. See the appendix.

Proposition 1 unbundles any European-style, double-
barrier contingent claim with the payoff in � into a portfo-
lio of eigensecurities with eigenpayoffs �n. The pricing is
then automatic by the linearity of the pricing operator and
the eigenvector property of the eigenpayoffs (6). From the
practical standpoint, all the work is at the stage of deter-
mining the eigenvalues �n and the corresponding normal-
ized eigenfunctions �n. This is accomplished by solving the
regular Sturm-Liouville boundary value problem (9)–(10).

So far we have limited our discussion to payoffs
that occur at some prespecified time T � 0. Our results
can be straightforwardly extended to continuous dividend
streams. Consider a security with dividends paid contin-
uously during �0� T ∧�
L�U��. The dividends stop at time
T or the first exit time �
L�U�, whichever comes first. Let
ft = f 
Xt�1��
L�U�>t� be the dividend-rate process, so that
the cumulative dividend process of a security is Dt =∫ t

0 f 
Xu�1��
L�U�>u�du� Then the risk-neutral pricing formula
is (e.g., Duffie 2001, p. 225)

V 
x�T � = Ex

[∫ T

0
e−

∫ t
0 r
Xu�duf 
Xt�1��
L�U�>t� dt

]
�

Application of Equation (11) and Fubini’s theorem yields
the result for continuous dividend streams:

V 
x�T � =
�∑

n=1

(
1− e−�nT

�n

)
cn�n
x�� cn = 
f ��n��

2.1.2. Determining Eigenvalues and Eigenfunctions.
From the results in the previous section, the continuous
state-price density p
t) x� y� with two killing boundary con-
ditions at L and U has a spectral representation:

p
t) x� y�dy ≡ Ex

[
e−

∫ t
0 r
Xu�du1��
L�U�>t�)Xt ∈ dy

]

=
�∑

n=1

e−�nt�n
x��n
y��
y�dy� (12)

Introduce a resolvent kernel or Green’s function as the
Laplace transform of the transition probability density
(s > 0)

Gs
x� y� "=
∫ �

0
e−stp
t) x� y�dt� (13)

This definition of the Green’s function is customary in
probability theory (e.g., Borodin and Salminen 1996; note
that Borodin and Salminen define the Green’s function with
respect to the speed measure, while here we define it with
respect to the Lebesgue measure). To simplify the subse-
quent formulae, it is convenient to change the sign of the
transform variable s =−� and define the Green’s function
as follows:

g
x� y)�� "= G−�
x� y��

This definition of the Green’s function is customary in the
Sturm-Liouville theory (e.g., Stakgold 1998). Note that in
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Davydov and Linetsky (2001) we used the notation � for
the transform variable s. Thus, our � here is the negative
of the � in Davydov and Linetsky (2001).

From Equation (12), the Green’s function of the regular
Sturm-Liouville problem with two Dirichlet boundary con-
ditions can be represented as

g
x� y)�� =�
y�
�∑

n=1

�n
x��n
y�

�n −�
� (14)

Continuing the right-hand side of Equation (14) to the
whole complex � plane, for each x� y ∈ 
L�U� the Green’s
function is a meromorphic function of � with simple poles
at �=�n, n= 1�2� � � � , and with the corresponding residues
−�
y��n
x��n
y�. In practice, one way to determine the
eigenvalues and the corresponding normalized eigenfunc-
tions �n of the regular Sturm-Liouville problem is to con-
struct the Green’s function in such a way that we can keep
track of its dependence on �, and then find its poles and
calculate the residues.

We note that for each y ∈ 
L�U� the Green’s function
g
x� y)�� is the unique continuous solution of the inho-
mogeneous ODE with two Dirichlet boundary conditions
(,
x� is the Dirac delta function):


	−��g
x� y)�� = ,
x−y�� x ∈ 
L�U��

g
L� y)�� = g
U� y)�� = 0� (15)

The solution to this boundary-value problem can be con-
structed as follows (see Stakgold 1998, p. 441). For each
complex �, let -�
x� and .�
x� be the unique solutions of
the homogeneous ODE


	u�
x� = �u
x�� x ∈ 
L�U�� (16)

with the initial conditions (prime denotes differentiation
in x)

-�
L� = 0� - ′
�
L� = 1 (17)

and

.�
U� = 0� .′
�
U� =−1� (18)

For each x, the -�
x� and .�
x� are entire functions of
� (analytic in the whole � plane). This follows from the
fact that -�
x� and .�
x� satisfy the initial conditions inde-
pendent of � and an ODE where � appears analytically
(see Stakgold 1998, p. 441, or Levitan and Sargsjan 1975).
By Equations (16) and (9), the Wronskian of the functions
.�
x� and -�
x� is of the form

Wx
.�� -�� ≡ .�
x�-
′
�
x�−-�
x�.

′
�
x� = C
���
x�� (19)

where �
x� is the scale density (3) and C
�� is indepen-
dent of x but may depend on �. Then the Green’s function
of the regular Sturm-Liouville problem with two Dirichlet
boundary conditions can be taken in the form (Stakgold
1998, p. 441) (x∧y "= min�x� y�, x∨y "= max�x� y�):

g
x� y)�� =�
y�
-�
x∧y�.�
x∨y�

C
��
� (20)

Because - and . are entire functions of �, so are - ′, .′,
W , and C. Let � be a zero of C, i.e., C
�� = 0. Then the
Wronskian of -�
x� and .�
x� vanishes, and these func-
tions are linearly dependent for this value of �. In view of
their initial values neither function can vanish identically
in x. Therefore -�
x� is a nontrivial constant multiple of
.�
x�, and both functions satisfy the two boundary con-
ditions and the ODE in (10). Thus, � is an eigenvalue
of (10) with eigenfunction (not normalized) -�
x�. From
(14) it is clear that at an eigenvalue g
x� y)�� has a sim-
ple pole, and therefore C must vanish. Thus, we conclude
that the (simple) zeros of C
�� are located along the pos-
itive real axes and coincide with the eigenvalues of the
Sturm-Liouville problem (10). We label the eigenvalues
0 < �1 < �2 < · · ·< �n < · · · with �n →� as n→�, and

-�n

x� = An.�n


x�� (21)

where An is a real nonzero constant. Thus, -�n

x� (or

.�n

x�) is a real eigenfunction corresponding to the simple

positive eigenvalue �n. Neither -�n

x� nor .�n


x� is nor-
malized. To find the normalized eigenfunctions, we note
that the residue of g
x� y)�� at � = �n is

�
y�
-�n


x∧y�.�n

x∨y�

C ′
�n�
=�
y�

-�n

x�-�n


y�

AnC
′
�n�

=�
y�
An.�n


x�.�n

y�

C ′
�n�
� (22)

where

C ′
�n� "= dC
��

d�

∣∣∣∣
�=�n

� (23)

On the other hand, from (14) the residue of g
x� y)�� at
� = �n is equal to −�
y��n
x��n
y�, and we recognize
that the normalized eigenfunction �n
x� is given by

�n
x� =± -�n

x�√−AnC

′
�n�
=±

√
−An

C ′
�n�
.�n


x�� (24)

Thus, from the practical standpoint, the problem of finding
eigenvalues and eigenfunctions reduces to solving the two
initial value problems for the -�
x� and .�
x�, calculating
their Wronskian, and determining its zeros.

2.1.3. Example: Double-Barrier Options Under the
Geometric Brownian Motion Process. Assume that
under the risk-neutral measure Q the underlying asset price
follows a geometric Brownian motion

St = Se2
Bt+3t�� t � 0� (25)

where �Bt� t � 0� is a standard Brownian motion, 2 > 0 is
the constant volatility, r � 0 is the constant risk-free interest
rate, q � 0 is the constant dividend yield, S > 0 is the initial
asset price at t = 0, and

3 "= 1
2

(
r −q− 22

2

)
� (26)
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The process (25) solves the SDE

dSt = 
r −q�St dt+2St dBt� S0 = S� (27)

Consider a double-barrier call option with the strike price
K, expiration date T , and two knock-out barriers L and U ,
0 <L<K <U . The knock-out provision renders the option
worthless as soon as the underlying price leaves the price
range 
L�U�. Double barrier options under the assump-
tion of geometric Brownian motion have been studied by
Kunitomo and Ikeda (1992), Geman and Yor (1996), Zhang
(1997), Pelsser (2000), and Schroder (1999). The double-
barrier call payoff is

1��
L�U�>T �
ST −K�+� (28)

where �
L�U� = inf�t� 0" St �∈ 
L�U��, and x+ ≡max�x�0�.
Then the double-barrier call price at t = 0 is given by the
risk-neutral expectation of the discounted payoff

C
S�T � = e−rT ES�1��
L�U�>T �
ST −K�+�� (29)

where the subscript S in ES signifies that the process is
starting at S0 = S at time t = 0.

The scale and speed densities of the geometric Brownian
motion (25) have the form

�
x� = x−
23/2�−1� �
x� = 2
22

x
23/2�−1� (30)

Proposition 1 specified to this case yields Proposition 2.

Proposition 2. (i) Functions

�n
x� =
2√

ln
U/L�
x−
3/2� sin

(
7n ln
x/L�

ln
U/L�

)
�

n = 1�2� � � � � x ∈ �L�U �� (31)

form a complete orthonormal basis in L2
�L�U ����.
(ii) Functions �n are eigenfunctions of the pricing oper-

ator for the problem with two knock-out barriers:

e−rT ES�1��
L�U�>T � �n
ST �� = e−�nT �n
S�� (32)

where

�n = r + 32

2
+ 2272n2

2 ln2
U/L�
� (33)

(iii) The call payoff f 
x� = 
x −K�+ on �L�U � can
be decomposed in this basis according to (7) with the
coefficients

cn = 
f ��n� =
L3/2√

ln
U/L�
�L8n
3+2�−K 8n
3��� (34)

where

8n
a� "= 2
92

n +a2

[
eak
9n cos
9nk�−a sin
9nk��

− 
−1�n9ne
au

]
� (35)

9n "= n7

u
� k "= 1

2
ln
(

K

L

)
� u "= 1

2
ln
(

U

L

)
� (36)

(iv) The price of the double-barrier call option 
29� is
given by the eigenfunction expansion

C
S�T � =
�∑

n=1

cn e−�nT �n
S�� (37)

Proof. See the appendix.

Note that the price of the double-barrier option vanishes
in the limit T →�. Analytically, this follows from the fact
that the lowest eigenvalue �1 > 0 is strictly positive even
for zero interest rate r = 0. Probabilistically, this follows
from the fact that the stock price eventually hits one of the
barriers with probability one.

2.1.4. Asymptotics of Eigenvalues and Eigenfunctions
for Large n. The observation of practical importance is
that the eigenvalues �n given by Equation (33) grow as n2

as n increases, and contributions from the higher eigen-
functions are suppressed by the factors e−�nT . As a result,
the eigenfunction expansion (37) converges so rapidly that
only a few terms are needed to achieve high accuracy in
option pricing applications with typical parameter values.

This behavior is characteristic of regular Sturm-Liouville
problems. Let us return to the general set-up of Propo-
sition 1. To show the large-n asymptotics of eigenvalues
and eigenfunctions in the general case with some functions
a
x�, b
x�, and r
x�, we first make the Liouville transfor-
mation and transform the problem to the Liouville normal
form (see Fulton and Pruess 1994). Consider the Sturm-
Liouville problem (9)–(10). Introduce a new variable

y "=√
2
∫ x

L

dz

a
z�
� (38)

We look for solutions in the form

u
x� = 2−1/4
√

a
x��
x�v
y
x�� (39)

for some function v= v
y�. Substituting (39) into the ODE
(10), we find that the function v solves the Sturm-Liouville
problem in the Liouville normal form (the coefficient in
front of the second derivative is equal to (negative) one and
the first-derivative term is absent):

−v′′ +Q
y�v = �v� y ∈ 
0�B�� (40)

B "= y
U� =√
2
∫ U

L

dz

a
z�
� v
0� = 0� v
B� = 0� (41)

where the potential function Q
y� is given by (assume that
a′′
x� and b′
x� exist):

Q
y� = f ′′
y�
f 
y�

+ r
x
y��� (42)

where

f 
y� = 21/4√
a
x
y���
x
y��

� (43)

and x = x
y� is the inverse of y = y
x� in Equation (38).
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Adapting the results in Fulton and Pruess (1994) to
our setting, we have the following large-n asymptotics for
eigenvalues and normalized eigenfunctions:

�n =
n272

B2
+a0 +

a2

n272
+ a4

n474
+O

(
1
n6

)
� (44)

a0 =
1
B

∫ B

0
Q
y�dy� (45)

a2 =−B2

4
a2

0 +
B

4

{∫ B

0
Q2
y�dy−Q′
B�+Q′
0�

}
� (46)

a4 =−B4

8
a3

0 −
3
2
B2a0a2 +

B3

16

×
{∫ B

0

(
2Q3
y�+ 
Q′
y��2

)
dy

−6
[
Q
B�Q′
B�−Q
0�Q′
0�

]
+Q′′′
B�−Q′′′
0�

}
� (47)

�n
x� = ± 2
1
4√
B

√
a
x��
x�

{
sin
(

n7y
x�

B

)

+ B

n7

(
a0

2
y
x�− 1√

2

∫ x

L

Q
y
z��

a
z�
dz

)

× cos
(

n7y
x�

B

)}
+O

(
1
n2

)
� (48)

The result (44) is very useful. It closely approximates
eigenvalues of the regular Sturm-Liouville problem with
two Dirichlet boundary conditions even for moderate val-
ues of n. This greatly facilitates numerical work of finding
accurate eigenvalues as zeros of the Wronskian C
��. We
can use the estimate (44) as a starting point of some numer-
ical search procedure to find the accurate value of �n. The
result (48) gives an estimate of the corresponding normal-
ized eigenfunction.

2.2. Singular Sturm-Liouville Problems

In the preceding discussion we limited ourselves to double-
barrier options that knock out as soon as the underlying
state variable exits some pre-specified finite interval in the
interior of the state space D. In this case the pricing prob-
lem reduces to the regular Sturm-Liouville problem with
two Dirichlet boundary conditions at the end-points of the
interval. Consider now a contingent claim without knock-
out barriers and a terminal payoff f ∈ L2
D���. The pric-
ing problem reduces to the Sturm-Liouville problem on the
entire state space D with the end-points � and � (finite or
infinite). If the interval D is finite and �
x�, �
x�, and r
x�
are absolutely integrable near both end-points � and �, then
the Sturm-Liouville problem is said to be regular. Other-
wise, the problem is singular. For a regular problem with
two Dirichlet boundary conditions the spectrum is sim-
ple, purely discrete, and strictly positive for r
x� � 0, and

Proposition 1 holds true. In contrast, the spectrum of a sin-
gular problem can be discrete, continuous, or mixed, and
further analysis is needed to determine the nature of the
spectrum in each case. For problems with a single upper
(lower) knock-out barrier, the domain of the problem has
the end-points � and U with the Dirichlet boundary condi-
tion at U (L and � with the Dirichlet boundary condition
at L) and the nature of the spectrum will depend on the
behavior of the functions �
x�, �
x�, and r
x� at the left
end-point � (right end-point �), respectively. For problems
without barriers, the nature of the spectrum will depend on
the behavior near both end-points � and �.

A classification scheme for singular Sturm-Liouville
problems based on the celebrated limit-point/limit-
circle alternative due to Weyl (1910) and oscillatory/
nonoscillatory classification can be found in Fulton et al.
(1996) and Zwillinger (1998, pp. 97–98). The analysis pro-
ceeds by first transforming the singular problem to the
Liouville normal form as we have done for the regular
problem.5 Then one investigates the behavior of the poten-
tial function Q
y� near the singular end-points and applies
the well-known criteria to determine the character of each
singular end-point according to the limit-point/limit-circle
and oscillatory/nonoscillatory classifications (details can be
found in Dunford and Schwartz 1963; Levitan and Sargs-
jan 1975; Pryce 1993; Fulton et al. 1996; Stakgold 1998;
and Zwillinger 1998). When the character of each singular
end-point is determined, one can apply the spectrum deter-
mination criteria (see Fulton et al. 1996 and Zwillinger
1998, pp. 97–98). Finally, when the nature of the spec-
trum is determined, one can proceed to find the corre-
sponding eigenfunctions. As in the regular case, one way
to proceed is to construct the Green’s function g
x� y)��
for the singular problem, and then analyze it as a function
of the complex variable �. The procedures to construct the
Green’s function in singular cases are outlined in Titch-
marsh (1962), Levitan and Sargsjan (1975), and Stakgold
(1998). In §3.3, 3.4, and 3.6 we apply this analysis to up-
and-out, down-and-out, and vanilla options under the CEV
diffusion. In all three cases singular end-points are of the
nonoscillatory limit-point type. Here we show that Propo-
sition 1 directly generalizes to the cases with singular end-
points of the nonoscillatory limit-point type.

First, we need some facts from the singular Sturm-
Liouville theory. We follow the exposition of Fulton et al.
(1996). Consider the Sturm-Liouville ODE (16) with x ∈

���� and �—an arbitrary complex number, � ∈ 
. There
are two fundamental disjoint types into which the Sturm-
Liouville equation is classified at each end-point: (1) limit-
point or limit-circle which is independent of � ∈ 
, and
(2) nonoscillatory or oscillatory for real value of �, which
can vary with �. For simplicity we give the definitions at
� only, as the definitions for � are entirely similar. The
Sturm-Liouville equation is said to be limit-circle at � if
and only if every solution u
x� is square-integrable with
the weight �
x� near the end-point �. Otherwise the equa-
tion is called limit-point at �. This classification due to
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Weyl is mutually exclusive and independent of �. That is,
if the ODE (16) has two linearly independent solutions
which are square-integrable for one value of �, then it
will have two linearly independent solutions for all � ∈ 
.
When the limit-point case occurs, for Im
�� �= 0 there
exists only one solution that is square-integrable, while
for real values of � there may be one or no solution that
is square integrable. To generate self-adjoint operators in
the Hilbert space L2

�������, whenever the limit-circle
occurs, a boundary condition must be imposed at that end-
point, while no additional boundary condition is required
at a limit-point end-point.

The oscillatory/nonoscillatory classification is of funda-
mental importance in determining the qualitative nature of
the spectrum. For a given real �, the Sturm-Liouville ODE
is oscillatory at � if and only if every solution has infinitely
many zeros clustering at �. Otherwise it is called nonoscil-
latory at �. This classification is mutually exclusive for a
fixed �, but can vary with �. All regular end-points are
limit-circle and nonoscillatory.

In this paper all singular end-points will be of the
nonoscillatory limit-point type. If both end-points are
nonoscillatory, the spectrum is simple, purely discrete, and
bounded below just as in the regular case. Therefore, when
we replace the interval 
L�U� ∈ D with the entire state
space D (we assume that singular end-points are nonoscil-
latory and limit-point), Proposition 1 does hold with one
modification. At a limit-point end-point, we do not need to
impose a boundary condition as in Equation (10). The solu-
tion is automatically singled out by the square integrability
requirement alone. At a regular end-point, we impose the
Dirichlet boundary condition as before.

Next, we need to modify our Green’s function based
procedure to determine eigenvalues and normalized eigen-
functions to cover the case of singular end-points of the
non-oscillatory limit-point type. When both end-points are
regular, we have constructed the Green’s function (20) on
the interval �L�U � using the two solutions -�
x� and .�
x�
to the initial value problems (16), (17) and (16), (18),
respectively, that are guaranteed to be entire functions of
� for fixed x. Now consider the down-and-out problem on
�L���, where � is a singular nonoscillatory limit-point end-
point. The solution -�
x� is still constructed by solving the
initial value problem (16), (17). Furthermore, by Theorem
18 in Fulton et al. (1996), if � is limit-point nonoscillatory,
then there exists a solution of the Sturm-Liouville ODE
(16), which is square-integrable with �
x� in a neighbor-
hood of � for all complex � and is entire in � for fixed
x. We select this solution to be our .�
x� and use the two
solutions -�
x� and .�
x� to construct the Green’s func-
tion (20) in the down-and-out case. The rest of the dis-
cussion in §2.1.2 goes through without modification, as in
the regular case. The case of the up-and-out problem with
the domain 
��U �, where � is limit-point nonoscillatory, is
similar. The .�
x� solves the initial value problem (16),
(18), while -�
x� is the solution entire in � for fixed x and

square-integrable with � near �. Finally, consider the prob-
lem on D, where both end-points � and � are limit-point
nonoscillatory. The -�
x� and .�
x� are selected as solu-
tions entire in � and square-integrable with � near � and
�, respectively.

To conclude this section, we mention that for singu-
lar problems with continuous spectra eigenfunction expan-
sions for option prices contain an integral in place of the
sum. In particular, Linetsky (2001, 2002a) shows that the
pricing problem for arithmetic Asian options in the Black-
Scholes framework with r − q < 22/2 has a mixed spec-
trum with a finite number of discrete eigenvalues in the
interval �0� c� plus a continuous spectrum in �c��� with
c = 2


r − q�/22�− 1

2 �
2� A further discussion of diffu-

sion problems with continuous spectrum can be found in
Linetsky (2002b).

3. BARRIER OPTIONS UNDER
THE CEV PROCESS

3.1. The CEV Process

In this section we specialize our discussion to the con-
stant elasticity of variance (CEV) process of Cox (1975).
We assume that under the risk-neutral measure Q the asset
price follows the CEV process

dSt = >St dt+,S
?+1
t dBt� 0 < t < �0�

S0 = S > 0� (49)

where the risk-neutral drift rate is > = r −q (r � 0 is the
constant risk-free rate and q � 0 is the dividend yield). Note
that our notation is slightly different from Cox (1975). Our
parameter ? is defined as the elasticity of the local volatility
function. Cox’s parameter @ in dSt = >St dt+,S

@/2
t dBt is

defined as the elasticity of the instantaneous variance of the
asset price. The two parameters are related by ?+1 = @/2.
The CEV specification (49) nests the lognormal model of
Black and Scholes (1973) and Merton (1973) (? = 0) and
the absolute diffusion (? =−1) and square-root (? =− 1

2 )
models of Cox and Ross (1976) as particular cases. For
? < 0 (? > 0), the local volatility 2
S�= ,S? is a decreas-
ing (increasing) function of the asset price. The two model
parameters ? and , can be interpreted as the elasticity
of the local volatility function, ? = 2 ′S/2 , and the scale
parameter fixing the initial instantaneous volatility at time
t = 0, 20 = 2
S0� = ,S

?
0 (it is assumed that , > 0). Cox

(1975) originally studied the case ? < 0. Emanuel and
MacBeth (1982) extended his analysis to the case ? > 0.
Cox originally restricted the elasticity parameter to the
range −1 � ? � 0. However, Reiner (1994) and Jackwerth
and Rubinstein (1998) find that typical values of the CEV
elasticity implicit in the post-crash S&P 500 stock index
option prices are as low as ? = −3 or −4. They call the
model with ? < −1 unrestricted CEV.

According to Feller’s classification of boundaries for dif-
fusions, for ?< 0 infinity is a natural boundary for the CEV
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diffusion. For − 1
2 � ? < 0, the origin is an exit boundary.

For ? < − 1
2 , the origin is a regular boundary point, and

is specified as a killing boundary by adjoining a killing
boundary condition (the process is sent to the cemetery or,
in financial terms, “bankruptcy” state � at the first hitting
time of zero, �0 = inf�t � 0" St = 0�). For ? > 0, the ori-
gin is a natural boundary and infinity is an entrance bound-
ary (see Davydov and Linetsky 2001, Appendix B, for the
treatment of the ? > 0 case). In this paper we will focus on
the CEV process with ? < 0 and > > 0 (r > q). This pro-
cess is used to model the so-called volatility (half)smile or
skew effect in the equity index options market. From now
on we always assume ? < 0 and > > 0.

The closed-form pricing formulas for vanilla calls and
puts under the CEV process are derived by Cox (1975)
(see also Schroder 1989 and Davydov and Linetsky 2001
and references therein). The problem of pricing single- and
double-barrier options under the CEV process is examined
by Boyle and Tian (1999) in the numerical trinomial lat-
tice framework and by Davydov and Linetsky (2001) in
the analytical framework. Davydov and Linetsky (2001)
derive closed-form expressions for Laplace transforms of
single- and double-barrier option prices in time to matu-
rity. The Laplace transforms are then inverted numerically
using the Euler numerical inversion algorithm of Abate
and Whitt (1995) (see Fu et al. 1997 and Davydov and
Linetsky (2001/2002) for applications of the Euler inver-
sion algorithm to option pricing problems). In this paper
we develop eigenfunction expansions for single and dou-
ble barrier option prices under the CEV process. These
eigenfunction expansions invert the Laplace transforms of
Davydov and Linetsky (2001) in closed form.

The CEV process is related to several classical diffu-
sions. Let �St� t � 0� be the CEV process. Define a new
process �Yt� t � 0� by: Yt = 
1/
,2?2��S

−2?
t for t < �0 and

Yt = � for t � �0, �0 = inf�t � 0" St = 0�. The process Y

is a square-root diffusion (Feller 1951)

dYt = 
aYt +b�dt+2
√

Yt dBt� 0 < t < �0�

a = 2>�?�� b = 2+ 1
?

(50)

with the killing boundary at zero. Further, take the square
root of the process Y : Zt =

√
Yt = 
1/
,�?���S−?

t for t <

�0 and Zt = � for t � �0. The process �Zt� t � 0� is a
generalized Bessel diffusion:

dZt =
(

1+?

2?
1
Zt

−>?Zt

)
dt+dBt� 0 < t < �0� (51)

with the killing boundary at zero (see Shiga and Watanabe
1973, Eie 1983, Going-Jaeschke and Yor 1999, and Giorno
et al. 1986 for related diffusion processes). For further
discussion of the generalized Bessel process see Linetsky
(2002b).

3.2. Double-Barrier Options

Consider a double-barrier call with two knock-out barriers
L and U . To price this option, we need to compute the
discounted risk-neutral expectation (29) with the underlying
process (49). We will proceed according to the recipe of
§2. The scale and speed densities of the CEV process are

�
S� = exp
(
− >

,2�?�S
−2?

)
�

�
S� = 2
,2S2+2?

exp
(

>

,2�?�S
−2?

)
� (52)

To find explicit expressions for the eigenfunctions, we need
to find -�
S� and .�
S� solving the initial value problems
(16)–(18) with the negative of the infinitesimal generator
of the CEV diffusion

	=−1
2
,2S2+2? d2

dS2
−>S

d

dS
� (53)

Introduce a new variable

x "= >

,2�?�S
−2?� (54)

We look for solutions to the ODE (16) with the CEV
operator (53) in the form

u
S� = S
1
2 +?e−x
S�/2w
x
S�� (55)

for some unknown function w. Substituting this functional
form into Equation (16), we arrive at the ODE for w:

d2w

dx2
+
(
−1

4
+ k

x
+

1
4 −m2

x2

)
w = 0� x ∈ 
l� u�� (56)

where the parameters k and m and the end-points of the
interval l and u corresponding to the barriers L and U are

m "= 1
4�?� � k "= m− 1

2
+ �

2>�?� �

l "= >

,2�?�L
−2?� u "= >

,2�?�U
−2?� (57)

This is the Whittaker’s form of the confluent hypergeo-
metric equation (see Abramowitz and Stegun 1972, p. 505;
Slater 1960, p. 9; and Buchholz 1969, p. 11). Then the
functions -�
S� and .�
S� can be written in the form

-�
S� = ,2

2>

SL�

1
2 +?e
l−x
S��/2gk
��
x
S���

.�
S� = ,2

2>

SU�

1
2 +?e
u−x
S��/2hk
��
x
S��� (58)

where gk
x� and hk
x� are unique solutions of the
Whittaker equation (56) with the initial conditions

gk
l� = 0� g′
k
l� = 1� hk
u� = 0� h′

k
u� =−1� (59)
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For any complex k and real m > 0, a > 0, b > 0, introduce
the following notation:

Fk�m
a� b� "= Wk�m
a�W−k�m
ei7b�eik7

−Wk�m
b�W−k�m
ei7a�eik7� (60)

where Wk�m
x� is the Whittaker function (Abramowitz and
Stegun 1972, p. 505; Slater 1960, p. 10; and Buchholz
1969, p. 19). Then for any complex k and real x > 0, the
functions gk
x� and hk
x� can be taken in the form

gk
x� = Fk�m
l� x�� hk
x� = Fk�m
x�u�� x ∈ �l� u�� (61)

Functions Wk�m
x� and W−k�m
ei7x� provide two linearly
independent solutions of the Whittaker equation (56) for
any values of k and m (real or complex) with the Wron-
skian e−ik7 (Buchholz 1969, p. 25). The Wronskian of
.�
S� and -�
S� is given by Equation (19) with the CEV
scale density (52) and

C
�� = ,2

2>

LU�

1
2 +?e
l+u�/2Fk
���m
l� u�� (62)

The eigenvalues �n are found numerically as zeros of
C
��. Specifically, we need to find the roots �kn�

�
n=1 of the

equation

Fk�m
l� u� = 0� (63)

Then, from the second definition in Equation (57), the
eigenvalues �n are

�n = 2>�?�
(
kn −m+ 1

2

)
� (64)

The roots of Equation (63) are found numerically. Because
by Proposition 1 all �n are positive, kn > m− 1

2 for all n.
For each kn, gkn


x� and hkn

x� are linearly dependent and

-�n

S�=An.�n


S��

An=−e
l−u�/2

(
L

U

) 1
2 +? Wkn�m


l�

Wkn�m

u�

� (65)

Then, by Equation (24), the normalized eigenfunctions
�n
S� can be taken in the form

�n
S� = Nn S
1
2 +?e−x
S�/2Fkn�m


l� x
S��� (66)

where the normalization factors are given by

Nn =
√

,2�?�Wkn�m

u�

Dn�m
l� u�Wkn�m

l�

�

Dn�m
l� u� =
[
�Fk�m
l� u�

�k

]∣∣∣∣
k=kn

� (67)

To differentiate Fk�m
a� b� we need to compute deriva-
tives of the Whittaker functions Mk�m
z� and Wk�m
z� with
respect to the first index k. This can be done numerically

because there are no simple analytical formulas for these
derivatives.

For numerical calculations, two alternative representa-
tions of the function Fk�m
a� b� are useful (Buchholz 1969,
p. 20):

Fk�m
a� b� = 7

sin
2m7�

[
Mk�−m
a�

J
1−2m�

Mk�m
b�

J
1+2m�

− Mk�−m
b�

J
1−2m�

Mk�m
a�

J
1+2m�

]
(68)

= J
 1
2 +m−k�

J
1+2m�

[
Wk�m
a�Mk�m
b�

−Mk�m
a�Wk�m
b�
]
� (69)

where J
x� is the Gamma function (Abramowitz and
Stegun 1972, p. 255).

Proposition 3. The double-barrier call price under the
CEV process is given by the eigenfunction expansion 
0 <
L � S � U < ��

CDB
S�T �K�L�U� = e−rT ES�1��
L�U�>T �
ST −K�+�

=
�∑

n=1

cn e−
r+�n�T �n
S�� (70)

with the eigenvalues 
64�, normalized eigenfunctions (66)–
(67), and coefficients

cn = Nn

J
 1
2 +m−kn�

J
1+2m�

[
Wkn�m


l�In −Mkn�m

l�Jn

]
�

n = 1�2� � � � � (71)

where

In "= 1

,
√

>�?�

[
U

1
2

2m+1
eu/2Mkn+ 1

2 �m+ 1
2

u�

− 2mKU− 1
2

m−kn − 1
2

eu/2Mkn+ 1
2 �m− 1

2

u�

− K
1
2

2m+1
eL/2Mkn+ 1

2 �m+ 1
2

L�

+ 2mK
1
2

m−kn − 1
2

eL/2Mkn+ 1
2 �m− 1

2

L�

]
� (72)

Jn "= 1

,
√

>�?�

[
U

1
2

kn +m+ 1
2

eu/2Wkn+ 1
2 �m+ 1

2

u�

− KU− 1
2

kn −m+ 1
2

eu/2Wkn+ 1
2 �m− 1

2

u�

− K
1
2

kn +m+ 1
2

eL/2Wkn+ 1
2 �m+ 1

2

L�

+ K
1
2

kn −m+ 1
2

eL/2Wkn+ 1
2 �m− 1

2

L�

]
� (73)

L "= >

,2�?�K
−2?� (74)
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Proof. See the appendix.

The eigenvalues (64) are determined by numerically find-
ing the roots of Equation (63). To facilitate numerical work,
the result (44) provides accurate estimates of the eigen-
values. The Liouville transformation

y =
√

2
,�?� 
S

�?� −L�?��� (75)

u
S� =√
,S
1+?�/2 exp

(
− >

2,2�?�S
−2?

)
v
y
S�� (76)

reduces the Sturm-Liouville problem (10) with the CEV
operator (53) to the Liouville normal form (40) with the
right end-point

B =
√

2
,�?� 
U

�?� −L�?�� (77)

and the potential function

Q
y� = b−2


y+ c�2
+b0 +b2
y+ c�2� (78)

b−2 =
1
4

(
1
?2

−1
)
� b0 = >

(
�?�− 1

2

)
�

b2 =
>2?2

4
� c =

√
2

,�?�L
�?�� (79)

Now the eigenvalue estimates (44) can be readily com-
puted and used as starting points for the accurate numerical
search procedure to find the eigenvalues �n. For large n,
the leading terms in the estimate (44) are

�n =
,2?272n2

2
U �?� −L�?��2
+a0 +O

(
1
n2

)
� (80)

a0 = >

(
�?�− 1

2

)
+ ,2

8

1−?2�
LU�−�?�

+ >2

6,2

L2�?� +U 2�?� + 
LU��?���

and large-n terms in the expansion (70) are suppressed by
the factors e−�nT � The result (48) gives the estimate of �n

for large n.

3.3. Up-and-Out Options

Consider an up-and-out call with some upper knock-out
barrier U . The payoff is 1��U >T �
ST −K�+, where �U is
the first hitting time of the upper barrier, �U = inf�t � 0:
St = U�. For ? < − 1

2 , zero is a regular boundary point for
the CEV diffusion, and we impose a killing boundary con-
dition. The corresponding Sturm-Liouville problem with
two Dirichlet boundary conditions at 0 and U is regular,
and Proposition 1 holds in the limit L = 0 when ? < − 1

2
(note that both the CEV scale and speed densities (52) are
absolutely integrable near zero in this case).

For − 1
2 � ? < 0, zero is an exit boundary for the CEV

diffusion. The corresponding Sturm-Liouville problem is

singular at zero (the CEV speed density (52) is not inte-
grable near zero). First, we note that the Liouville trans-
formation (75) with L = 0 transforms the problem to the
Liouville normal form with the potential (78)–(79) where
c = 0. Examining the behavior of the potential Q
y� near
zero, we conclude that the problem with − 1

2 � ? < 0 is
nonoscillatory and limit-point at zero. Thus, as we have
discussed in §2.2, the spectrum of the up-and-out problem
with − 1

2 � ? < 0 is simple, purely discrete, and positive,
just as in the case of the regular up-and-out problem with
? < − 1

2 .

Proposition 4. The up-and-out call price is given by the
eigenfunction expansion 
0 < S � U < ��

CUO
S�T �K�U� = e−rT ES�1��U >T �
ST −K�+�

=
�∑

n=1

e−
r+�n�T cn �n
S�� (81)

with the eigenvalues 0 < �1 < �2 < · · ·< �n < · · · , �n →�
as n → �, related by Equation (64) to the roots �kn�

�
n=1

of the equation (to be solved numerically)

Mk�m
u� = 0� (82)

the corresponding normalized eigenfunctions

�n
S� = Nn S
1
2 +?e−x
S�/2Mkn�m


x
S��� S ∈ 
0�U �� (83)

Nn =
√√√√ ,2�?�J
 1

2 +m−kn�Wkn�m

u�

J
1+2m�
[
�Mk�m
u�/�k

]∣∣
k=kn

� (84)

and the coefficients

cn = Nn In� (85)

where In are given by Equation (72).

Proof. See the appendix.

Equation (82) has to be solved numerically. Buchholz
(1969, pp. 185–186) shows that the Whittaker function
Mk�m
x� considered as a function of the complex variable
k, keeping m > − 1

2 and x > 0 fixed (in our case m > 0
and x > 0), has all its zeros concentrated along the positive
real line. Moreover, all zeros are simple, occur in an infi-
nite set 0 < k1 < k2 < · · · , and are decreasing as the value
of x increases. Furthermore, Slater (1960, p. 70) gives the
following asymptotics as k →� (the asymptotics is valid
for complex k and x such that arg
kx� < 27):

Mk�m
x� = J
1+2m�x
1
4 7− 1

2 k−m− 1
4 cos

(
2
√

kx−7m− 7

4

)

×
{

1+O

(
1√�k�

)}
� (86)

Thus, asymptotically for large n the zeros kn of the
Whittaker function Mk�m
u� are given by

kn ∼

n+m− 1

4 �
272

4u
� (87)
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Then, using Equations (57) and (64), we obtain the large-n
asymptotics for the eigenvalues

�n ∼
1
2
,2?272U 2?

(
n+m− 1

4

)2

+2>�?�
(

1
2
−m

)
� (88)

The eigenvalues for the up-and-out problem grow as n2 for
large n.

3.4. Down-and-Out Options

Down-and-Out Put. Consider now a down-and-out call
with some lower knock-out barrier L. The payoff is
1��L>T �
ST −K�+, �L = inf�t � 0" St = L�. The domain
of the problem is now unbounded, �L���. The associated
Sturm-Liouville problem is singular. Transforming to the
Liouville normal form (Equations (75)–(76)) and examin-
ing the potential (78) as y → �, we conclude that the
problem is nonoscillatory and limit-point at infinity. Thus,
again, the spectrum is simple, purely discrete, and bounded
below.

The complication here is that the call payoff is not in
L2
�L������� and thus the down-and-out call is not in the
span of the L2-eigensecurities. However, the down-and-out
put payoff is in L2
�L������. We will price the down-
and-out put first, and then find the price of the down-
and-out call by appealing to a put-call parity result for
down-and-out options.

Proposition 5. The down-and-out put price is given by the
eigenfunction expansion 
0 < L � S < ��

PDO
S�T �K�L� = e−rT ES�1��L>T �
K−ST �
+�

=
�∑

n=1

cn e−
r+�n�T �n
S�� (89)

with the eigenvalues 0 < �1 < �2 < · · ·< �n < · · · , �n →�
as n → �, related by Equation (64) to the roots �kn�

�
n=1

of the equation (to be solved numerically)

Wk�m
l� = 0� (90)

the corresponding normalized eigenfunctions

�n
S� = NnS
1
2 +?e−x
S�/2Wkn�m


x
S��� S ∈ �L���� (91)

Nn =
√√√√ ,2�?�J
 1

2 +m−kn�Mkn�m

l�

J
1+2m�
[
�Wk�m
l�/�k

]∣∣
k=kn

� (92)

and the coefficients

cn =
Nn

,
√

>�?�

[
L

1
2

kn +m+ 1
2

e
l
2 Wkn+ 1

2 �m+ 1
2

l�

− KL− 1
2

kn −m+ 1
2

e
l
2 Wkn+ 1

2 �m− 1
2

l�

− K
1
2

kn +m+ 1
2

eL/2Wkn+ 1
2 �m+ 1

2

L�

+ K
1
2

kn −m+ 1
2

eL/2Wkn+ 1
2 �m− 1

2

L�

]
� (93)

where L is defined in Equation (74).

Proof. See the appendix.

We now need to estimate the eigenvalues. Slater (1960,
p. 70) gives the following asymptotics for the Whittaker
function Wk�m
x� as k → � (the asymptotics is valid for
complex k and x such that � arg
k�� < 7 and � arg
kx�� <
27):

Wk�m
x� =√
2x

1
4 k− 1

4 kke−k cos
(
2
√

kx−7k+ 7

4

)

×
{

1+O

(
1√�k�

)}
� (94)

Thus, asymptotically for large n the zeros kn of the
Whittaker function Wk�m
l� are given by

kn = n− 1
4
+ 2l

72
+ 2

7

√(
n− 1

4

)
l+ l2

72
� (95)

Then, using Equation (64) we obtain the large-n asymp-
totics for the eigenvalues

�n∼2>�?�
[
n+ 2l

72
+ 1

4
−m+ 2

7

√(
n− 1

4

)
l+ l2

72

]
� (96)

The major difference with the up-and-out and double-
barrier cases is that the eigenvalues grow linearly with
n, in contrast with the quadratic growth for the former
cases. Thus the convergence of eigenfunction expansions
for down-and-out option prices is slower.

Down-and-Out Call. Because the down-and-out call
payoff is not in L2
�L������, it is not in the span of the
eigenpayoffs (91). To price the down-and-out call, we first
decompose its payoff as follows:

1��L>T �
ST −K�+ = 1��L>T �
K−ST �
++ 
ST −K�

−1��L�T �
ST −K�� (97)

The first term on the right-hand side is the payoff of a
down-and-out put, the second term is the payoff from a for-
ward contract with the delivery price K, and the last term
1��L�T �
ST −K� can be interpreted as a down-and-in for-
ward contract that is activated if and only if the underlying
asset price hits the lower barrier L prior to and including
maturity T and pays the amount equal to 
ST −K� at T
if activated. Taking the present values of both sides of the
equality (97), we have for the prices at t = 0:

CDO = PDO + 
e−qT S− e−rT K�− fDI � (98)
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We have already priced the down-and-out put PDO . To price
the down-and-out call CDO , we need to price the down-and-
in forward contract fDI .

Proposition 6. The price of the down-and-in forward
contract is given by 
0 < L � S�

fDI = e−rT ES�1��L�T �
ST −K��

= e−qT S

(
G
−2m�x�

G
−2m� l�

)
− e−rT K

(
G
2m�x�

G
2m� l�

)

+
�∑

n=1

e−
r+�n�T

[
L

>+�n

− K

�n

]

× 2>�?�S 1
2 +?e−x/2Wkn�m


x�

L
1
2 +?e−

l
2
[
�Wk�m
l�/�k

]∣∣
k=kn

� (99)

where �n are the eigenvalues of the Sturm-Liouville prob-
lem on �L��� determined in Proposition 5, kn are the
roots of Equation 
90�, x is defined in Equation 
54�, l is
defined in Equation 
57�, and G
3�a� is the complemen-
tary Gamma distribution function

G
3�a� = 1
J
3�

∫ �

a
e−t t3−1 dt� (100)

Proof. See the appendix.

Now we can compute the down-and-out call price using
the put-call parity relationship (98).

3.5. Capped Options

In addition to their popularity over-the-counter, several
types of barrier options are traded on securities exchanges.
Capped call (and put) options on the S&P 100 and S&P 500
indices were introduced by the Chicago Board of Options
Exchange (CBOE) in November, 1991. A capped call is
an up-and-out call with a cash rebate equal to the differ-
ence between the upper barrier (cap) and the strike price
(see Broadie and Detemple 1995). It combines a Euro-
pean exercise feature and an automatic exercise feature.
The automatic exercise is triggered when the index value
first exceeds the cap. The cash amount (rebate) equal to the
intrinsic value of the call is paid at the time the index first
exceeds the cap. The price of the capped call can be repre-
sented as a sum of the up-and-out call price and the price
of the rebate (U is the cap price):

CappedCall
S� T �K�U�

= CUO
S�T �K�U�+ 
U −K�ES�e
−r�U 1��U�T ��� (101)

We have already priced the up-and-out call in §3.3. To
price capped calls, we need to evaluate the price of rebate.
In Davydov and Linetsky (2001) the price of rebate was
expressed as the inverse Laplace transform of a known
function (Equations (4), (16), and (37)). Here we invert the
Laplace transform by applying the method developed in
this paper.

Proposition 7. The price of the rebate is 
0 <S �U <��

ES�e
−r�U 1��U�T ��=

S
1
2 +?e−x/2

U
1
2 +?e−u/2

×
{

Mκ�m
x�

Mκ�m
u�
+

�∑
n=1

2>�?�e−
r+�n�T Mkn�m

x�


r+�n�
[
�Mk�m
u�/�k

]∣∣
k=kn

}
�

(102)

where kn are the roots of Equation (82), �n are the eigen-
values of the Sturm-Liouville problem on �0�U � related to
kn by Equation 
64�, x is defined in Equation 
54�, u is
defined in Equation 
57�, and

κ "= m− 1
2
− r

2>�?� � (103)

Proof. See the appendix.

3.6. Vanilla Options

Now consider the problem of pricing vanilla options
(without barriers). The domain of the problem is 
0���.
The associated Sturm-Liouville problem is singular. It is
nonoscillatory at both end-points 0 and �, and the spec-
trum is again simple, purely discrete, and bounded below.
Similar to the down-and-out call, the vanilla call payoff is
not in L2

0������, and thus the vanilla call is not in the
span of the eigensecurities. However, the put payoff is in
L2

0������. We will price the put first, and then find the
price of the call by appealing to the put-call parity.

Proposition 8. (i) The spectral representation of the con-
tinuous transition probability density for the CEV process
on 
0��� with ? < 0 and > > 0 is

p
T )S�ST � =�
ST �
�∑

n=1

e−�nT �n
S��n
ST �� (104)

where the eigenvalues and the corresponding normalized
eigenfunctions are 
n = 1�2� � � � �

�n = 2>�?�n� �n
S� = NnSe−x
S�L

2m�
n−1 
x
S���

Nn =
√


n−1�!>
J
2m+n�

(
>

,2�?�
)m

� (105)

where L
3�
n 
x� are the generalized Laguerre polynomials

(Abramowitz and Stegun 1972).
(ii) The probability of hitting zero prior to time T is

given by

Pr
�0 � T �S0 = S� = G

(
2m�

x
S�

1− e2>?T

)
� (106)

where G
3�a� is the complementary Gamma distribution
function 
100�.
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(iii) The price of the plain vanilla put is given by the
eigenfunction expansion

P
S�T �K� = e−rT KG

(
2m�

x
S�

1− e2>?T

)

+
�∑

n=1

cne
−
r+�n�T �n
S�� (107)

with the coefficients

cn =
NnK

>

[
J
2m+n�

J
2m�n! −L2m−1
n 
L�

− L

2m+n
L2m+1

n−1 
L�

]
� (108)

where L is defined in Equation (74).
(iv) The price of the plain vanilla call is found from the

put-call parity relationship

C
S�T �K� = P
S�T �K�+ e−qT S− e−rT K� (109)

Proof. See the appendix.

What is the relationship of our result with the classic
CEV option pricing formula of Cox (1975)? Cox’s for-
mula expresses the CEV option prices in terms of the
complementary noncentral chi-square distribution function,
while our formula expresses CEV option prices as series
of Laguerre polynomials. The equivalence is established by
appealing to the Hille-Hardy formula (Erdelyi 1953, p. 189)
(for all �t� < 1, 3 > −1, a�b > 0)


ab�3/2
�∑

n=0

tn+
3/2�n!
J
n+3+1�

L
3�
n 
a�L
3�

n 
b�

= 1
1− t

exp
{
− 
a+b�t

1− t

}
I3

(
2
√

tab

1− t

)
� (110)

where I3
a� is the modified Bessel function of the first
kind. Applying this summation formula to the spectral rep-
resentation (104) and identifying t = e2>?T yields the stan-
dard form of the continuous CEV density used by Cox
(1975) (x = 
>/
,2�?���S−2?, xT = 
>/
,2�?���S−2?

T ):

p
T )S�ST � =
2>S

−2?− 3
2

T S
1
2

,2
e−2>?T −1�
exp

(
xT +xe−2>?T

1− e−2>?T
+ >T

2

)

× I1/
2�?��

( √
xxT

sinh
>�?�T �

)
� (111)

Integrating this density against the option payoff leads to
Cox’s formula expressed in terms of the complementary
chi-square distribution function (see Schroder 1989 and
Davydov and Linetsky 2001):

C
S�T �K� = e−qT SQ
y0)d� N�

− e−rT K
1−Q
N)d−2� y0��� (112)

where

d "= 2+ 1
�?� � N "= 2>S−2?

,2?
e2>?T −1�
�

y0 "= 2>K−2?

,2?
1− e−2>?T �
� (113)

K is the strike price of the call, and Q
x)u� v� is the com-
plementary noncentral chi-square distribution function with
u degrees of freedom and the noncentrality parameter v.

4. INTEREST RATE KNOCK-OUT OPTIONS IN
THE CIR TERM STRUCTURE MODEL

4.1. The CIR Process

In this section we consider interest rate options with barri-
ers. A zero-coupon knock-out bond pays one dollar at matu-
rity T > 0 if some reference interest rate (e.g., three-month
LIBOR) does not leave a prespecified range (corridor) prior
to maturity, and zero otherwise.

Suppose that under the risk-neutral measure Q the instan-
taneous risk-free interest rate follows the Cox-Ingersoll-
Ross (CIR) diffusion process on 
0���

drt = L
@− rt� dt+2
√

rt dBt� r0 = r > 0� (114)

where �Bt� t � 0� is a standard Brownian motion, @ > 0
is the long-run level, L > 0 is the rate of mean reversion
to the long-run level, 2 > 0 is the volatility parameter, and
the initial interest rate is r > 0. To ensure that the origin
is inaccessible (the short rate stays strictly positive), the
parameters are assumed to satisfy Feller’s condition 2L@ �

22� For this choice of parameters, the origin is an entrance
boundary and infinity is a natural boundary. CIR (1985)
derive a closed-form expression for the time t = 0 price of
a zero-coupon bond that pays one dollar at maturity T > 0:

P
r� T � = Er

[
e−

∫ T
0 r
t�dt

]
= A
T �e−B
T �r � (115)

where

A
T � "=
(

2Oe
L+O�T /2


O+L�
eOT −1�+2O

)b

�

B
T � "= 2
eOT −1�

O+L�
eOT −1�+2O

� (116)

O "=
√

L2 +222� b "= 2L@

22
� (117)

CIR also derive closed-form expressions for European call
and put options on zero-coupon bonds.

4.2. Eigenfunction Expansions for
Knock-Out Bonds

In this section we focus on pricing knock-out contracts
where the reference interest rate is the LIBOR rate L
t�
t + ,� (e.g., three-month LIBOR). These contracts knock
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out when the LIBOR leaves some prespecified corridor

L�L�. In the CIR model there is an analytical one-to-one
relationship between the LIBOR rate6 and the short rate

L
t� t+,� = 1
,
�A−1
,�eB
,�rt −1�� (118)

Then the event �LIBOR leaves the corridor 
L�L�� is
equivalent to the event �short rate leaves the corridor

L�U��, where

L = B−1
,� ln
A
,�
1+,L���

U = B−1
,� ln
A
,�
1+,L��� (119)

To price a zero-coupon knock-out bond that is knocked
out when the LIBOR rate exits the corridor 
L�L� (short
rate exits the corridor 
L�U�), we need to evaluate the
expectation

P
r� T �L�U� = Er

[
e−

∫ T
0 r
t�dt1��
L�U�>T �

]
� (120)

where �
L�U� = inf�t � 0" rt 	 
L�U��.
The speed density of the CIR diffusion is (b is defined

in Equation (117))

�
r� = 2
22

rb−1 exp
(
−2Lr

22

)
(121)

and is used to define the inner product in the space of
all square-integrable functions on �L�U �. To find explicit
expressions for the eigenfunctions, we need to find the
functions -�
r� and .�
r� solving the initial value prob-
lems (16)–(18) with the CIR operator

	=−1
2
22r

d2

dr2
−L
@− r�

d

dr
+ r� (122)

Introduce a new variable,

x "= 2Or

22
� (123)

We look for solutions to the ODE (16) with the CIR oper-
ator (122) in the form

u
r� = r−b/2 exp
(Lr

22

)
w
x
r��� (124)

for some unknown function w
x�. Substituting this func-
tional form into the ODE, we arrive at the Whittaker Equa-
tion (56) with the parameters k and m and end-points l and
u of the interval corresponding to short-rate barriers L and
U given by

m "= b−1
2

� k "= 1
O

(
Lb

2
+�

)
�

l "= 2OL

22
� u "= 2OU

22
� (125)

Then, from the second definition in Equation (125), the
eigenvalues ��n�n = 1�2� � � � � for this problem are

�n = Okn −
Lb

2
� (126)

where kn are the roots of Equation (63). The corresponding
normalized eigenfunctions are

�n
r� = Nnr
−b/2 exp

(Lr

22

)
Fkn�m


l� x
r��� (127)

Nn =
√

22Wkn�m

u�

2Dn�m
l� u�Wkn�m

l�

� (128)

where Dn�m
l� u� is defined in Equation (67).
Finally, the knock-out bond price is given by the eigen-

function expansion

P
r� T �L�U� =
�∑

n=1

cne
−�nT �n
r�� (129)

with the coefficients (in the case of knock-out bonds the
payoff function is f 
rT � = 1)

cn = 
1��n� =
∫ U

L
�n
y��
y�dy� n = 1�2� � � � (130)

In contrast with the case of double-barrier options under
the CEV process, the integrals in Equation (130) cannot be
calculated analytically and must be computed numerically.

More generally, any interest rate derivative with some
interest rate dependent payoff at maturity and knock-
out barriers can be priced by the eigenfunction expan-
sion method. For example, a knock-out cap is a cap that
knocks out at the first time the LIBOR leaves the corridor

L�L� (all remaining caplets are extinguished as soon as
either L or L is hit). An individual caplet pays an amount
,
L
T �T + ,�−K�+ at time T + ,, where L
T �T + ,�
is the LIBOR for the period �T � T + ,� observed at time
T (see Hull 2000). A knock-out caplet payoff is ,
L
T �
T +,�−K�+1��
L�L�>T �, �
L�L� = inf�t" L
t� t+,�	 
L�L��.
This time-
T +,� cash flow is equivalent to a time-T cash
flow:

,
L
T �T +,�−K�+

1+,L
T �T +,�
1��
L�L�>T �

= 
1− 
1+,K�P
T �T +,��+1��
L�L�>T �

= 
1− 
1+,K�A
,�e−B
,�rT �+1��
L�U�>T ��

�
L�U� = inf�t � 0" rT 	 
L�U��. The present value of this
cash flow at t = 0 is given by the eigenfunction expansion
of the form Equation (129) with the coefficients

cn =
∫ U

r∗
�1− 
1+,K�A
,�e−B
,�y��n
y��
y�dy�

n = 1�2� � � � � (131)

r∗ = B−1
,� ln
A
,�
1+,K��� (132)

Single-barrier up-and-out and down-and-out interest rate
options can be priced similarly to the single-barrier CEV
options of §§3.3 and 3.4 by solving singular Sturm-
Liouville problems for the Whittaker equation on the inter-
vals 
0� u� and �l���.
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4.3. Eigenfunction Expansions for Vanilla
Zero-Coupon Bonds

Consider again the problem of pricing vanilla zero-coupon
bonds (no barriers). The solution is given by the CIR for-
mula (115)–(117). How does the CIR formula emerge in
the eigenfunction expansion framework?

Proposition 9. (i) The spectral representation of the state-
price density in the CIR model is (in contrast to the rest of
the paper, here we label the eigenvalues and eigenfunctions
starting at zero, ��n�

�
n=0; this simplifies the subsequent for-

mulas):

p
T ) r� rT � =�
rT �
�∑

n=0

e−�nT �n
r��n
rT �� (133)

where the eigenvalues and the corresponding normalized
eigenfunctions are 
n = 0�1� � � � �

�n = On+ b

2

O−L�� (134)

�n
r� = Nne


L−O�r�/22

L
b−1�
n 
x
r���

Nn =
√

22 n!
2J
b+n�

(
2O
22

)b/2

� (135)

where L
3�
n 
x� are the generalized Laguerre polynomials

and x = 2Or/22.

Table 1. Eigenvalues.

? =−0�5 −1 −3

n Double-Barrier Eigenvalues

1 3�66908 
3�66919� 3�56537 
3�56575� 3�11009 
3�10916�
2 14�4087 
14�4087� 13�8465 
13�8466� 11�4541 
11�4533�
3 32�3079 
32�3079� 30�9813 
30�9813� 25�3606 
25�3603�
4 57�3668 
57�3668� 54�9699 
54�9699� 44�8302 
44�8300�
5 89�5854 
89�5854� 85�8124 
85�8125� 69�8626 
69�8624�
6 128�964 
128�964� 123�509 
123�509� 100�458 
100�458�

n Up-and-Out Eigenvalues

1 0�12625 
0�10040� 0�29608 
0�26418� 0�97218 
0�89557�
10 6�77796 
6�75082� 21�5068 
21�4684� 90�2394 
90�1390�
20 26�3758 
26�3487� 85�7620 
85�7236� 366�026 
365�926�
50 162�276 
162�248� 535�549 
535�510� 2308�93 
2308�83�

n Down-and-Out Eigenvalues

1 0�23393 
0�24363� 0�38170 
0�38860� 0�89662 
0�91391�
10 1�37271 
1�37572� 2�50572 
2�50816� 6�76357 
6�77038�
50 5�79628 
5�79762� 11�0751 
11�0762� 31�5661 
31�5692�

150 16�3560 
16�3567� 31�8264 
31�8271� 92�6214 
92�6232�
250 26�7411 
26�7417� 52�3433 
52�3438� 153�347 
153�348�

Notes. For the double-barrier problem under the CEV processes with � = −0�5�−1�−3, the first six eigenvalues are given. Next to each
“exact” eigenvalue determined by numerically finding the roots of Equation (63), an estimate (80) is given in parentheses. For the up-and-
out problem, the eigenvalues �n , n = 1� 10, 20, 50 are given. Next to each “exact” eigenvalue determined by numerically finding the roots
of Equation (82), an estimate (88) is given in parentheses. For the down-and-out problem, the eigenvalues �n , n = 1� 10, 50, 150, 250 are
given. Next to each “exact” eigenvalue determined by numerically finding the roots of Equation (90), an estimate (96) is given in parentheses.
Parameters: L= 90, U = 120, r = 0�1, q = 0, 
�100�= 0�25.

(ii) The zero-coupon bond price is given by the eigen-
function expansion

P
r� T � =
�∑

n=0

cne
−�nT �n
r�� (136)

cn =
2NnJ
b+n�

22 n!
(

22

O+L

)b (
L−O

L+O

)n

� (137)

Proof. See the appendix.

The claims with payoffs �n
rT � form a complete
set of eigensecurities in the space of all T -maturity
L2

0���)��-claims in the CIR economy. The expression
(136) unbundles the zero-coupon bond into the portfolio
of eigensecurities. Finally, the CIR bond pricing formula
(115)–(117) is recovered by performing the summation in
Equation (136) using the classical identity (Gradshteyn and
Ryzhik 1994, p. 1063) (for all �z� < 1, 3 > −1)

�∑
n=0

znL
3�
n 
x� = 
1− z�−3−1 exp

(
xz

z−1

)
� (138)

and identifying z = e−OT 

L−O�/
L+O�� in Equation
(138).

5. COMPUTATIONAL RESULTS

5.1. Double-Barrier Options

Table 1 gives the first six eigenvalues for the double-barrier
problem with the barriers placed at L = 90 and U = 120.
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Table 2. Convergence of eigenfunction expansions for double-barrier call prices under the CEV processes with ? =
0�−0�5�−1�−2�−3�−4 (? = 0 corresponds to geometric Brownian motion) and T = 1�3� and 12 months.

? = 0 −0�5 −1 −2 −3 −4

N Double-Barrier Call T = 1 Month

1 4.8723 5.2942 5.7393 6.7041 7.7843 9.0208
2 3.0908 3.1116 3.1043 2.9892 2.7103 2.2176
3 2.9923 3.0536 3.1039 3.1770 3.2347 3.3242
4 3.0161 3.0834 3.1402 3.2237 3.2740 3.2999
5 3.0154 3.0820 3.1376 3.2169 3.2598 3.2764
6 3.0154 3.0820 3.1376 3.2171 3.2607 3.2794

Laplace 3.0154 3.0820 3.1376 3.2171 3.2606 3.2793

N Double-Barrier Call T = 3 Months

1 2.5586 2.8248 3.1157 3.7778 4.5590 5.4818
2 2.4135 2.6303 2.8579 3.3354 3.8193 4.2705
3 2.4131 2.6301 2.8579 3.3370 3.8268 4.2959

Laplace 2.4131 2.6300 2.8578 3.3370 3.8268 4.2959

N Double-Barrier Call T = 12 Months

1 0.1410 0.1672 0.1994 0.2859 0.4105 0.5827
2 0.1410 0.1672 0.1994 0.2859 0.4103 0.5822

Laplace 0.1410 0.1673 0.1994 0.2860 0.4104 0.5823

Notes. For T = 1 month, for each price seven values are given: Partial sums of the first N terms of the expansion Equation (70) (N = 1� � � � �6)
and the value obtained by the numerical Laplace inversion. For T = 3 months, for each price four values are given: Partial sums of the first
N terms of the expansion (N = 1�2�3) and the value obtained by the numerical Laplace inversion. For T = 12 months, for each price three
values are given: Partial sums of the first N terms of the expansion (N = 1�2) and the value obtained by the numerical Laplace inversion. All
numerical Laplace inversion values are taken from Davydov and Linetsky (2001). Parameters: S = K = 100, L= 90, U = 120, r = 0�1, q = 0,

�100�= 0�25.

The instantaneous risk-free interest rate is 10% (r = 0�1)
and the underlying asset does not pay dividends (q = 0).
The CEV process parameters are selected in the following
way. For each elasticity ? (? = −0�5�−1�−3), the scale
parameter , is selected so that the instantaneous volatility
2
S� = ,S? is equal to 0.25 (volatility of 25%) when S =
100 (see Boyle and Tian 1999 and Davydov and Linetsky
2001). The approximate eigenvalues estimated using Equa-
tion (80) are given in parentheses next to each “exact”
eigenvalue. The “exact” eigenvalues are determined using
a numerical root finding procedure for Equation (63). One
can see that the estimates (80) are quite accurate even for
small n.

Table 2 illustrates convergence of eigenfunction expan-
sions for prices of double-barrier calls with 1, 3, and
12 months to expiration and S = K = 100, L = 90,
U = 120, r = 0�1, q = 0. For each elasticity ? (? =
0�−0�5�−1�−2�−3�−4), the scale parameter , is selected
so that the instantaneous volatility 2
S� = ,S? is equal
to 0.25 when S = 100. The case ? = 0 corresponds to
the geometric Brownian motion process of §2. The values
obtained by the numerical Laplace transform inversion in
Davydov and Linetsky (2001) are provided for compari-
son. The agreement between the eigenfunction expansion
and the numerical Laplace inversion is remarkable. For
12 months to expiration, only the first two or three terms
in the eigenfunction expansion are required to achieve the
accuracy of five significant digits for double-barrier call

prices. For three-month options, three or four terms are
required. For one-month options, five or six terms are
required.

5.2. Up-and-Out and Capped Options

Table 1 gives the eigenvalues �n, n = 1�10�20�50, for
the up-and-out problem with U = 120. The approximate
eigenvalues estimated using Equation (88) are given in
parenthesis next to each “exact” eigenvalue. The “exact”
eigenvalues are determined using a numerical root finding
procedure for Equation (82). The estimates (88) are quite
accurate.

Table 3 illustrates convergence of the eigenfunction
expansion for up-and-out and capped call prices. The values
obtained by the numerical Laplace transform inversion in
Davydov and Linetsky (2001) are provided for comparison.

5.3. Down-and-Out Options

Table 1 gives the eigenvalues �n, n = 1�10�50�150�250
for the down-and-out problem with L = 90. The approxi-
mate eigenvalues estimated using Equation (96) are given
in parentheses next to each “exact” eigenvalue. The “exact”
eigenvalues are determined using a numerical root find-
ing procedure for Equation (90). The estimates (96) are
quite accurate. The convergence for down-and-out options
is slower than for double-barrier and up-and-out options
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Table 3. Convergence of eigenfunction expansions for up-and-out and capped call prices under the CEV processes
with ? =−0�5�−1�−2�−3� −4 and T = 1 and 12 months.

? =−0�5 −1 −2 −3 −4

N Up-and-Out Call T = 1 Month

1 0�0499 0�2883 1�4853 3�5512 6�2527
10 4�7555 3�1529 3�2334 3�2754 3�3011
20 3�0674 3�1445 3�2271 3�2757 3�3011
50 3�0870 3�1440 3�2271 3�2757 3�3011

Laplace 3�0870 3�1440 3�2271 3�2756 3�3010

N Rebate T = 1 Month

1 15�3320 12�5486 6�9059 2�0199 −2�2197
10 −1�3140 0�1604 0�0695 0�0307 0�0097
20 0�2389 0�1556 0�0755 0�0304 0�0097
50 0�2121 0�1561 0�0755 0�0304 0�0097

Laplace 0�2121 0�1561 0�0755 0�0304 0�0097

Capped Call T = 1 Month

3�2928 3�3001 3�3026 3�3061 3�3108

N Up-and-Out Call T = 12 Months

1 0�0405 0�2006 0�7417 1�3290 1�8765
5 0�6591 0�8709 1�1246 1�4752 1�9061

10 0�7710 0�8709 1�1246 1�4752 1�9061

Laplace 0�7711 0�8709 1�1246 1�4752 1�9061

N Rebate T = 12 Months

1 15�5820 13�8024 11�7924 11�1851 10�9988
5 11�0576 10�8384 10�9107 10�9596 10�9617

10 10�7934 10�8384 10�9107 10�9596 10�9617

Laplace 10�7934 10�8384 10�9107 10�9596 10�9617

Capped Call T = 12 Months

11�5645 11�7093 12�0353 12�4348 12�8678

Notes. For T = 1 month, for each up-and-out call five values are given: Partial sums of the first N terms of the eigenfunction expansion
Equation (81) (N = 1�10�20�50) and the value obtained by the numerical Laplace inversion. For each rebate five values are given: Partial
sums including the first N terms of the series in Equation (102) (N = 1�10�20�50) times the rebate amount �U−K� and the value obtained
by the numerical Laplace inversion. For T = 12 months, for each up-and-out call four values are given: Partial sums of the first N terms
of the expansion (N = 1�5�10) and the value obtained by the numerical Laplace inversion. For each rebate four values are given: Partial
sums including the first N terms of the series in Equation (102) (N = 1�5�10) times the rebate amount �U−K� and the value obtained by
the numerical Laplace inversion. Capped call prices are calculated according to Equation (101) by adding the rebate to the up-and-out call.
All numerical Laplace inversion values are taken from Davydov and Linetsky (2001). Parameters: S = K = 100, U = 120, r = 0�1, q = 0,

�100�= 0�25.

because the eigenvalues (96) grow linearly with n, in con-
trast to the n2 growth for double-barrier and up-and-out.

Table 4 illustrates convergence of the eigenfunction
expansion for down-and-out call prices. The values
obtained by the numerical Laplace transform inversion in
Davydov and Linetsky (2001) are provided for comparison.

5.4. Vanilla Options

Table 5 illustrates convergence of eigenfunction expansions
for vanilla calls. The values obtained by computing Cox’s
(1975) formula (112) are provided for comparison (we use
the algorithm provided by Schroder 1989). The conver-
gence for vanilla options is slower than for double-barrier

and up-and-out options because the eigenvalues in (105)
grow linearly with n.

5.5. Interest Rate Barrier Options

Table 6 illustrates convergence of the series (129) for
knock-out bonds with T = 0�5, 1, 3, 5, and 10 years to
maturity. The CIR process parameters are @= 0�07, L= 0�2,
2 = 0�1. The initial short rate is r = 0�06, and the lower and
upper barriers are L = 0�02 and L = 0�11. The series con-
verges rapidly. For 5 and 10 years the first term is enough
to achieve the accuracy of five significant digits. For shorter
maturities more terms are needed. For comparison, Table 6
also gives vanilla zero-coupon CIR bonds prices and yields.
The spread compensates for the risk of knock-out.



202 / Davydov and Linetsky

Table 4. Convergence of eigenfunction expansions for down-and-out put and call prices under the CEV processes with
? =−0�5�−1�−2�−3� −4 and T = 3 and 12 months.

? =−0�5 −1 −2 −3 −4

N Down-and-Out Put T = 3 Months

10 0�0754 0�1388 0�2028 0�2139 0�2013
50 0�3179 0�3769 0�3330 0�2788 0�2336

150 0�4352 0�4006 0�3338 0�2788 0�2336
250 0�4392 0�4006 0�3338 0�2788 0�2336

Laplace 0�4391 0�4005 0�3337 0�2788 0�2336

N Down-and-In Forward T = 3 Months

1 9�7751 7�2079 4�2073 2�9261 2�3094
5 9�7938 7�4046 4�7494 3�6183 3�0442

10 9�7938 7�4047 4�7496 3�6185 3�0446

Down-and-Out Call T = 3 Months

N = 250 5�9609 5�9336 5�8791 5�8246 5�7704

Laplace 5�9608 5�9336 5�8790 5�8246 5�7704

N Down-and-Out Put T = 12 Months

10 0�0381 0�0474 0�0411 0�0316 0�0241
50 0�0642 0�0558 0�0419 0�0317 0�0241
75 0�0646 0�0558 0�0419 0�0317 0�0241

Laplace 0�0646 0�0558 0�0419 0�0317 0�0241

N Down-and-In Forward T = 12 Months

1 4�7053 2�8181 1�0643 0�5838 0�4707
5 4�7185 2�9328 1�2893 0�7919 0�6319

10 4�7185 2�9328 1�2893 0�7919 0�6319

Down-and-Out Call T = 12 Months

N = 75 11�2354 11�1540 11�0086 10�8821 10�7713

Laplace 11�2354 11�1540 11�0086 10�8821 10�7713

Notes. For T = 3 months, for each down-and-out put five values are given: Partial sums of the first N terms of the eigenfunction expansion
Equation (89) (N = 10�50�150�250) and the value obtained by the numerical Laplace inversion. For each down-and-in forward three values
are given: Partial sums including the first N terms in the series in Equation (99) (N = 1�5�10). For T = 12 months, for each down-and-
out put four values are given: Partial sums of the first N terms of the series Equation (89) (N = 10�50�75) and the value obtained by the
numerical Laplace inversion. For each down-and-in forward three values are given: partial sums including the first N terms of the series
in Equation (99) (N = 1�5�10). Down-and-out call prices are calculated according to the put-call parity relationship for the down-and-out
options Equation (98). N indicates the number of terms taken in the eigenfunction expansion for the down-and-out put. All numerical Laplace
inversion values are taken from Davydov and Linetsky (2001). Parameters: S = K = 100, L= 90, r = 0�1, q = 0, 
�100�= 0�25.

5.6. Computational Performance of
Eigenfunction Expansions

Here we compare computational performance of the eigen-
function expansions developed in this paper with numeri-
cal finite-difference schemes to integrate the option pricing
PDE. From the previous analysis, the computational per-
formance of eigenfunction expansions improves as the time
to expiration T increases because the higher terms are sup-
pressed by the factors e−�nT . In contrast, the numerical
PDE schemes slow down as the time to expiration increases
because the PDE needs to be integrated further in time.
Thus, the two methods have opposite convergence behavior
and are complementary. As a test, we consider a double-
barrier call option with the same parameters as in Table 2,
but with times to expiration ranging from one month to
three years.

Eigenfunction expansions in this paper have been imple-
mented in C++. To implement the Whittaker functions
appearing in the formulas, we used representations given
in Slater (1960). We have also checked our C++ imple-
mentation against the results obtained using Mathematica
4.0. Whittaker functions are closely related to the Kummer
and Tricomi confluent hypergeometric functions available
in Mathematica 4.0 as built-in functions. The computation
of eigenfunction expansions proceeds in two steps. First,
we find the eigenvalues. Note that we need to do it only
once, as the same eigenvalues are used to price options of
all strikes and maturities. Thus, we do not include the time
needed to compute the eigenvalues in the reported compu-
tation time for each option price.

To numerically integrate the CEV PDE with the two
Dirichlet boundary conditions at the lower and upper bar-
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Table 5. Convergence of eigenfunction expansions for
vanilla call prices under the CEV processes
with ? =−0�5� −1� −2� −3� −4� and T = 1
and 12 months.

? =−0�5 −1 −2 −3 −4

N Vanilla Call T = 1 Month

10 10�1991 3�9635 2�6486 4�1398 4�5958
100 4�6459 3�1336 3�2952 3�3072 3�3105
200 2�9938 3�3218 3�3027 3�3063 3�3109
500 3�3261 3�3011 3�3031 3�3063 3�3109

1�000 3�3005 3�3012 3�3031 3�3063 3�3109

Cox 3�3005 3�3012 3�3031 3�3063 3�3109

N Vanilla Call T = 12 Months

2 17�9452 20�2703 16�1075 15�2465 15�3931
10 17�0308 14�7942 15�0904 15�2647 15�4770
50 14�9762 15�0022 15�0892 15�2619 15�4767

100 14�9824 15�0022 15�0892 15�2619 15�4767

Cox 14�9824 15�0022 15�0892 15�2619 15�4767

Notes. For T = 1 month, for each price six values are given: Par-
tial sums of the first N terms of the expansion in Equation (107)
(N = 10�100�200�500�1000) and the value obtained by Cox’s for-
mula (112). For T = 12 months, for each price five values are given:
Partial sums of the first N terms of the expansion (N = 2�10�50�100)
and the value obtained by Cox’s formula. Parameters: S=K = 100,
r = 0�1, q = 0, 
�100�= 0�25.

riers L and U and the terminal condition at expiration t =
T , we implemented the Crank-Nicholson finite-difference
scheme that is widely used for numerical options pricing.

Table 7 gives computational results for double-barrier
calls with times to expiration of one and three months and
one, two and three years. We run the eigenfunction expan-

Table 7. Comparison of eigenfunction expansions and finite-difference PDE schemes for double-barrier calls under the
CEV process with ? =−4 and T = 1 and 3 months and 1, 2, and 3 years.

Time to Expiration T

1 month 3 months 1 year 2 years 3 years

Eigenfunction Expansion

Price 3�279322 4�295898 0�5822268 0�02934524 0�001477778
N 8 4 2 2 1
Time 1�8 0�85 0�5 0�5 0�25

X× 
Y T � Finite-Difference PDE

1200× 
600T � 3�26643 4�30115 0�582491 0�0287646 0�00120688
Time 0�01 0�03 0�12 0�25 0�3
2400× 
1200T � 3�27289 4�29852 0�582358 0�0290551 0�00134233
Time 0�05 0�13 0�5 1 1�5
12000× 
6000T � 3�27804 4�29642 0�582253 0�0292874 0�00145069
Time 1�6 5 18 37 57
24000× 
12000T � 3�27868 4�29616 0�582240 0�0293165 0�00146423
Time 8 24 95 190 285

Notes. For the eigenfunction expansions, for each option three values are given: Price with precision of seven significant digits, number of
terms in the expansion needed to achieve this level of precision, and the computation time in seconds. For the finite-difference PDE scheme,
we consider four discretizations of the problem domain �L�U�× �0� T �, X× �Y T �, where X , X = 1�200, 2,400, 12,000, 24,000, is the number
of state (price) steps in the interval �L�U� and YT , Y = 600� 1,200, 6,000, 12,000, is the number of time steps in the interval �0� T �. Time to
expiration T is measured in years and Y is the number of time steps in one year. Parameters: S = K = 100, L= 90, U = 120, r = 0�1, q = 0,
�=−4, 
�100�= 0�25.

Table 6. Convergence of eigenfunction expansions for
zero-coupon double knock-out bonds with
maturities T = 0�5�1�3�5�10 years in the CIR
term structure model.

T = 0�5 1 3 5 10

N Knock-Out Bond Price

1 1.0012 0.8671 0.4878 0.2745 0.0652
2 1.0145 0.8741 0.4884 0.2745 0.0652
3 0.9573 0.8608 0.4883 0.2745 0.0652
4 0.9561 0.8607 0.4883 0.2745 0.0652
5 0.9578 0.8608 0.4883 0.2745 0.0652
6 0.9579 0.8608 0.4883 0.2745 0.0652

Knock-Out Bond Yield

0.0861 0.1499 0.2389 0.2586 0.2731

Vanilla Bond Price

0.9702 0.9410 0.8306 0.7320 0.5334

Vanilla Bond Yield

0.0605 0.0608 0.0619 0.0624 0.0628

Notes. Each bond pays one dollar at maturity T if the three-month
LIBOR rate never leaves the corridor (0.02, 0.11) during the life-
time of the bond, and zero otherwise. For each bond, six values
are given: Partial sums of the first N terms in the eigenfunction
expansion (N = 1�2� � � � �6). Parameters: �= 0�2, 
 = 0�1, � = 0�07,
r0 = 0�06. Corresponding vanilla bond prices and yields are given
for comparison.

sion until adding more terms does not change the first seven
significant digits. Table 7 reports option prices computed
at this level of precision, as well as the number of terms
needed to obtain the result and the computation time in sec-
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onds. One term is enough to achieve this level of precision
for three years to expiration, while eight terms are needed
for the case of one month. Accordingly, the computation
times decrease as T increases. Most CPU time is spent on
computing Whittaker functions.

For the finite-difference PDE scheme, we consider four
discretizations of the problem domain �L�U �× �0� T �, X×

Y T �, where X, X = 1�200, 2,400, 12,000, 24,000, is the
number of state (price) steps in the interval �L�U �, and
Y T , Y = 600� 1,200, 6,000, 12,000, is the corresponding
number of time steps in the interval �0� T �. Time to expi-
ration T is measured in years and Y is the number of
time steps in one year. For each discretization two num-
bers are given: the option price and the corresponding com-
putation time. The data confirm the observation that the
finite-difference scheme and the eigenfunction expansion
have opposite convergence behavior. The finite-difference
scheme slows down for longer times to expiration, while
convergence of the eigenfunction expansion accelerates.
Thus the eigenfunction expansion has a particular advan-
tage in pricing longer-dated contracts. The eigenfunction
expansion is an analytical formula that can be computed
to an arbitrary level of precision and, thus, can be used
to benchmark numerical methods such as finite-difference
schemes and simulation algorithms. In addition, the hedge
ratios (delta and gamma) can be calculated by taking ana-
lytical derivatives. The strengh of numerical PDE methods
is in their flexibility. Many market realities such as discrete
dividends, day count conventions, discrete sampling of bar-
riers, early exercise, can be incorporated with relative ease.

6. CONCLUSION

This paper develops an eigenfunction expansion approach
to pricing options on scalar diffusion processes. All
European-style contingent claims with payoffs square-
integrable with the speed measure of the diffusion are
unbundled into portfolios of primitive securities called
eigensecurities. The eigensecurities are eigenvectors of the
pricing operator and are fundamental building blocks in
our approach. All other European-style contingent claims
are represented as portfolios of eigensecurities. In particu-
lar, Arrow-Debreu securities themselves are unbundled into
portfolios of eigensecurities. This produces an eigenfunc-
tion expansion of the state-price density (spectral represen-
tation of the state-price density).

In this paper, we show that the eigenfunction expansion
method is a powerful computational tool for derivatives
pricing. While the state-price density solves the initial- and
boundary-value problem for the pricing PDE, the eigense-
curities are solutions to the static pricing equation without
the time derivative term. This static pricing equation can
be interpreted as a second-order Sturm-Liouville ODE. The
Sturm-Liouville theory can then be applied to derivatives
pricing.

To illustrate the computational power of the method, this
paper develops two specific applications: pricing vanilla,

single- and double-barrier options under the CEV process
and interest rate knock-out options in the CIR term struc-
ture model. For the CEV process, our main result is the
analytical inversion of the Laplace transforms in maturity
for single- and double-barrier options obtained in Davydov
and Linetsky (2001). For the CIR process, we derive ana-
lytical expressions for the prices of knock-out bonds. In
both applications, the eigenfunction expansions converge
rapidly.

Further applications of eigenfunction expansions to prob-
lems in financial engineering will be explored in future
research. Linetsky (2001, 2002a) obtains analytical solu-
tions for arithmetic Asian options under the geometric
Brownian motion assumption as an application of the sin-
gular Sturm-Liouville theory. Gorovoi and Linetsky (2001)
obtain pricing formulas for step options introduced by
Linetsky (1998, 1999) (see also Davydov and Linetsky
2001/2002) under the CEV process. Gorovoi and Linetsky
(2003) obtain analytical solutions to Black’s (1995) model
of interest rates as options. Linetsky (2002b) obtains ana-
lytical solutions for diffusion hitting times and lookback
options in terms of spectral expansions.

APPENDIX PROOFS

Proof of Proposition 1. The function V 
x�T � defined by
Equation (2) for any payoff f ∈ � is a unique continuous
solution of the PDE (the operator 	 is defined in Equa-
tion (9))

	V + �V

�T
= 0� x ∈ 
L�U�� T ∈ 
0����

with the Dirichlet boundary conditions V 
L�T � = 0�
V 
U�T � = 0, T ∈ �0���, and the initial condition
V 
x�0� = f 
x�, x ∈ 
L�U�. If a payoff �
xT � has the
eigenvector property (6) for some �, then its price at time
zero is V 
x�T � = e−�T �
x�. Substituting this formula into
the PDE, we find that �
x� must solve the Sturm-Liouville
problem (10). It is classical that the spectrum of a reg-
ular Sturm-Liouville problem on the interval �L�U � with
a
x� > 0 and r
x� � 0 on �L�U � and Dirichlet boundary
conditions at both end-points is simple, purely discrete and
positive: 0 <�1 <�2 < · · ·�n < · · · with �n →� as n→�
(Dunford and Schwartz 1963, Levitan and Sargsjan 1975,
Stakgold 1998, Zwillinger 1998). The eigenfunctions �n

of the regular Sturm-Liouville problem form a complete
orthonormal basis in the Hilbert space � . Then any payoff
in � is in the span of �n, and the coefficients cn in (7) are
determined by calculating the inner products of the payoff
function with the eigenpayoffs (8). The convergence of the
eigenfunction expansion (7) is in the norm of the Hilbert
space. This proves parts (i) and (ii). Finally, the pricing
formula (11) follows from the eigenfunction expansion of
the payoff (7), the linearity of the pricing operator, and the
eigenvector property of �n (6). �
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Proof of Proposition 2. To show that the functions (31)
satisfy the eigenfunction property (32) with the eigenval-
ues (33), it is enough to show that they solve the Sturm-
Liouville problem

−1
2
22x2u′′ − 
r −q�xu′ + ru = �u� x ∈ 
L�U��

u
L� = 0� u
U� = 0� (139)

The transformation

y =
√

2
2

ln
( x

L

)
� u
x� = 2− 1

4
√

2x−3/2v
y
x��� (140)

reduces the Sturm-Liouville problem (139) to the Liouville
normal form with the constant potential

−v′′ +Qv = �v� y ∈ 
0�B�� v
0� = 0� v
B� = 0� (141)

B =
√

2
2

ln
(

U

L

)
� Q = r + 32

2
� (142)

It is classical that the functions{√
2
B

sin
(n7y

B

)
� n = 1�2� � � �

}

form a complete set of normalized eigenfunctions for the
problem (141) with Q = 0 and eigenvalues n272/B2. Then
the same functions are eigenfunctions of the problem with
constant Q, but with the eigenvalues �n = Q+ n272/B2.
Inverting the Liouville transformation yields the functions
(31). They form a complete set of eigenfunctions of the
original problem (139). Then the rest of Proposition 2 fol-
lows from the general results of Proposition 1. For the
double-barrier call payoff we have

cn =
∫ U

K

x−K��n
x��
x�dx

= 2

2
√

2u

∫ U

K

x−K�x
3/2�−1 sin

(7n

2u
ln
x/L�

)
dx�

Finally, the result (35) follows from the identity (9n =

7n/u�):∫ u

k
eaz sin 
9nz� dz

= 1
92

n +a2

[
eak
9n cos
9nk�

−a sin
9nk��− 
−1�n9ne
au
]
� �

Proof of Proposition 3. The coefficients cn are given by
the inner product of the call payoff with the eigenfunctions
(66). From Equation (69) we have

cn =
∫ U

K

Y −K��n
Y ��
Y �dY

= Nn

J
 1
2 +m−k�

J
1+2m�

[
Wkn�m


l�In −Mkn�m

l�Jn

]
�

where (y "= 
>/
,2�?���Y −2?)

In =
∫ U

K

Y −K�Y

1
2 +?e−y
Y �/2Mkn�m


y
Y ���
Y �dY � (143)

Jn =
∫ U

K

Y −K�Y

1
2 +?e−y
Y �/2Wkn�m


y
Y ���
Y �dY � (144)

Substituting the expression (52) for �
Y � and using the
indefinite integrals in Slater (1960, pp. 23–25), the integrals
In and Jn are calculated in closed form yielding Equations
(71)–(74). �

Proof of Proposition 4. The end-point U is regular and
the solution .�
S� with the initial conditions (18) is the
same as in the double-barrier case and is given by Equa-
tions (58), (61). The end-point 0 is regular for ? <− 1

2 and
singular limit-point nonoscillatory for − 1

2 � ? < 0. In the
regular case, we impose the initial conditions (17) at zero.
The solution is

-�
S� = S
1
2 +?e−x
S�/2Mk
���m
x
S��� (145)

Using the Wronskian Wx
Wk�m�Mk�m� = 
J
1+2m��/

J
 1

2 +m−k��, the Wronskian of . and - is given by
Equation (19) with

C
�� = U
1
2 +?eu/2Mk
���m
u�� (146)

Let kn be a zero of the Whittaker function Mk�m
u� (as
noted previously, all zeros �kn�

�
n=1 of the Mk�m
u� are sim-

ple and concentrated along the positive real half-line). Then
the functions -�n


S� and .�n

S� are linearly dependent (�n

is related to kn by Equation (64)):

.�n

S�=−,2J
m−kn+ 1

2 �

2>J
1+2m�
U

1
2 +?e

u
2 Wkn�m


u�-�n

S�� (147)

Then the normalized eigenfunction (24) takes the form
(83)–(84). Finally, the up-and-out call payoff is square-
integrable with the speed density on the interval 
0�U � and,
thus, its price is given by the eigenfunction expansion (81)
with the coefficients cn = 
f ��n� = NnIn, where In is the
integral (143). It was calculated in closed form in Proposi-
tion 3 and is given by Equation (72).

In the singular limit-point case − 1
2 � ? < 0, only one

solution (up to a multiplicative factor independent of S) is
in L2

0�U ����. The square-integrability criterion singles
out this solution in the form (145). Moreover, it is an entire
function of � for fixed S. The Green’s function takes the
same form as in the regular case, and the above analysis for
? < − 1

2 goes through verbatim for the singular limit-point
case − 1

2 � ? < 0. �

Proof of Proposition 5. The domain of the problem is
�L���. The end-point L is regular and the solution -�
S�
with the initial conditions (17) at S = L is the same as in
the double-barrier case and is given by Equations (58) and
(61). Infinity is limit-point and nonoscillatory, and only one
solution is square-integrable with the speed density near
infinity. This solution can be taken in the form

.�
S� = S
1
2 +?e−x
S�/2Wk
���m
x
S��� (148)
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Moreover, it is entire in � for fixed S. The Wronskian of
. and - is given by Equation (19) with

C
�� = L
1
2 +?e

l
2 Wk
���m
l�� (149)

Let kn be a zero of the Whittaker function Wk�m
l�. Then
the functions -�n


S� and .�n

S� are linearly dependent

(�n is related to kn by Equation (64)):

-�n

S�=−,2J
m−kn+ 1

2 �

2>J
1+2m�
L

1
2 +?e

l
2 Mkn�m


l�.�n

S�� (150)

and the normalized eigenfunction (24) can be taken in the
form (91)–(92).

Finally, the down-and-out put payoff is square-integrable
with the speed density on the interval �L��� and,
thus, its price is given by the eigenfunction expansion
(89) with the coefficients cn = 
f ��n� = Nn

∫ K

L

K − Y �

Y
1
2 +?e−y/2Wkn�m


y��
Y �dY . The integral is calculated in
closed form similar to the integrals (143), (144) by using
the indefinite integrals in Slater (1960, pp. 23–25). �

Proof of Proposition 6. For any P� 0 and 0 < L < S <
�, introduce the following notation

Q−
P 
T )S�L� "= ES�e

−PTL1�TL�T ��� (151)

We need to compute the down-and-in forward price

fDI = e−rT ES

[

ST −K�1�TL�T �

]
= e−rT ES

[
ST 1�TL�T �

]− e−rT KES

[
1�TL�T �

]
�

The expectation in the first term simplifies as follows

ES

[
ST 1�TL�T �

]= ES

[
E�ST ��TL

�1�TL�T �

]
= ES�e

>
T−TL�L1�TL�T ��

= e>T LES�e
−>TL1�TL�T ���

Then the down-and-in forward price takes the form

fDI = e−qT LQ−
> 
T )S�L�− e−rT K Q−

0 
T )S�L�� (152)

From Davydov and Linetsky (2001, Propositions 1, 2,
and 5), for any s > 0 the Laplace transform of the function
Q−

P 
T )S�L� in time to maturity T can be expressed in the
form∫ �

0
e−sT Q−

P 
T )S�L�dT

= S
1
2 +?e−x/2

L
1
2 +?e−l/2

(
Wm− 1

2 −

s+P�/
2>�?����m
x�

sWm− 1
2 −

s+P�/
2>�?����m
l�

)
� (153)

for 0 < L� S <� (0 < l � x <�). We invert this Laplace
transform by means of the Cauchy Residue Theorem along
the lines of Doetsch (1974, pp. 169–173). As a function
of the complex variable s, the right-hand side of Equa-
tion (153) (in what follows denoted by F 
s�) is a ratio of
two entire functions. The only (simple) zeros of the denom-
inator are s = 0 and s =−
P+�n�, n= 1�2� � � � , where �n

are the eigenvalues of the down-and-out problem estimated
in Equation (96). For large �k�, the Whittaker function W
is approximated by Equation (94). Then the expression in
parenthesis on the right-hand side of Equation (153) is
approximated by

x
1
4 cos
7k
s�−2

√
k
s�x−7/4�

s l
1
4 cos
7k
s�−2

√
k
s�l−7/4�

�

k
s� = m− 1
4
− P+ s

2>�?� � (154)

We select a family of circular arcs �n in the s-plane cen-
tered at the origin and with the radii Rn such that the abso-
lute value of the cosine in the denominator of (154) is
maximized and is equal to one when k = k
−Rn�. Then
the ratio of the two cosines in (154) is bounded on �n

as n → � (Rn → �), and the function F 
s� vanishes on
�n as n → � (Rn → �) due to the presence of the fac-
tor s in the denominator in (154). The Hypotheses H1 and
H2 in Doetsch (1974, p. 171) needed to apply the Cauchy
Residue Theorem are then satisfied, and the inverse Laplace
transform is expressed as a sum of residues of the function
esT F 
s� at s = 0 and s =−
P+�n�, n= 1�2� � � � (Doetsch
1974, p. 171, Equations (3) and (5)):

Q−
P 
T )S�L� = S

1
2 +?e−x/2

L
1
2 +?e−l/2

{
Wm− 1

2 −
P/
2>�?����m
x�

Wm− 1
2 −
P/
2>�?����m
l�

+
�∑

n=1

2>�?�e−
P+�n�T Wkn�m

x�


P+�n�
[
�Wk�m
l�/�k

]∣∣
k=kn

}
�

(155)

where kn are the roots of Equation (90). Substituting
this result into Equation (152) and observing that (see
Abramowitz and Stegun 1972, p. 510; J
3� x� = J
3�
G
3�x� is the incomplete Gamma function)

Wm− 1
2 �m
x� = x−m+ 1

2 ex/2J
2m�x��

W−m− 1
2 �m
x� = xm+ 1

2 ex/2J
−2m�x��

after some algebra we arrive at the final result (99) for the
present value of the down-and-in forward contract. �

Proof of Proposition 7. The proof is similar to the
proof of Proposition 6. From Davydov and Linetsky (2001,
Propositions 1, 2, and 5), for any s > 0 the Laplace trans-
form of ES�e

−rTU 1�TU�T �� in time to maturity T is (0 < S �

U < �)∫ �

0
e−sT ES�e

−rTU 1�TU�T �� dT

= S
1
2 +?e−x/2

U
1
2 +?e−u/2

(
Mm− 1

2 −

s+r�/
2>�?����m
x�

sMm− 1
2 −

s+r�/
2>�?����m
u�

)
� (156)

We invert this Laplace transform similar to (153) by means
of the Cauchy Residue Theorem. As a function of s ∈ 
,
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the right-hand side of Equation (156) is a ratio of two entire
functions. The (simple) zeros of the denominator are s = 0
and s = −
r +�n�, n = 1�2� � � � , where �n are the eigen-
values of the up-and-out problem estimated in Equation
(88). For large �k�, the Whittaker function M is approxi-
mated by Equation (86). Then the expression in parenthesis
on the right-hand side of Equation (156) is approximated
by

x
1
4 cos
2

√
k
s�x−7m−7/4�

s u
1
4 cos
2

√
k
s�u−7m−7/4�

�

k
s� = m− 1
4
− P+ s

2>�?� � (157)

We select a family of circular arcs �n in the s-plane cen-
tered at the origin and with the radii Rn such that the abso-
lute value of the cosine in the denominator is maximized
and is equal to one when k = k
−Rn�. Then the ratio of
the two cosines is bounded on �n as n→�, and the func-
tion (157) vanishes on �n as n → � due to the presence
of the factor s in the denominator. The Hypotheses H1 and
H2 in Doetsch (1974, p. 171) needed to apply the Cauchy
Residue Theorem are then satisfied, and the inverse Laplace
transform is expressed as a sum of residues at s = 0 and
s =−
r +�n�, n = 1�2� � � � , yielding the result (102). �

Proof of Proposition 8. (i) The solution -� is taken in the
form (145) as in the Proof of Proposition 4. The solution .�

is taken in the form (148) as in the Proof of Proposition 5.
The Wronskian is given by Equation (19) with

C
�� = 2>J
1+2m�

J
 1
2 +m−k�

= 2>J
1+2m�

J 
1− 
�/
2>�?���� �

The Green’s function is given by

g
S�Y )��

=�
Y �
,2

2>

SY �

1
2 +?e−
x+y�/2

× J 
1−
�/
2>�?����
J
1+2m�

Mk�m
x∧y�Wk�m
x∨y�� (158)

Because the problem is nonoscillatory at both end-points
and the spectrum is simple, purely discrete, and bounded
below, at an eigenvalue the Green’s function has a sim-
ple pole. Both Wk�m
a� and Mk�m
a� are entire functions
of k for all fixed m > 0 and a > 0. The Gamma function
J
1− 
�/
2>�?���� in the numerator of (158) has simple
poles at � = 2>�?�n� n = 1�2� � � � with the correspond-
ing residues 

−1�n2>�?��/
n−1�!. Thus the eigenvalues
are �n = 2>�?�n, n= 1�2� � � � . The residues of the Green’s
function at � = �n are

Res�=�n
g
S�Y )�� =�
Y �


−1�n,2�?�
SY �
1
2 +?e−
x+y�/2


n−1�!J
1+2m�

×Mm+n− 1
2 �m
x∧y�Wm+n− 1

2 �m
x∨y��

When k = m+n− 1
2 , n = 1�2� � � � , the functions Mk�m
x�

and Wk�m
x� become linearly dependent and reduce to gen-
eralized Laguerre polynomials (Abramowitz and Stegun
1972, p. 505 and pp. 509–510, Buchholz 1969, p. 214)

Mm+n− 1
2 �m
x� = 
n−1�!J
1+2m�

J
2m+n�
e−x/2xm+ 1

2 L

2m�
n−1 
x��

Wm+n− 1
2 �m
x� = 
−1�n−1
n−1�!e−x/2xm+ 1

2 L

2m�
n−1 
x��

Then the residues can be rewritten in the form

Res�=�n
g
S�Y )�� =−�
Y �

,2�?�
n−1�!
J
n+2m�

(
>

,2�?�
)1+2m

× 
SY �e−
x+y�/2L

2m�
n−1 
x�L


2m�
n−1 
y��

On the other hand, Res�=�n
g
S�Y )�� = −�
Y ��n
S�

�n
Y �, and we recognize the eigenfunctions (105).
(ii) The origin is a killing boundary and the continuous

density p
T )S�ST � is defective. Integrating the represen-
tation (111) produces the hitting probability (106) via the
relationship:

∫ �
0 p
T )S�ST �dST = 1−Pr
�0 � T � S0 = S�.

(iii) Similar to the down-and-out call, the vanilla call
is not in L2
�0������. We price the vanilla put first. To
price the put, we decompose the put payoff into two parts:

K−ST �

+ = K1�T0�T � + 
K−ST �
+1�T0>T �. The first part is

the “bankruptcy claim” that pays off the strike price K
in the case of killing at zero (“bankruptcy”) prior to and
including maturity T . The price of the bankruptcy claim
contributes the first term in Equation (107). The second part
can be interpreted as a down-and-out put with the barrier
placed at zero. Its terminal payoff is in L2
�0������ and
its price is given by the eigenfunction expansion in (107).
The coefficients of the expansion (108) are calculated in
closed form using the integrals in Prudnikov et al. (1986),
p. 51, 463. Finally, the vanilla call price is recovered from
the put-call parity. �

Proof of Proposition 9. (i) The proof is similar to (i) of
Proposition 8. (ii) The zero-coupon bond payoff f 
rT �= 1
is in the span of the eigensecurities (f = 1 is square-
integrable on 
0��� with the weight (121)). The coeffi-
cients cn = 
1��n� are calculated in closed form using the
integral (Gradshteyn and Ryzhik 1994, p. 850; 3 > −1,
s > 0, n = 0�1�2� � � � )∫ �

0
e−sxx3L
3�

n 
x�dx = J
3+n+1�
s−1�n

n! s3+n+1
� �

ENDNOTES

1. The foundations of semigroup pricing theory in a general
Markov context are developed by Duffie (1985), Duffie and
Garman (1985), and Garman (1985). See Dynkin (1965)
and Ethier and Kurtz (1986) for the semigroup approach to
Markov processes. See Dunford and Schwartz (1963) for
spectral theory of self-adjoint operators in Hilbert space.
2. Feller’s boundary classification for one-dimensional dif-
fusions is given in Karlin and Taylor (1981, chapter 15)
and Borodin and Salminen (1996, chapter 2).
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3. See Karlin and Taylor (1981, p. 194), Karatzas and
Shreve (1991, p. 343), and Borodin and Salminen (1996,
p. 17) for discussions of scale and speed densities. Our def-
inition of the speed density coincides with that of Karatzas
and Shreve (1991) and Borodin and Salminen (1996) and
differs from Karlin and Taylor (1981), who do not include
2 in the definition.
4. See Dunford and Schwartz (1963), Fulton and Pruess
(1994), Fulton et al. (1996), Levitan and Sargsjan (1975),
Pryce (1993), Stakgold (1998, pp. 435–490), Titchmarsh
(1962), and Zwillinger (1998, pp. 94–99) for the account
of the theory of Sturm-Liouville boundary-value problems.
5. The limit-point/limit-circle and oscillatory/nonoscillatory
classifications remain invariant under the conversion to the
Liouville normal form. The Liouville transformation can
transform a regular end-point of the original equation into
a singular end-point of the equation in the Liouville normal
form. However, since regular end-points are limit circle and
nonoscillatory, it follows that the corresponding singular
end-point will be limit circle and nonoscillatory.
6. Recall that the LIBOR L
t� t + ,� is a simple inter-
est rate for the period �t� t + ,�, and L
t� t + ,� = 1/,

1/
P
t� t+,���−1, where P
t� t+,� is the time-t price
of a zero-coupon bond with unit face and maturity t+,.
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