Real Option Valuation in Investment Planning Models

John R. Birge Northwestern University

Outline

- Planning questions
- Problems with traditional analyses: examples
- Real-option structure
- Assumptions and differences from financial options
- Resolving inconsistencies
- Conclusions

Investment Situation: Automotive Company

- Goal:
 - Decide on coordinated production, distribution capacity and vendor contracts for multiple models in multiple markets (e.g., NA, Eur, LA, Asia)
- Traditional approach
 - Forecast demand for each model/market
 - Forecast costs
 - Obtain piece rates and proposals
 - Construct cash flows and discount
- ✓ Optimize for a single-point forecast

Planning Questions?

- Start product in production or not? When?
- What to produce in-house or outside?
- How much capacity to install?
- What contracts to make outside?
- External factors: economy, competitors, suppliers, customers, legal, political, environmental
- Where to start?
 - Build a model

Traditional Model Results

- Focus on:
 - Cost orientation (not revenue management)
 - Single program (model, product)
 - NPV
 - Piece rates
- Result: support of traditional, fixed designs, little flexibility, little ability to change, immediate investment or no investment

Trends Limiting Traditional Analysis

- Market changes
 - Former competition:
 - Cost
 - Quality
 - New competition:
 - Customization
 - Responsiveness

Limitations of Traditional Methods for New Trends

- Myopic ignoring long-term effects
- Often missing time value of cash flow
- Excluding potential synergies
- Ignoring uncertainty effects
- Not capturing option value of delay, scalability, and agility (changing product mix)
- Mis-calculate time-value of cash flow

Outline

- Planning questions
- Problems with traditional analyses: examples
 - Value to delay
 - Scalability
 - Reusability
 - Agility
- Real-option structure
- Assumptions and differences from financial options
- Resolving inconsistencies
- Conclusions

Value to Delay Example

- Suppose a project may earn:
 - \$100M if economy booms
 - \$-50M if economy busts
- Each (boom or bust) is equally likely
- NPV = \$25M (expected) Start project
- Missing: Can we wait to observe economy?

Here, we don't

need to invest

SVOR Meeting, Thun, October 2001

Scale Option Example

- Scalability
- Suppose a five year program
 - Cost of fixed capacity is \$100M
 - Cost of scalable capacity is \$150M for same capacity
 - Predicted cash flow stream:

Scalability Example - cont.

- Assume 15% opportunity cost of capital:
 - NPV(Traditional) = \$50M
 - NPV(Scalable)= 0
- Problem: Scalable can be configured over time:

Scalability Result

Cash flow for Scalable:

Year	0	1	2	3	4	5
Net	-50	-25	0	75	50	25

Now, NPV(Scalable)=\$75M > NPV(Fixed) Traditional approach misses scalability advantage.

Reusability Example

- Assume:
 - Same conditions as before for fixed system
 - Two consecutive 5-year programs
 - Suppose for Reusable Manufacturing System (RMS)
 - No scalability
 - Initial cost of \$125 M
 - Can reconfigure for second program at cost of \$25M

Reusability Example cont.

- Traditional approach
 - Single program evaluation
 - NPV(Fixed) = \$50M
 - NPV(RMS) = \$25M
 - Choose Fixed
- Problem: Missing the second program

Reusability Two-Program Cash Flows Fixed cash flow, NPV(Fixed)=\$75M

0	1	2		3	4	5
-100	25	50	75	5 50) -75	,
6		7	8	9	10	
25	4	50	75	50	25	

RMS Cash Flow, NPV(RMS) =\$87M

0	1	2	3	4	5
-125	25	50	75	50	0

6	7	8	9	10
25	50	75	50	25

Traditional method misses

two-program advanageting, Thun, October 2001

Agility Example:

Flexible Capacity Option

Difficulty: Traditional single forecast

Example: Products A, B

- Forecast demand: 100 for each; Margin: 2
- Dedicated capacity cost: 1
- Flexible capacity cost: 1.1

Dedicated:Flexible:Revenue:400Cost:200200220Profit:200180Choose dedicated

Multiple Scenario Effect

Suppose two demand possibilities: 50 or 150 equally likely - *Four scenarios*

Evaluation with Scenarios

- Four scenarios: 50 or 150 on each
- Dedicated
 - Sell (50,50), (50,100), (100,50), (100, 100)
 - Expected revenue: 300
- Flexible
 - Sell (50,50), (50,150), (150,50), (100, 100)
 - Expected revenue: 350

Summary of Problems

- Missing basic abilities in traditional approaches:
 - Delay option
 - Scaling option
 - Reuse option
 - Agility option
- Option evaluation:
 - Look at all possibilities
 - How to discount?

Outline

- Planning questions
- Problems with traditional analyses: examples
- Real-option structure
- Assumptions and differences from financial options
- Resolving inconsistencies
- Conclusions

Real Options

- Idea: Assets that are not fully used may still have option value (includes contracts, licenses)
- Value may be lost when the option is exercised (e.g., developing a new product, invoking option for second vendor)
- Traditional NPV analyses are flawed by missing the option value
- Missing parts:
 - Value to delay and learn
 - Option to scale and reuse
 - Option to change with demand variation (uncertainty)
 - Not changing discount rates for varying utilizations

Planning Questions?

- Start product in production or not? When?
- What to produce in-house or outside?
- How much capacity to install?
- What contracts to make outside?
- External factors: economy, competitors, suppliers, customers, legal, political, environmental
- Where to start?
 - Build a model

Key Steps in Building a Model

- Identify problem
- Determine objectives
- Specify decisions
- Find operating conditions
- Define metrics
 - How to measure objectives?
 - How to quantify requirements, limits?
 - How to include effect of uncertainty?
- Formulate

Utility Function Approach

- Observation:
 - Most decision makers are adverse to risk
- Assume:
 - Outcomes can be described by a utility function
 - Decision makers want to maximize expected utility
- Difficulties:
 - Is the decision maker the sole stakeholder?
 - Whose utility should be used?
 - How to define a utility?
 - How to solve?
- Alternative to decision maker investor

Measuring Investor Value

- **RISK NEUTRAL**?
 - Expected cost objective
 - RESULT: Does not correspond to preference
 - Difficult to assess real value this way
- OBSERVATIONS:
 - Assume investors prefer lower risk
 - Investors can diversify away unique risk
 - Only important risk is market contribution to portfolio
- CONSEQUENCE: Capital asset pricing model (CAPM)
 - With CAPM, can find a discount rate

Discount Rate Determination

- Traditional approach
 - Discount rate is the same for all decisions in program evaluation
- Problems
 - Program evaluation includes decisions on capacity, distribution channel, vendor contracts
 - These decisions affect correlation to market hence, change the discount rate
- Need: discount rate to change with decisions as they are determined; How?

Discount Rate Determination

- USE CAP-M? FIND CORRELATION TO THE MARKET?
 - Can measure for known markets (beta values)
 - If capacitated, depends on decisions
 - Constrained resources capacity
 - Correlations among demands
 Revenue

- ALTERNATIVES?
 - Option Theory
 - Allows for non-symmetric risk
 - Explicitly considers constraints -
 - As if selling excess to competitors at a given price

Valuing an Option

- (European) Call Option on Share assuming:
 - Buy at K at time T;Current time: t; Share price: S_t
 - Volatility: ?; Riskfree rate: r_f; No fees; Price follows Ito process
- Valuing option:
 - Assume risk neutral world (annual return= r_f independent of risk)
 - Find future expected value and discount back by r_f

Call value at $\mathbf{t} = \mathbf{C}_{\mathbf{t}} = \mathbf{e}^{-\mathbf{r}} \mathbf{f}^{(\mathbf{T}-\mathbf{t})} (\mathbf{S}_{\mathbf{T}} - \mathbf{K})^{+} \mathbf{d} \mathbf{F}_{\mathbf{f}} (\mathbf{S}_{\mathbf{T}})$

SVOR Meeting, Thun, October 2001

Relation to Real Options

- Example: What is the value of a plant with capacity K?
 - Discounted value of production up to K?
- Problems:
 - Production is limited by demand also (may be > K)
 - How to discount?
- Resolution:
 - Model as an option
 - Assume:
 - Market for demand (substitutes)
 - Forecast follows Ito process
 - No transaction costs
- ?? Model like share minus call

Using Option Valuation for Capacity

- Goal: Production value with capacity K
 - Compute uncapacitated value based on CAPM:
 - $S_t = e^{-r(T-t)} \mathcal{R}_T S_T dF(S_T)$
 - where c_T =margin,F is distribution (with risk aversion),
 - r is rate from CAPM (with risk aversion)
 - Assume S_t now grows at riskfree rate, r_f; evaluate as if risk neutral:
 - Production value = $S_t C_t = e^{-r} f^{(T-t)} \mathcal{L}_T \min(S_T, K) dF_f(S_T)$
 - where F_f is distribution (with risk neutrality)

Generalizations for Other Long-term Decisions

- Model: period t decisions: x_t
- START: Eliminate constraints on production
 - Demand uncertainty remains
 - Can value unconstrained revenue with market rate, r:

$1/(1+r)^t c_t x_t$

IMPLICATIONS OF RISK NEUTRAL HEDGE: Can model as if investors are risk neutral => value grows at riskfree rate, r_f

Future value: $[1/(1+r)^t c_t (1+r_f)^t x_t]$

BUT: This new quantity is constrained

New Period t Problem: Linear Constraints on Production

• WANT TO FIND (present value): $1/(1+r_f)^t$ MAX [$c_t x_t (1+r_f)^t/(1+r)^t$ | $A_t x_t (1+r_f)^t/(1+r)^t <= b$]

EQUIVALENT TO: $1/(1+r)^t \int MAX[C_t X | A_t X \le b (1+r)^t/(1+r_f)^t]$

MEANING: To compensate for lower risk with constraints, constraints expand and risky discount is used

Constraint Modification

• FORMER CONSTRAINTS: $A_t x_t \le b_t$

EXTREME CASES

All slack constraints: $1/(1+r)^t$ MAX [$C_t X | A_t X \check{S} b (1+r)^t/(1+r_f)^t$] becomes equivalent to: $1/(1+r)^t \int MAX[c_t x | A_t x \check{S} b]$ i.e. same as if unconstrained - risky rate **NO SLACK:** becomes equivalent to: $1/(1+r)^t \int [c_t x = B^{-1}b (1+r)^t/(1+r_f)^t] = c_t B^{-1}b/(1+r_f)^t$ i.e. same as if deterministicer risk free rate

Example: Capacity Planning

- What to produce?
- Where to produce? (When?)
- How much to produce? EXAMPLE: Models 1,2, 3; Plants A,B

SVOR Meeting, Thun, October 2001

Result: Stochastic Linear Programming Model

- Key: Maximize the Added Value with Installed Capacity
 - Must choose best mix of models assigned to plants
 - Maximize Expected Value over s[?_{i,t} e^{-rt}Profit (i) Production(i,t,s) -CapCost(i at j,t)Capacity (i at j,t)]
 - subject to: MaxSales(i,t,s) >= ? Production(i at j,t,s)
 - ? i Production(i at j,t,s) $\leq e^{(r-rf)t}$ Capacity (i,t)
 - Production(i at j,t,s) $\leq e^{(r-r}f)^{t}$ Capacity (i at j,t)
 - Production(i at j,t,s) >= 0
- Need MaxSales(i,t,s) random
 - Capacity(i at j,0) Decision in First Stage (now)

NOTE: Linear model that incorporates risk

Result with Option Approach

- Can include risk attitude in linear model
- Simple adjustment for the uncertainty in demand
- Requirement 1: correlation of all demand to market
- Requirement 2: assumptions of market completeness

Outline

- Planning questions
- Problems with traditional analyses: examples
- Real-option structure
- Assumptions and differences from financial options
- Resolving inconsistencies
- Conclusions

Assumptions

- Process of prices or sales forecasts
- No transaction fees
- Complete market (difference from financial options)
 - How to construct a hedge?
 - If NPV>0, inconsistency
 - Process: Trade option and asset to create riskfree security

Creating Best Hedge – and a Confession

- Underlying asset: Max potential sales in market
- Option: Plant with given capacity
- Other marketable securities:
 - Competitors' shares
 - Overall all securities min residual volatility
 - Confession: Due to incompleteness, some volatility remains (otherwise, NPV=0)

Resolution

- Incompleteness gives a range of possible values
- Can adjust capacity limits by varying discount factor with risk neutral assumptions on forecasts
- Can vary constraint multipliers with original forecast distribution
- All optimal policies for the given range are consistent with the market (cannot be beaten all the time)
- Obtain a range of policies can use other criteria

Result of Residual Risk

- In binomial model, asset price moves from S_t to $uS_t + v_1$ or $dS_t + v_2$ where v_1 and v_2 vary independently and have smallest volatility
- For standard call option,

$$\begin{split} & C_t = [(S_t - d S_t + v_1) / (uS_t - dS_t + v_2)] (uS_t - K) \\ &= [(S_t - d S_t + v_1) / p(uS_t - dS_t + v_2)] p (uS_t - K) \\ &= e^{-r(T-t)} (E[(S_t-K)^+]) \text{ where } r \text{ is in a range} \\ & \text{determined by } [v2,v1] \end{split}$$

• Analogous result for capacity valuation: a range of values are consistent

Alternatives and Challenges

- Use equilibrium and utility function approaches
- Caution on complexity of models
- Critical factor: range of outcomes considered
- Other challenges:
 - Effects of pricing decisions
 - Effects of competitors
 - Distribution changes from decisions
 - Extend to financial and real options together: operational and financial hedging

Operational and Financial Hedging uses of Real Options

- Objective: Determine capacity levels in different markets, production in each market, distribution across markets, and use of financial hedging instruments to maximize total global value
- Challenges:
 - Demand and exchange rates may change
 - Correlations among demand and exchange
 - What is enough capacity?
 - What performance metrics to use?

Outline

- Planning questions
- Problems with traditional analyses: examples
- Real-option structure
- Assumptions and differences from financial options
- Resolving inconsistencies
- Conclusions

Summary

- Options apply to many varied decision problems
- Can evaluate planning with proper option evaluation techniques
- Relaxed market assumptions lead to models that determine a range of policies
- Firm or investor utility can choose within range
- Questions? Comments?