

INFORMATION and MODEL VALUE

INFORMATION VALUE:

- FIND Expected Value with Perfect Information or Waitand-See (WS) solution:
 - » Know demand: if 3, send 3 from A to B If 0, send 0 from A to B:
 - » Earn: 2 (AtoB) + (2/3) (3) + (1/3)0= 4 = WS
- Expected Value of Perfect Information (EVPI):
 - FVPI = WS RP = 4 35 = 0.5
 - » Value of knowing future demand precisely

MODFI VALUE:

- FIND EMV, RP
- Value of the Stochastic Solution (VSS):
 - \times VSS = RP EMV=3.5 3 = 0.5
 - » Value of using the correct optimization model

Slide Number 7

INFORMATION/MODEL OBSERVATIONS

EVPI and VSS:

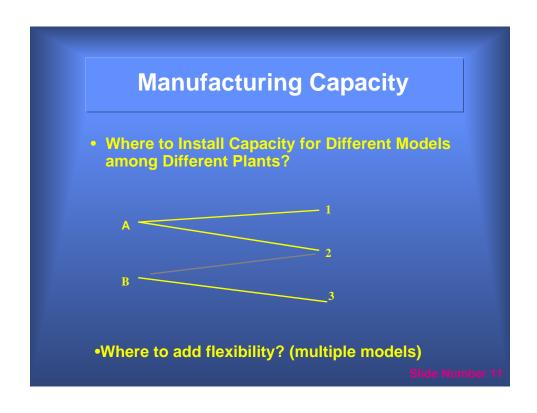
- ALWAYS \geq 0 (WS \geq RP \geq EMV)
- OFTEN DIFFERENT (WS=RP but RP > EMV and vice versa)
- FIT CIRCUMSTANCES:
 - **» COST TO GATHER INFORMATION**
 - » COST TO BUILD MODEL AND SOLVE PROBLEM

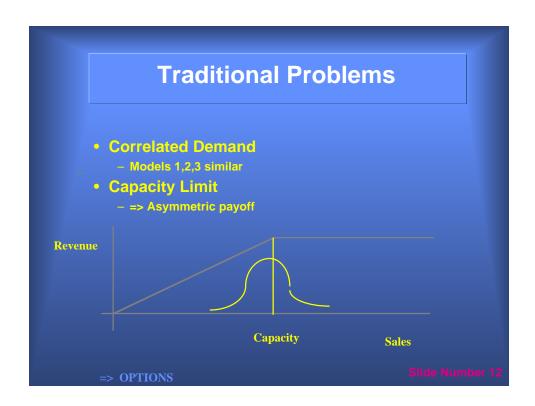
MEAN VALUE PROBLEMS:

- MV IS OPTIMISTIC (MV=4 BUT EMV=3, RP=3.5)
 - » ALWAYS TRUE IF CONVEX AND RANDOM
 - **» CONSTRAINT PARAMETERS**
- VSS LARGER FOR SKEWED DISTRIBUTIONS/COSTS

```
STOCHASTIC PROGRAM

    ASSUME: Random demand on AB and BA


    GOAL: maximize expected profits

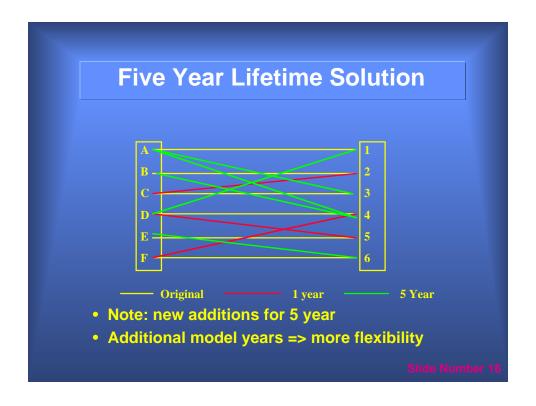

   - (risk neutral)

    DECISIONS: x<sub>ii</sub> - empty from i to j

    - y<sub>ii</sub>(s) - full from i to j in scenario s (RECOURSE)
    - (prob. p(s))
• FORMULATION:
 Max -0.5xAB + \Sigma s=s1,s2 p(s) (1.5 yAB(s) + 1.5 yBA(s))
                                              = 5 (Initial)
        xAB +xAA
                                    + yBA(s) \leq 0 (Limit BA)
        -xAB
                           + yAB(s) ≤ 0 (Limit AB)
yBA(s) ≤ DBA(s) (Demand BA)
+ yAB(s) ≤ DAB(s) (Demand AB)
         -xAA
          xAA, XAB, yAA(s), yAB (s) \geq 0
     - EXTENSIONS: Multiple stages
         -Constraint/objective complexity (Powell et al.)
```

Outline •Models •Vehicle Allocation •Manufacturing Capacity •Financial Planning •Electric Power •Greenhouse Gas policy •Solutions •Revisions

Option Approaches


- Previous work:
 - S. Andreou, C. Byrd
- · Assumption: risk free hedge
 - Can evaluate as if risk neutral
 - As in Black-Scholes model
- Steps
 - Adjust revenue to risk-free equivalent
 - Discount at riskless rate

Slide Number 13

Recourse Payoff Evaluation

- Key: Evaluate Expected Optimal with Installed Capacity
 - Must choose best mix of models assigned to plants
 - Maximize Σi Profit (i) Production(i)
 - subject to: $MaxSales(i) >= \Sigma j Production(i at j)$
 - Σ i Production(i at j) <= Capacity (i)
 - Production(i at j) <= Capacity (i at j)</pre>
 - Production(i at j) >= 0
- Transportation Problem
- Need MaxSales(i) random unknown distribution
 - Capacity(i at j) Decision in First Stage

•Models •Vehicle Allocation •Manufacturing Capacity •Financial Planning •Electric Power •Greenhouse Gas policy •Solutions •Revisions

DATA and SOLUTIONS ASSUME: - Y=15 years - G=\$80,000 - T=3 (5 year intervals) - k=2 (stock/bonds) Returns (5 year): - Scenario A: r(stock) = 1.25 r(bonds)= 1.14 - Scenario B: r(stock) = 1.06 r(bonds)= 1.12 Solution: PERIOD **SCENARIO STOCK BONDS** 1 1-8 41.5 13.5 65.1 2.17 2 1-4 2 5-8 36.7 22.4 3 1-2 83.8 0 3 3-4 0 71.4 3 5-6 0 71.4

MODEL VALUES

- COMPARISON TO MEAN VALUES:
 - RP = -7 EMS=-19 (all stock investments)
 - » VSS = RP EMS = 12
- HORIZON/PERIOD EFFECTS
 - TRUNCATION AT 10 YEARS
 - » MORE CONSERVATIVE
 - **» HEAVY BOND INVESTMENT**
 - LONG PERIODS
 - » MORE MEAN EFFECT LESS DISTRIBUTION
 - **» HEAVY STOCK INVESTMENT**
- RESULT
 - NEED THREE PERIODS FOR HEDGING SOLUTION
 - MANY CURRENT USERS (ALM MODELING, ZIEMBA, MULVEY, ZENIOS, et al.)

Slide Number 21

OUTLINE

- Models
 - Vehicle Allocation
 - Manufacturing Capacity
 - Financial Planning
 - •Electric Power
 - •Greenhouse Gas policy
- Solutions
- Revisions

Power Systems

- GOAL: Minimize the overall cost to meet power load over a given time horizon
- DECISIONS: Determine the set of units to commit and their levels of operation (which plants on Automatic Generation Control)
- RESTRICTIONS:
 - Must maintain load
 - Meet safety requirement
 - Ramping times, switching limits

Slide Number 23

Power System Formulation

STOCHASTIC NONLINEAR INTEGER MODEL:

 $\begin{array}{ll} \text{min} & \Sigma_s \ p(s) \ (\ \Sigma_t \Sigma_t f_t(\ x(t,i,s),\ u(t,i,s)) \\ \text{s.t. (for all } s): & \Sigma_k \ x(t,i,s) \ \geq d(t), t=1..T,\ x(t,i,s) \ \text{in } X(t,i,s,u) \\ & u(t,i,s) \ \text{integer,} \ x(t,i,s) \ \geq 0, \ \text{all } i,t; \end{array}$

Nonanticipativity:

 $\mathbf{E}_{s'} \mathbf{x}(\mathbf{k}, \mathbf{t}, s') - \mathbf{x}(\mathbf{k}, \mathbf{t}, s) = \mathbf{0}$ if $\mathbf{s}', \mathbf{s} \in \mathbf{S}^i$ for all $\mathbf{t}, \mathbf{i}, \mathbf{s}$. This says decision cannot depend on future.

St₁ are groups at the same level of the scenario tree

Power System Results

- BOUNDS ON ERROR in POWER SYSTEMS
 - GOES TO ZERO AS PROBLEM SIZE INCREASES
- IMPLEMENTATION: Michigan Power System
 - Model week to week
 - Control thermal plus pump storage hydro
- Savings (VSS) : 2% = \$500,000 per week
- Current: new deregulated systems (Colombia)

Slide Number 25

OUTLINE

- Models
 - Vehicle Allocation
 - •Manufacturing Capacity
 - •Financial Planning
 - •Electric Power
 - •Greennouse Gas policy
- Solutions
- •Revisions

Energy Policy

- How to reduce carbon emissions
- Assume:
 - Given levels to reach
 - Possible trade with other countries of carbon rights
 - Macroeconomic model (Manne-Richels)
 - Uncertainty in investment in new technologies
- Goal: maximize expected value subject to the carbon limits

Slide Number 27

Results

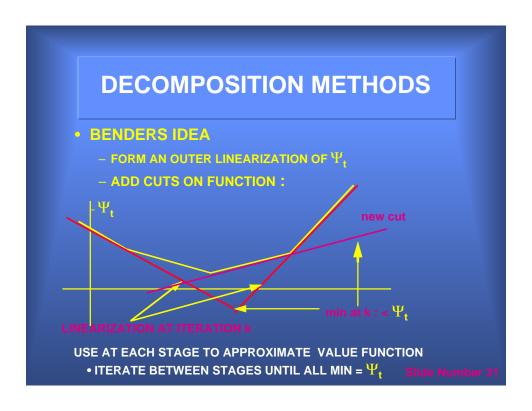
- · Modeled various possible technologies
- Allowed wide range
- Overall impact:
 - Any deterministic model has difficulties
 - Examples: invest in the best technology
- Value of the Stochastic Solution
 - As high as 2 percent of GDP
 - \$100 Billion per year
- Policy must consider uncertainty

OUTLINE

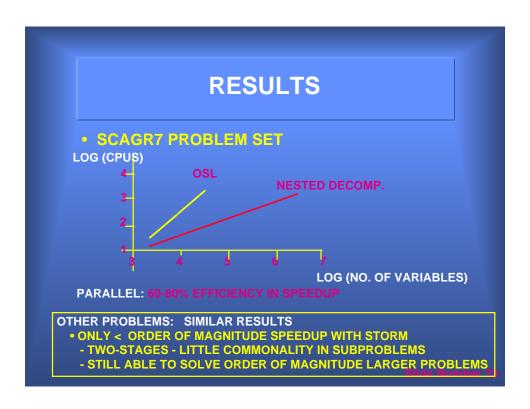
- Models
 - Vehicle Allocation
 - Manufacturing Capacity
 - •Financial Planning
 - •Electric Power
 - Greenhouse Gas policy
- Revisions

GENERAL MULTISTAGE MODEL

• FORMULATION:


```
\label{eq:minimizer} \begin{aligned} & \text{MIN} & & \text{E} \left[ \ \boldsymbol{\Sigma}_{t=1}^{}^{T} \ f_{t}(\boldsymbol{x}_{t}, \boldsymbol{x}_{t+1}) \ \right] \\ & \text{s.t.} & & & \boldsymbol{x}_{t} \in \ \boldsymbol{X}_{t} \\ & & & & \boldsymbol{x}_{t} \quad nonanticipative \end{aligned}
                              P[h_t(x_t,x_{t+1}) \le 0] \ge a (chance constraint)
```

EXAMPLES:


Vehicle Allocation: Linear functions, continuous or integer variables

Capacity: Linear plus integer variables

Financial Planning: Nonlinear objective, continuous variables

DECOMPOSITION IMPLEMENTATION NESTED DECOMPOSITION LINEARIZATION OF VALUE FUNCTION AT EACH STAGE DECISIONS ON WHICH STAGE TO SOLVE, WHICH PROBLEMS AT EACH STAGE LINEAR PROGRAMMING SOLUTIONS USE OSL FOR LINEAR SUBPROBLEMS USE MINOS FOR NONLINEAR PROBLEMS PARALLEL IMPLEMENTATION USE NETWORK OF RS6000S PVM PROTOCOL

CONCLUSIONS

- STOCHASTIC PROGRAMS CAN BE:
 - LINEAR, NONLINEAR, INTEGER PROGRAMS
 - CONTINUOUS OR DISCRETE R.V.'S
 - OF SIGNIFICANT VALUE (VSS) OVER DETERMINISTIC MODELS
- RANDOMNESS =>
 - VALUE OF MODELING
 - DIFFICULTY IN EVALUATING OBJECTIVES
 - MOTIVATION FOR APPROXIMATION
- SOLUTIONS
 - DECOMPOSITION FOR LINEAR PROBLEMS
 - SPEEDUPS OF ORDERS OF MAGNITUDE