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Duality

Primal Problem:

Pr=

Typically, f:R"+— R, g: R"— R”
Dual Problem:

D*=
maxy>g mingex|[f(x) + A g(z)]

STRONG DUALITY RESULT" Under good con-

ditions, P* = D*.



Dual Uses

Often, g(x) < 0 causes compli-

cations. In objective, less trouble.

P*> D*.
Suppose £*,A* > 0 optimal:

P* = f(z*) > f(z*) + A g(x)
> mingex f(z) + A" g(z)
= D*

DUALITY GAP: P* > D*. Possible for X =



Duality Gap

Example:
Primal Problem:
Pr=

Ming, gez+ 1.0T1 + T2
s.t. 5.0 — 6561 — 55(32 S 0

Solution: z* = (1,0). P*=1.5.

Dual Problem:

D=

maxy>g  Ming ;ez+ 1.521 + T2 + A(5.5 — 621 — 5x9)
= maxy>g Ming, ezt (1.5 —=06A)z1 + (1 = 5A)z2 + 5.5)

Solution: A* =0.2. D*=1.15.



Closing the Duality Gap
in Integer Programs

Many variables:

x has many possibilities all with dif-

ferent weights:

Pr=
min, -+ 2 Gy

s.t. 5.0 — Y wix; < 0

With random ¢; and w; or x; binary, can
close the gap as n increases. (Turnpike Result.)

Our problem:

x : () — Z where () is a sample space.

Now, x is a random variable onto integers (stochas-
tic program).

What can we say now?
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Stochastic Integer Program

P*=

mingey f(z)
s.t. r(w) — Elz(w)] = 0,a.s.,

where X represents the integer mapping, f(x) =

FElg(x(w))] is an expectation with a probability
measure defined on 2. The constraint forces nonan-
ticipativity.

D=

maxy(,)>0 Mingex[f(z) + LA - [z7(w) — Elz(w)]]

NOTE: The dual problem separates into sepa-
rate problems for each w.

STRONG DUALITY RESULT:

In the limit, || — oo, P* = D*, i.e., no duality
gap as sample size increases.
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Key Insights

] =0 for all w is the same

Note: z(w) — Elzx(w)
= (0 for one ' € 0.

as z(w') — Elz(w)]

If one z(w) is 1, then all must be.

Implication: Just one constraint but Q2] can in-
crease.

Let N = || < co. The problems are then:

P*=min P =5, p'F'(x")
s. t. 2 € XY, 1=1,..., N,
>N H'a! < b.

min Y, [p'Fi(z') + T H'x'] — AT
D*=maxD(\) = s.t.z' € X, i=1,...,N,
A >0,



Key Insights (cont.)

Theorem. If P has a solution, for every 1, the
set {(z', F'(x"))|z" € X'} is compact, and, for
every & € conv(X"), there exists x € X' such
that H'a < H'Z, then

inf P—sup D < (¢+ 1)p,

inf(p' F'(z")|z" € X*) and q is the number of con-
straints.

Proof: Follows Bertsekas (1982).



Main Result

Theorem. Suppose the conditions of previous
theorem, that X? = Y x S where Y is convex
and S’ is intersection of convex and integer,

inf P—sup D < (2n+ 1)p,

where p = max;—;__ysup(p'F'(z")|z" € X') —
inf(p' F'(2")|z" € X").

Following Bertsekas, consider:

H' split into L' and G* so that H'z' < b is
equivalent to oY, Ly’ < [ and £, G's' < g and
F' split so that F'(z') = C'(y") + D(s").

Then, let

W= {w'w' = [L'y", C'(y")],y" € Y'} and

7' = {2 = [G's', D'(s")], s' € S'}.

Consider W = =N W' and Z = =¥ Z', then we
have:

inf P = min{u + v|3((w, u), (z,v)) € W x Z,

such that w < g,z <[},
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From duality theory, we have that
sup D = min{u+v|3((w, u), (2,v)) € conv(W xZ)
such that w < g,z <1},

where conv denotes the convex hull.

Note conv(W x Z) = W x conv(Z), since Y
IS CONvex.

Now use the Shapley-Folkman theorem to write
every z € conv(Z) using asubset I(z) € {1,..., N}
with at most 2n + 1 indices such that

2 Y Z'+ Y conv(ZY)].
iZ1(z) i€l(z)

Now, suppose ((w,u),(Z,7)) € W x conv(Z)
with « +v = supD and w < ¢,z < [. Then
we have §° € Y such that =¥, L'y’ < ¢ and
2L, C(Y') = .
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From Shapley-Folkman, we also have some I C
{1,..., N} with |I] < 2n+1 with (I',9%) € conv(Z")
and 5' € S, i & I, such that

Y G+ ll=2<],
igl iel
and

N - |
S C'(Y')+ X D's'+ Y v = sup(D).
i=1 il i€l

Now, we can obtain for every ¢ € I, some 5
such that G's’ < [' and fl(Ez) < o' 4 p' + € for
any € > 0. Thus, we have found a feasible solution
(g, §) for (P) such that

N N |
inf P< Y C'(y")+ X D's' <sup(D)+ X p',
i=1 i=1 iel

which, since I < 2n + 1, yields the result. a
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Applications:

. x corresponds to turning genera-
tors on or off.
Uncertainty surrounds future demand. Many

possible branches.

Results: Solved for Michigan system. Gaps to
within 0.5% with 64 = N branches.
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Conclusions:

e Integer Problems can cause Duality Gaps

e Stochastic Integer Programs can also have Du-
ality Gaps

e As Sample Sizes increase, Gaps Decrease to
Zero

e Convergence appears Rapid in Power System
Applications.
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