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Online Appendix
A. Toeplitz Matrices
A.1. Discrete Fourier Transform
The 1-d discrete Fourier transform (DFT) of a (complex) vector �fm�

M−1
m=0 is defined by:

f̂n =
M−1∑
m=0

e−2�imn/Mfm� n= 0�1� � � � �M − 1�

where i=√−1. Let w be the primitive M-th root of unity, w= e−2�i/M , and introduce the DFT matrix �M :

�M =




1 1 · · · 1

1 w1 · · · wM−1

1 w2 · · · w2�M−1�

���
���

���

1 wM−1 · · · w�M−1��M−1�



�

Then the 1-d DFT can be written in matrix form: f̂ = �Mf . The inverse of the DFT matrix is given by

�−1
M = 1

M
�∗M�

where �∗M is the conjugate transpose (or adjoint) of �M . Consequently, the inverse 1-d discrete Fourier transform
(IDFT) is given by

fm = 1
M

M−1∑
n=0

e2�imn/M f̂n� m= 0�1� � � � �M − 1�

The fast Fourier transform (FFT) is an efficient algorithm to compute the DFT (and IDFT) in O�M log2M�
complex multiplications compared to M2 complex multiplications for standard matrix-vector multiplication (e.g.,
Van Loan 1992).

Similarly, the 2-d DFT of a (complex) array �fnm�0� n�N − 1�0�m�M − 1� is defined by

f̂kl =
N−1∑
n=0

M−1∑
m=0

e−2�ink/N e−2�iml/Mfnm� 0� k�N − 1� 0� l�M − 1�

If we treat f as an N ×M matrix, then the 2-d DFT can be expressed in matrix form as f̂ = �N f �M . The inverse
2-d DFT (IDFT) is given by f = �−1

N f̂ �−1
M , or

fnm = 1
MN

N−1∑
k=0

M−1∑
l=0

e2�ink/N e2�iml/M f̂kl� 0� n�N − 1� 0�m�M − 1�
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The 2-d DFT (or IDFT) can be computed in O�MN log2�MN�� complex multiplications by applying the FFT
to each of the M columns of f (or f̂ ), and then to each of the N rows of the resulting matrix. The Kronecker
tensor product A⊗B of an n×m matrix A= �aij � and an arbitrary matrix B is given by

A⊗B=




a11B a12B · · · a1mB

a21B a22B · · · a2mB

���
���

���

an1B an2B · · · anmB



�

The operator vec maps any n×m matrix A= �aij � to a vector by stacking the columns of the matrix:

vec�A�= �a11� � � � � an1� a12� � � � � an2� � � � � a1m� � � � � anm�
	�

Basic properties of the Kronecker product and the operator vec include (e.g., Horn and Johnson 1994, Chapter 4):
�A⊗ B�∗ = A∗ ⊗ B∗, �A⊗ B�−1 = A−1 ⊗ B−1 if A and B are nonsingular, and vec�AXB�= �B	 ⊗A�vec�X�.
Then it is easy to see that

vec�f̂ �= ��M ⊗ �N �vec�f �� vec�f �= ��M ⊗ �N �
−1vec�f̂ �� (EC1)

A.2. Circulant Matrices
An M ×M matrix is called circulant if it has the following form (e.g., Davis 1994):

C =




c0 cM−1 · · · c1

c1 c0 · · · c2

���
���

���

cM−1 cM−2 · · · c0



�

It is completely specified by its first column c= �c0� � � � � cM−1�
	 and each column is obtained by doing a wrap-

around downshift of the previous column. A circulant matrix is diagonalized by the DFT matrix (Davis 1994,
Theorem 3.2.2; Vogel 2002, Corollary 5.16):

C = �−1
M 
�M�

where 
 is a diagonal matrix with the diagonal containing the eigenvalues of C:


= diag��Mc��

This factorization can be used to perform efficient matrix-vector multiplication. Let x = �xj�
M−1
j=0 be an

M-dimensional vector and C an M ×M circulant matrix. Then

Cx= �−1
�x= �−1��c � �x��
where � denotes the Hadamard element-wise vector multiplication. This can be computed efficiently using the
FFT, by first computing the two DFTs �c and �x and then computing the IDFT �−1��c��x�. If the matrix-vector
multiplication is performed repeatedly with the same circulant matrix and different vectors, the DFT �c needs
to be computed only once at the beginning.

A.3. Toeplitz Matrices
An m×m matrix T is called Toeplitz if it has constant values along each (top-left to lower-right) diagonal.
That is, a Toeplitz matrix has the form:

T =




t0 t−1 · · · t−�m−1�

t1 t0 · · · t−�m−2�

���
���

���
���

tm−1 tm−2 · · · t0



�
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It is completely specified by its first row and its first column. An m×m Toeplitz matrix T can be embedded into
an M ×M circulant matrix C with the first column c = �t0� � � � � tm−1�0� � � � �0� t−�m−1�� � � � � t−1�

	. Here M = 2l

is the smallest power of two such that M � 2m− 1. Note that M − �2m− 1� zeros are padded into the vector c.
Using this embedding, the Toeplitz matrix-vector multiplication Tx can be computed as follows:

�Tx�k = �Cx∗�k = ��−1��c � �x∗��k� k= 0�1� � � � �m− 1�

where the M-dimensional vector x∗ is an extension of the original m-dimensional vector x by appending M−m
zeros to x. Now the problem is reduced to computing the circulant matrix-vector multiplication, which can be
computed efficiently using the FFT as described previously (we chose M to be the power of two in order to
use the FFT of radix 2). Applications in finance of the Toeplitz matrix-vector multiplication were pioneered by
Eydeland (1994).

A.4. Block Circulant Matrices with Circulant Blocks
An MN ×MN block circulant matrix with circulant blocks (or BCCB) has the following form:

C =




C0 CM−1 · · · C1

C1 C0 · · · C2

���
���

���

CM−1 CM−2 · · · C0



�

where each Cj , j = 0� � � � �M − 1, is an N × N circulant matrix. A BCCB is completely specified by its first
column. Let cj , j = 0� � � � �M − 1, be the first column of Cj , and c = �c0� � � � � cM−1� an N ×M matrix. Denote
the 2-d DFT of c by ĉ:

vec�ĉ�= ��M ⊗ �N �vec�c�

Then C has the following diagonalization (Davis 1994, Theorem 5.8.1; Vogel 2002, Proposition 5.31):

C = ��M ⊗ �N �
−1���M ⊗ �N �

where � = diag�vec�ĉ��. Hence the multiplication of a BCCB C by an MN -dimensional vector x can be
computed efficiently as follows:

Cx= ��M ⊗ �N �
−1���M ⊗ �N �x= ��M ⊗ �N �

−1�vec�ĉ� � ��M ⊗ �N �x��

Recalling Equation (EC1), the above expression can be computed using two 2-d DFTs and one 2-d IDFT in
O�MN log2�MN�� floating point operations. If the matrix-vector multiplication Cx is performed repeatedly with
the same matrix C and different vectors x, the vec�ĉ� needs to be computed only once at the beginning.

A.5. Block Toeplitz Matrices with Toeplitz Blocks
An mn×mn block Toeplitz matrix with Toeplitz blocks (BTTB) has the form:

T =




T0 T−1 · · · T−�m−1�

T1 T0 · · · T−�m−2�

���
���

���

Tm−1 Tm−2 · · · T0



�

where each Tj , j =−�m− 1�� � � � �m− 1, is an n× n Toeplitz matrix. Each Toeplitz block Tj can be embedded
into a N × N circulant block Cj , where N is the smallest power of 2 such that N � 2n− 1. Then T can be
embedded into an MN ×MN BCCB C in a way similar to the embedding of a Toeplitz matrix into a circulant
matrix, except that single elements are replaced by matrix blocks. Here M is the smallest power of two such
that M � 2m−1. Then the multiplication of the BTTB T by an mn-dimensional vector x can be reduced to the
multiplication of the BCCB C by an MN -dimensional vector x∗. Here x∗ is the extension of x. If x is seen as a
vector of m blocks with each block an n-dimension vector, then x∗ is obtained by appending N −n zeros to each
blocks and appending additional M −m zero vectors of dimension N . M and N are selected to be powers of 2
so that the 2-d DFTs can be computed using the FFT of radix 2. The total number of floating point operators is
O�mn log2�mn��, as compared to O�m2n2� when direct matrix vector multiplication is used.


