Regulation and Deregulation of Electric Power Markets

John R. Birge Dean, R.R. McCormick School of Engineering and Applied Science Northwestern University

Outline

- 1. Basic Mechanisms
- 2. Market Problems
- 3. California Specifics
- 4. Ongoing Problems
- 5. Potential Resolutions

Regulated versus Deregulated Markets

• Regulated

- Single or few producers
- Prices controlled by commission
- Costs passed to consumers (eventually)
- Little incentive for efficiency
- Deregulated
 - Multiple producers
 - Prices governed by market mechanism
 - Potential for market power (vary supply to manipulate price)

– Questions about security (sufficient capacity)

Problems of Electricity Markets

- Inelastic demand
- Variable demand
- Limited transmission capacity
- Limited (unavailable) storage capacity

Inelastic Demand

Demand increases can sharply increase prices
Price
Demand shift
Supply

Quantity

Variable Demand

• Demand often doubles (or more) during peak hours

11/29/2001

Competitive Markets

Market Clearing Process

Demand is 10

Problem: finding optimal bidding strategies and the resulting MCP 8

Power Exchange Overview

- Non-sealed bid, Multi-round
 - Bidders can see each other's bids and can adjust their prices as many times as they want
 - Market is closed when no bidder wants to adjust his/her bid price
- Selling at spot:
 - All dispatched units are traded at the same price

California Power Exchange (PX)

- Two markets
 - Day ahead
 - One hour-ahead
- Independent System Operator (ISO)
 - Coordinates supply and transmission
 - Operates energy imbalance market (spot market)

Electricity Price Example

California Power Exchange

11/29/2001

Electricity Price Example: Norway

• NOK Prices

Comparisons to Other Markets

- High Volatility
 - 10 to 100 times that of common stock
 - Prices from 0 to \$10,000 per MWhr
- Difficulty in storage
 - Electricity close to un-storable
 - Difficulty substitution (liquidity)

Additional Problems

- Capacity investment
 - How to ensure enough capacity?
- Start-up and shutdown costs
 - How to obtain efficiency for long-run operations?
- Colombia case
 - Compare to "optimal"
 - Problems: multiple "optimal" choices
 - Optimal depends on future must consider what will be available (not just what is available now)

Production Changes in Colombia (multiple possible ranges)

Colombia "Optimal" Hydro Generation

Colombia "Optimal" Thermal

Generation Generation

California Problems

- Demand timing
 - More rapid expansion than forecast
- Capacity timing
 - Long lead times
 - Large utilities sold generation
- Transmission capacity
 - Limited ability to take advantage of surpluses elsewhere
- Current Situation
 - Weather advantage

11/297200 Voluntary conservation

Long-run Resolution

- Additional capacity and transmission
 - Need to know the market environment
 - Need to have instruments to hedge risks
- Useful innovations
 - Additional long-term contracts
 - Demand price responses
 - allow spot prices to pass through
 - can reduce monthly fluctuation with long-term contracts

Conclusions

- Market structure
 - Problems for electricity because of storage, inelastic demand
- Market power
 - Created by limited capacity, few producers
- Resolutions
 - Demand responsiveness and more ability to hedge risks