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Duality

Primal Problem:

P ∗=

minx∈X f (x)

s.t. g(x) ≤ 0

Typically, f : <n 7→ <, g : <n 7→ <m

Dual Problem:

D∗=

maxλ≥0 minx∈X [f (x) + λTg(x)]

STRONG DUALITY RESULT: Under good con-

ditions, P ∗ = D∗.
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Dual Uses

Easier to Solve: Often, g(x) ≤ 0 causes compli-

cations. In objective, less trouble.

Bounds available (weak duality):

P ∗ ≥ D∗.

Suppose x∗,λ∗ ≥ 0 optimal:

P ∗ = f (x∗) ≥ f (x∗) + λ∗Tg(x∗)

≥ minx∈X f (x) + λ∗Tg(x)

= D∗

DUALITY GAP: P ∗ > D∗. Possible for X =

Z+
n .
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Duality Gap

Example:

Primal Problem:

P ∗=

minx1,x2∈Z+ 1.5x1 + x2

s.t. 5.5− 6x1 − 5x2 ≤ 0

Solution: x∗ = (1, 0). P ∗=1.5.

Dual Problem:

D∗=

maxλ≥0 minx1,x2∈Z+ 1.5x1 + x2 + λ(5.5− 6x1 − 5x2)

= maxλ≥0 minx1,x2∈Z+ (1.5− 6λ)x1 + (1− 5λ)x2 + 5.5λ

Solution: λ∗ = 0.2. D∗=1.15.
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Closing the Duality Gap
in Integer Programs

Many variables:

Suppose: x has many possibilities all with dif-

ferent weights:

Primal Problem: P ∗=

minxi∈Z+
n

∑
i cixi

s.t. 5.5− ∑
i wixi ≤ 0

Result: With random ci and wi or xi binary, can

close the gap as n increases. (Turnpike Result.)

Our problem:

x : Ω 7→ Zn
+ where Ω is a sample space.

Now, x is a random variable onto integers (stochas-

tic program).

What can we say now?
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Stochastic Integer Program

Two-Stage Primal Problem:

P ∗=

minx∈X f (x)

s.t. x(ω)− E[x(ω)] = 0, a.s.,

whereX represents the integer mapping, f (x) =

E[g(x(ω))] is an expectation with a probability

measure defined on Ω. The constraint forces nonan-

ticipativity.

Dual Problem:

D∗=

maxλ(ω)≥0 minx∈X [f (x) + E[λ · [x(ω)− E[x(ω)]]

NOTE: The dual problem separates into sepa-

rate problems for each ω.

STRONG DUALITY RESULT:

In the limit, |Ω| → ∞, P ∗ = D∗, i.e., no duality

gap as sample size increases.
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Key Insights

Make x a binary mapping:

Note: x(ω)− E[x(ω)] = 0 for all ω is the same

as x(ω′)− E[x(ω)] = 0 for one ω′ ∈ Ω.

If one x(ω) is 1, then all must be.

Implication: Just one constraint but |Ω| can in-

crease.

Let N = |Ω| <∞. The problems are then:

P ∗ = minP =
∑N
i=1 p

iF i(xi)

s. t. xi ∈ Xi, i = 1, . . . , N,∑N
i=1H

ixi ≤ b.

D∗ = maxD(λ) =

min
∑N
i=1[p

iF i(xi) +λTHixi]− λTb
s. t. xi ∈ Xi, i = 1, . . . , N,

λ ≥ 0,
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Key Insights (cont.)

Theorem. If P has a solution, for every i, the

set {(xi, F i(xi))|xi ∈ Xi} is compact, and, for

every x̂ ∈ conv(Xi), there exists x ∈ Xi such

that Hix ≤ Hix̂, then

inf P − supD ≤ (q + 1)ρ,

where ρ = maxi=1,...,N sup(piF i(xi)|xi ∈ Xi) −
inf(piF i(xi)|xi ∈ Xi) and q is the number of con-

straints.

Proof: Follows Bertsekas (1982).
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Main Result

Theorem. Suppose the conditions of previous

theorem, that Xi = Y i × Si where Y i is convex

and Si is intersection of convex and integer,

inf P − supD ≤ (2n + 1)ρ,

where ρ = maxi=1,...,N sup(piF i(xi)|xi ∈ Xi) −
inf(piF i(xi)|xi ∈ Xi).

PROOF OUTLINE:

Following Bertsekas, consider:

Hi split into Li and Gi so that Hixi ≤ b is

equivalent to
∑N
i=1L

iyi ≤ l and
∑N
i=1G

isi ≤ g and

F i split so that F i(xi) = Ci(yi) +Di(si).

Then, let

Wi = {wi|wi = [Liyi, Ci(yi)], yi ∈ Y i} and

Zi = {zi|zi = [Gisi,Di(si)], si ∈ Si}.

Consider W =
∑N
i W

i and Z =
∑N
i Z

i, then we

have:

inf P = min{u + v|∃((w, u), (z, v)) ∈ W × Z,

such that w ≤ g, z ≤ l}.
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PROOF OUTLINE (cont.):

From duality theory, we have that

supD = min{u+v|∃((w, u), (z, v)) ∈ conv(W×Z)

such that w ≤ g, z ≤ l},
where conv denotes the convex hull.

Note conv(W × Z) = W × conv(Z), since Y i

is convex.

Now use the Shapley-Folkman theorem to write

every z ∈ conv(Z) using a subset I(z) ∈ {1, . . . , N}
with at most 2n + 1 indices such that

z ∈ [
∑

i6∈I(z)
Zi +

∑
i∈I(z)

conv(Zi)].

Now, suppose ((w̄, ū), (z̄, v̄)) ∈ W × conv(Z)

with ū + v̄ = supD and w̄ ≤ g, z̄ ≤ l. Then

we have ȳi ∈ Y i such that
∑N
i=1L

iȳi ≤ g and∑N
i=1C

i(ȳi) = ū.
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PROOF OUTLINE (cont.):

From Shapley-Folkman, we also have some Ī ⊂
{1, . . . , N}with |Ī| ≤ 2n+1 with (l̄i, v̄i) ∈ conv(Zi)

and s̄i ∈ Si, i 6∈ Ī , such that
∑
i6∈Ī
Gi(si) +

∑
i∈Ī
li = z̄ ≤ l,

and
N∑
i=1
Ci(ȳi) +

∑
i6∈Ī
Dis̄i +

∑
i∈Ī
v̄i = sup(D).

Now, we can obtain for every i ∈ Ī , some s̄i

such that Gis̄i ≤ li and fi(s̄
i) ≤ v̄i + ρi + ε for

any ε > 0. Thus, we have found a feasible solution

(ȳ, s̄) for (P) such that

inf P ≤
N∑
i=1
Ci(ȳi) +

N∑
i=1
Dis̄i ≤ sup(D) +

∑
i∈Ī
ρi,

which, since Ī ≤ 2n + 1, yields the result.
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Applications:

Power Systems: x corresponds to turning genera-

tors on or off.

Uncertainty surrounds future demand. Many

possible branches.

Results: Solved for Michigan system. Gaps to

within 0.5% with 64 = N branches.
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Conclusions:

• Integer Problems can cause Duality Gaps

• Stochastic Integer Programs can also have Du-

ality Gaps

• As Sample Sizes increase, Gaps Decrease to

Zero

• Convergence appears Rapid in Power System

Applications.
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