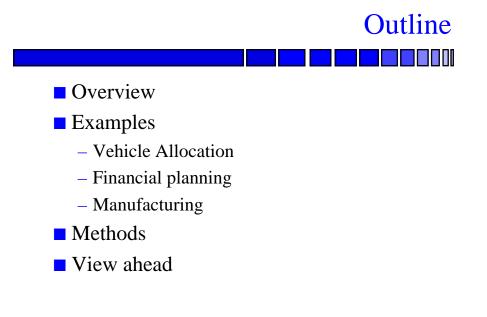
Stochastic Optimization: The Present and Future of OR

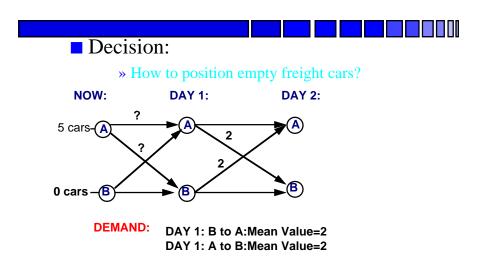
John R. Birge University of Michigan



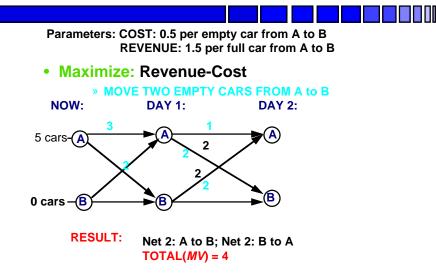
Overview Stochastic optimization - Traditional » Small problems » Impractical - Current » Integrate with large-scale optimization (stochastic programming) » Practical examples

» Expanding rapidly

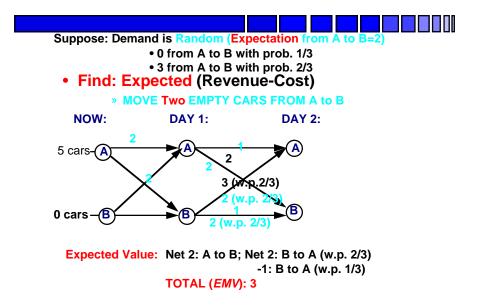
Vehicle Allocation



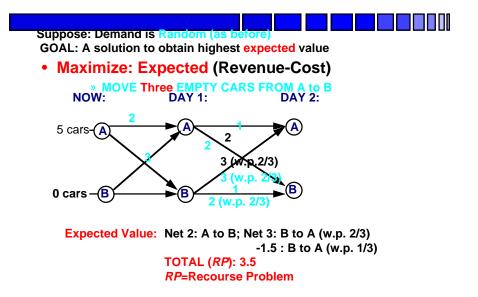
Vehicle Allocation: Mean Value Solution



Expectation of Mean Value



Stochastic Program Solution



INFORMATION and MODEL VALUE

■ INFORMATION VALUE:	
 FIND Expected Value with Perfect Information or Wait-ar solution: 	nd-See (WS)
» Know demand: if 3, send 3 from A to B from A to B:	If 0, send 0
» Earn: 2 (AtoB) + (2/3) (3) + (1/3)0= $4 = WS$	
 Expected Value of Perfect Information (EVPI): 	
» $EVPI = WS - RP = 4 - 3.5 = 0.5$	
» Value of knowing future demand precisely	
MODEL VALUE:	
– FIND EMV, RP	
– Value of the Stochastic Solution (VSS):	
» VSS = RP - EMV=3.5 - 3 = 0.5	
» Value of using the correct optimization model	

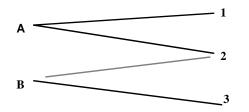
• EVPI and VSS:

- ALWAYS ≥ 0 (WS \geq RP \geq EMV)
- OFTEN DIFFERENT (WS=RP but RP > EMV and vice versa)
- FIT CIRCUMSTANCES:
 - » COST TO GATHER INFORMATION
 - » COST TO BUILD MODEL AND SOLVE PROBLEM
- MEAN VALUE PROBLEMS:
 - MV IS OPTIMISTIC (MV=4 BUT EMV=3, RP=3.5)
 - » ALWAYS TRUE IF CONVEX AND RANDOM
 - » CONSTRAINT PARAMETERS
 - VSS LARGER FOR SKEWED DISTRIBUTIONS/COSTS

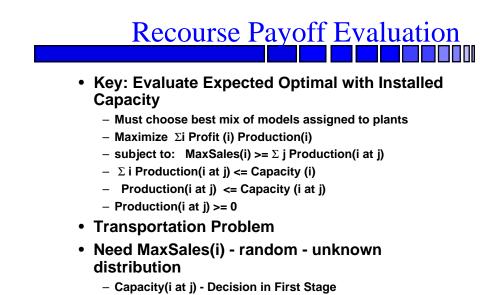
STOCHASTIC PROGRAM

ASSUME: Random demand on AB and BA
GOAL: maximize expected profits
– (risk neutral)
DECISIONS: x _{ij} - empty from i to j
 y_{ij}(s) - full from i to j in scenario s (RECOURSE) (prob. p(s)) FORMULATION:
$\begin{array}{rll} \text{Max -0.5xAB} + \Sigma \text{ s=s1,s2 p(s) } (1.5 \text{ yAB(s)} + 1.5 \text{ yBA(s)}) \\ \text{s.t.} & \text{xAB} & + \text{xAA} & = 5 \ \text{(Initial)} \\ -\text{xAB} & + \text{yBA(s)} & \leq 0 \ \text{(Limit BA)} \\ -\text{xAA} & + \text{yAB(s)} & \leq 0 \ \text{(Limit AB)} \\ & \text{yBA(s)} & \leq \text{DBA(s)} \ \text{(Demand BA)} \\ & + \text{yAB(s)} & \leq \text{DAB(s)} \ \text{(Demand AB)} \\ & \text{xAA, XAB, yAA(s), yAB } (s) \geq 0 \\ & - \text{EXTENSIONS: Multiple stages} \end{array}$
-Constraint/objective complexity (Powell et al.)

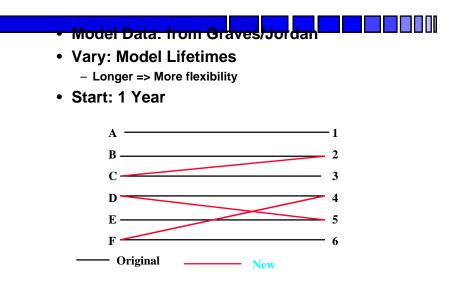
• Where to Install Capacity for Different Models among Different Plants?

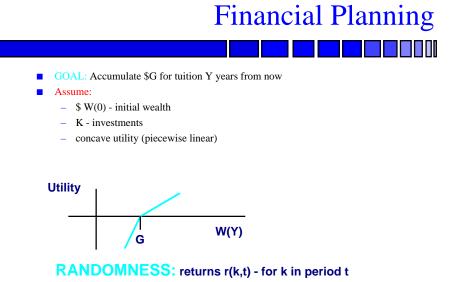


•Where to add flexibility? (multiple models)



Solution Results





where Y ----- T decision periods

FORMULATION

SCENARIOS: $\sigma \in \Sigma$

- Probability, $p(\sigma)$
- Groups, S_1^t , ..., S_{St}^t at t
- MULTISTAGE STOCHASTIC NLP FORM:

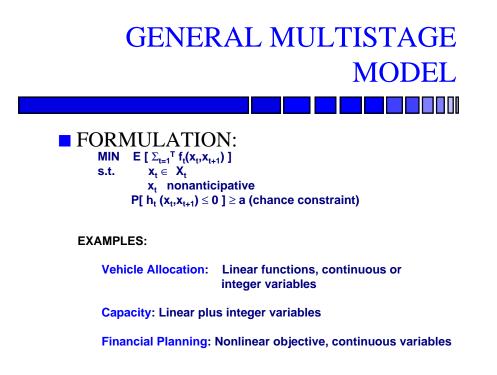
max	$\Sigma_{\sigma} $ p(σ) (U(W(σ , '	T))
s.t. (for all σ): Σ	<mark>_k x(k,1, σ)</mark>	= W(o) (initial)
Σ _k r(k,t-1,	, σ) x(k,t-1 , σ) - Σ _k x(k,t	t, σ) = 0, all t >1;
Σ _k r(k,T-1	, σ) x(k,T-1, σ) - W(σ ,	T) = 0, (final);
	x(k,t , d	5) ≥ 0, all k,t;

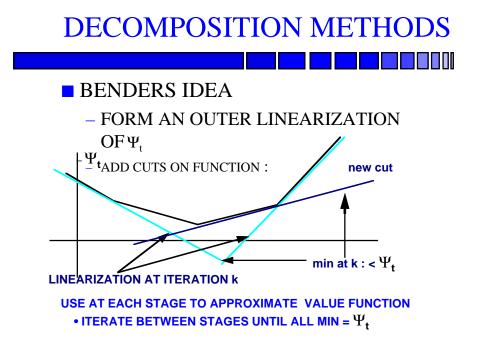
Nonanticipativity:

 $x(k,t, \sigma') - x(k,t, \sigma) = 0$ if $\sigma', \sigma \in S_i^t$ for all t, i, σ', σ This says decision cannot depend on future.

DATA and SOLUTIONS

ASSUME:			
 Y=15 years 			
- G=\$80,000			
– T=3 (5 year)	intervals)		
– k=2 (stock/b	onds)		
Returns (5 year):			
– Scenario A:	r(stock) = 1.25 r(bo)	nds)= 1.14	
– Scenario B:	r(stock) = 1.06 r(bor	nds) = 1.12	
Solution:			
PERIOD	SCENARIO	STOCK	BONDS
1	1-8	41.5	13.5
2	1-4	65.1	2.17
2	5-8	36.7	22.4
3	1-2	83.8	0
3	3-4	0	71.4
3	5-6	0	71.4
3	7-8	64.0	0

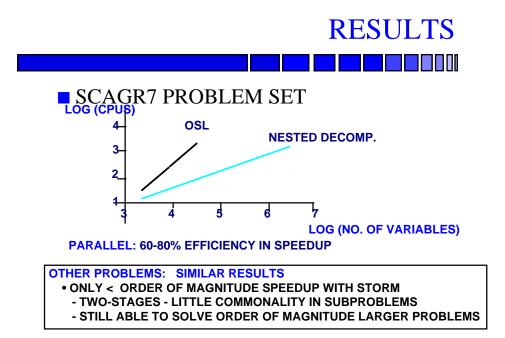




DECOMPOSITION IMPLEMENTATION

NESTED DECOMPOSITION

- LINEARIZATION OF VALUE FUNCTION AT EACH STAGE
- DECISIONS ON WHICH STAGE TO SOLVE, WHICH PROBLEMS AT EACH STAGE
- LINEAR PROGRAMMING SOLUTIONS
 - USE OSL FOR LINEAR SUBPROBLEMS
 - USE MINOS FOR NONLINEAR PROBLEMS
- PARALLEL IMPLEMENTATION
 - USE NETWORK OF RS6000S
 - PVM PROTOCOL

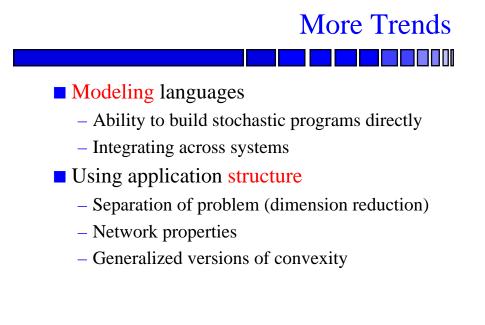


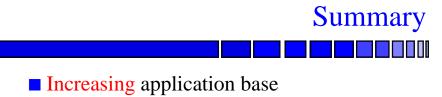
New Trends

- Methods for integer variables
 - » Power system implementations

View Ahead

- » Vehicle routing
- Integrating simulation
 - » Sampling with optimization
 - » On-line optimization
 - » Low-discrepancy methods





- Value for solving the stochastic problem
- Efficient implementations
- Opportunities for new results