Asymptotic Duality in Stochastic Integer Programming

John R. Birge
University of Michigan
Ann Arbor, Michigan, USA

Department of Mathematics
Western Michigan University
December 5, 1996

Outline

- Duality
- Integer Problems in Duality
- Stochastic Programs
- Result
- Application

Duality

Primal Problem:

$$
\begin{aligned}
& P^{*}= \\
& \qquad \min _{x \in X} \quad f(x) \\
& \\
& \text { s.t. } \\
& \quad g(x) \leq 0
\end{aligned}
$$

Typically, $f: \Re^{n} \mapsto \Re, g: \Re^{n} \mapsto \Re^{m}$ Dual Problem:

$$
\begin{aligned}
& D^{*}= \\
& \quad \max _{\lambda \geq 0} \min _{x \in X}\left[f(x)+\lambda^{T} g(x)\right]
\end{aligned}
$$

STRONG DUALITY RESULT: Under good con-
ditions, $P^{*}=D^{*}$.

Dual Uses

Easier to Solve: Often, $g(x) \leq 0$ causes complications. In objective, less trouble.

Bounds available (weak duality):

$$
P^{*} \geq D^{*} .
$$

Suppose $x^{*}, \lambda^{*} \geq 0$ optimal:

$$
\begin{aligned}
P^{*}=f\left(x^{*}\right) & \geq f\left(x^{*}\right)+\lambda^{* T} g\left(x^{*}\right) \\
& \geq \min _{x \in X} f(x)+\lambda^{* T} g(x) \\
& =D^{*}
\end{aligned}
$$

DUALITY GAP: $P^{*}>D^{*}$. Possible for $X=$ Z_{n}^{+}.

Duality Gap

Example:

Primal Problem:

$$
P^{*}=
$$

$$
\begin{array}{ll}
\min _{x_{1}, x_{2} \in Z^{+}} & 1.5 x_{1}+x_{2} \\
\text { s.t. } & 5.5-6 x_{1}-5 x_{2} \leq 0
\end{array}
$$

Solution: $x^{*}=(1,0) . P^{*}=1.5$.

Dual Problem:

$$
D^{*}=
$$

$$
\max _{\lambda \geq 0} \quad \min _{x_{1}, x_{2} \in Z^{+}} 1.5 x_{1}+x_{2}+\lambda\left(5.5-6 x_{1}-5 x_{2}\right)
$$

$$
=\max _{\lambda \geq 0} \min _{x_{1}, x_{2} \in Z^{+}}(1.5-6 \lambda) x_{1}+(1-5 \lambda) x_{2}+5.5 \lambda
$$

$$
\text { Solution: } \lambda^{*}=0.2 . \quad D^{*}=1.15
$$

Closing the Duality Gap in Integer Programs

Many variables:
Suppose: x has many possibilities all with different weights:

Primal Problem: $P^{*}=$

$$
\begin{array}{ll}
\min _{x_{i} \in Z_{n}^{+}} & \sum_{i} c_{i} x_{i} \\
\text { s.t. } & 5.5-\sum_{i} w_{i} x_{i} \leq 0
\end{array}
$$

Result: With random c_{i} and w_{i} or x_{i} binary, can close the gap as n increases. (Turnpike Result.)

Our problem:
$x: \Omega \mapsto Z_{+}^{n}$ where Ω is a sample space.
Now, x is a random variable onto integers (stochastic program).

What can we say now?

Stochastic Integer Program

Two-Stage Primal Problem:
$P^{*}=$

$$
\begin{array}{ll}
\min _{x \in X} & f(x) \\
\text { s.t. } & x(\omega)-E[x(\omega)]=0, \text { a.s. }
\end{array}
$$

where X represents the integer mapping, $f(x)=$ $E[g(x(\omega))]$ is an expectation with a probability measure defined on Ω. The constraint forces nonanticipativity.

Dual Problem:

$D^{*}=$
$\max _{\lambda(\omega) \geq 0} \min _{x \in X}[f(x)+E[\lambda \cdot[x(\omega)-E[x(\omega)]]$

NOTE: The dual problem separates into separate problems for each ω.

STRONG DUALITY RESULT:

In the limit, $|\Omega| \rightarrow \infty, P^{*}=D^{*}$, i.e., no duality gap as sample size increases.

Key Insights

Make x a binary mapping:

Note: $x(\omega)-E[x(\omega)]=0$ for all ω is the same as $x\left(\omega^{\prime}\right)-E[x(\omega)]=0$ for one $\omega^{\prime} \in \Omega$.

If one $x(\omega)$ is 1 , then all must be.

Implication: Just one constraint but $|\Omega|$ can increase.

Let $N=|\Omega|<\infty$. The problems are then:

$$
\begin{gathered}
P^{*}=\min P=\sum_{i=1}^{N} p^{i} F^{i}\left(x^{i}\right) \\
\text { s. t. } x^{i} \in X^{i}, \\
\sum_{i=1}^{N} H^{i} x^{i}, \\
\quad \leq b, \\
\min \sum_{i=1}^{N}\left[p^{i} F^{i}\left(x^{i}\right)\right. \\
\begin{array}{cc}
& \left.+\lambda^{T} H^{i} x^{i}\right]-\lambda^{T} b \\
\text { s. t. } x^{i} \in X^{i}, & i=1, \ldots, N, \\
D^{*}=\max D(\lambda)= & \lambda \geq 0,
\end{array}
\end{gathered}
$$

Key Insights (cont.)

Theorem. If P has a solution, for every i, the set $\left\{\left(x^{i}, F^{i}\left(x^{i}\right)\right) \mid x^{i} \in X^{i}\right\}$ is compact, and, for every $\hat{x} \in \operatorname{conv}\left(X^{i}\right)$, there exists $x \in X^{i}$ such that $H^{i} x \leq H^{i} \hat{x}$, then

$$
\inf P-\sup D \leq(q+1) \rho,
$$

where $\rho=\max _{i=1, \ldots, N} \sup \left(p^{i} F^{i}\left(x^{i}\right) \mid x^{i} \in X^{i}\right)-$ $\inf \left(p^{i} F^{i}\left(x^{i}\right) \mid x^{i} \in X^{i}\right)$ and q is the number of constraints.

Proof: Follows Bertsekas (1982).

Main Result

Theorem. Suppose the conditions of previous theorem, that $X^{i}=Y^{i} \times S^{i}$ where Y^{i} is convex and S^{i} is intersection of convex and integer,

$$
\inf P-\sup D \leq(2 n+1) \rho,
$$

where $\rho=\max _{i=1, \ldots, N} \sup \left(p^{i} F^{i}\left(x^{i}\right) \mid x^{i} \in X^{i}\right)-$ $\inf \left(p^{i} F^{i}\left(x^{i}\right) \mid x^{i} \in X^{i}\right)$.

PROOF OUTLINE:

Following Bertsekas, consider:
H^{i} split into L^{i} and G^{i} so that $H^{i} x^{i} \leq b$ is equivalent to $\sum_{i=1}^{N} L^{i} y^{i} \leq l$ and $\sum_{i=1}^{N} G^{i} s^{i} \leq g$ and F^{i} split so that $F^{i}\left(x^{i}\right)=C^{i}\left(y^{i}\right)+D^{i}\left(s^{i}\right)$.

Then, let
$W^{i}=\left\{w^{i} \mid w^{i}=\left[L^{i} y^{i}, C^{i}\left(y^{i}\right)\right], y^{i} \in Y^{i}\right\}$ and
$Z^{i}=\left\{z^{i} \mid z^{i}=\left[G^{i} s^{i}, D^{i}\left(s^{i}\right)\right], s^{i} \in S^{i}\right\}$.
Consider $W=\Sigma_{i}^{N} W^{i}$ and $Z=\Sigma_{i}^{N} Z^{i}$, then we have:

$$
\begin{aligned}
& \inf P=\min \{u+v \mid \exists((w, u),(z, v)) \in W \times Z, \\
& \text { such that } w \leq g, z \leq l\} .
\end{aligned}
$$

PROOF OUTLINE (cont.):

From duality theory, we have that $\sup D=\min \{u+v \mid \exists((w, u),(z, v)) \in \operatorname{conv}(W \times Z)$

$$
\text { such that } w \leq g, z \leq l\}
$$

where conv denotes the convex hull.

Note $\operatorname{conv}(W \times Z)=W \times \operatorname{conv}(Z)$, since Y^{i} is convex.

Now use the Shapley-Folkman theorem to write every $z \in \operatorname{conv}(Z)$ using a subset $I(z) \in\{1, \ldots, N\}$ with at most $2 n+1$ indices such that

$$
z \in\left[\sum_{i \notin I(z)} Z^{i}+\sum_{i \in I(z)} \operatorname{conv}\left(Z^{i}\right)\right] .
$$

Now, suppose $((\bar{w}, \bar{u}),(\bar{z}, \bar{v})) \in W \times \operatorname{conv}(Z)$ with $\bar{u}+\bar{v}=\sup D$ and $\bar{w} \leq g, \bar{z} \leq l$. Then we have $\bar{y}^{i} \in Y^{i}$ such that $\sum_{i=1}^{N} L^{i} \bar{y}^{i} \leq g$ and $\sum_{i=1}^{N} C^{i}\left(\bar{y}^{i}\right)=\bar{u}$.

PROOF OUTLINE (cont.):

From Shapley-Folkman, we also have some $\bar{I} \subset$ $\{1, \ldots, N\}$ with $|\bar{I}| \leq 2 n+1$ with $\left(\bar{l}^{i}, \bar{v}^{i}\right) \in \operatorname{conv}\left(Z^{i}\right)$ and $\bar{s}^{i} \in S^{i}, i \notin \bar{I}$, such that

$$
\sum_{i \notin \bar{I}} G^{i}\left(s^{i}\right)+\sum_{i \in \bar{I}} l^{i}=\bar{z} \leq l
$$

and

$$
\sum_{i=1}^{N} C^{i}\left(\bar{y}^{i}\right)+\sum_{i \notin \bar{I}} D^{i} \bar{s}^{i}+\sum_{i \in \bar{I}} \bar{v}^{i}=\sup (D)
$$

Now, we can obtain for every $i \in \bar{I}$, some \bar{s}^{i} such that $G^{i} \bar{s}^{i} \leq l^{i}$ and $f_{i}\left(\bar{s}^{i}\right) \leq \bar{v}^{i}+\rho^{i}+\epsilon$ for any $\epsilon>0$. Thus, we have found a feasible solution (\bar{y}, \bar{s}) for (P) such that

$$
\inf P \leq \sum_{i=1}^{N} C^{i}\left(\bar{y}^{i}\right)+\sum_{i=1}^{N} D^{i} \bar{s}^{i} \leq \sup (D)+\sum_{i \in \bar{I}} \rho^{i}
$$

which, since $\bar{I} \leq 2 n+1$, yields the result. •

Applications:

Power Systems: x corresponds to turning generators on or off.

Uncertainty surrounds future demand. Many possible branches.

Results: Solved for Michigan system. Gaps to within 0.5% with $64=N$ branches.

Conclusions:

- Integer Problems can cause Duality Gaps
- Stochastic Integer Programs can also have Duality Gaps
- As Sample Sizes increase, Gaps Decrease to Zero
- Convergence appears Rapid in Power System Applications.

