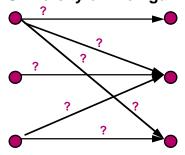
Methods for Stochastic Dynamic Network Problems

John R. Birge Christopher J. Donohue University of Michigan



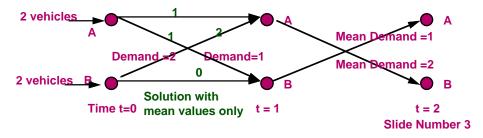
Slide Number 1

Outline

- Example Vehicle Allocation
- Formulation
- General Approximations
- New Bounds using Structure
- Computational Methods
 - Stochastic Out-of-Kilter
 - Decomposition implementation
- Results
- Conclusions

Example: Vehicle Allocations

- GOAL: maximize revenue from loads carried (minus costs of all movements)
- DECISIONS: Number of vehicles to move between each pair of locations at each time (may be empty or loaded if demand is sufficient)



Value of the Stochastic Solution

- Problems with Mean Value Solution:
 - Demand from B to A may have mean 1 but may be 0 with prob. 1/2 and 2 with prob. 1/2
 - Leaving one vehicle at A means that a second load is lost with prob. 1/2
 - Moving a second vehicle from A to B at time 0 yields:
 Value of the Stochastic Solution
- = -Cost of empty ABmove + (1/2)(Profit on load from B to A)

 2 vehicles

 A

 Demand = 0 w.p. 1/2
 = 2 w.p. 1/2
 Demand = 2

 Vehicles

 Mean Value Solution
 Time t=0 Stochastic Solution t = 1

 Time t=0 Stochastic Solution t = 1

Formulation

• FORMULATION:

```
\begin{aligned} &\text{Min E}_s[\Sigma_t\left[-r(t)u(t,l,s)+p(t)u(t,e,s)\right]\ ]\\ &\text{s.t. } &x(t,s)+T(u(t,l,s)+u(t,e,s))=x(t+1,s)\\ &u(t,l,s)\leq d(s) \text{ (random demand)}\\ &u,x\geq 0\\ &u,x\text{ are NONANTICIPATIVE (cannot depend on future)}\\ &(\text{ALSO INTEGRAL}) \end{aligned}
```

- x state (no. in each location)
- · u control (components ij) with I for loaded, e for empty
- · s demand scenario

Slide Number 5

Dynamic Programming View

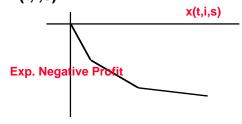
- STAGES: t=1,...,T
- STATES: x, (or other transformation)
- Value Function:

```
\label{eq:problem} \begin{split} & \angle \ \Psi_t(\mathbf{x}_t) = \text{E}[\psi_t(\mathbf{x}_{t}, \xi_t)] \ \text{where} \\ & \angle \ \xi_t \ \text{is the random element and} \\ & \angle \ \psi_t(\mathbf{x}_{t}, \xi_t) \ = \ \min \ f_t(\mathbf{x}_{t}, \mathbf{x}_{t+1}, \xi_t) \ + \ \Psi_{t+1}(\mathbf{x}_{t+1}) \\ & - \quad \text{s.t.} \ \mathbf{x}_{t+1} \in \ \ \mathbf{X}_{t+1t}(\xi_t) \ \ \ \mathbf{x}_t \ \ \text{given} \end{split}
```

- Frequent Assumptions:
 - Convexity
 - Relaxed integrality
- Basic Problem: how to evaluate Ψ_t(x_t)?

Common Approaches

- Use of convexity:
 - Bounds in general: Jensen (lower), Edmundson-Madansky (upper)
 - Using network structure: Powell, Frantzeskakis, Cheung
- Basic idea: at each node i approximate the expected revenue as a function of the state, x(t,i,s)



Slide Number 7

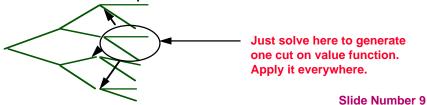
Problems in Previous Approaches

- Lower Bounds:
 - Generally separable losing interaction effects
 - Accuracy overall
- Upper Bounds
 - Inefficient (exponential in number of arcs)
 - Inaccurate in general
- Objectives in new bounds
 - Include interactions
 - Increase efficiency and accuracy in upper bound

Lower Bounding Procedure

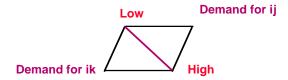
Idea:

- Use cut generation as in decomposition approaches to generate higher dimensional approximation of value function graph
- Solve large system from each node
- Use new assumptions:
 - » Relatively complete recourse (can always find feasible solution in future)
 - » Serial independence



Upper Bounding Procedure

- Idea: Use a property called: convex marginal returns
 - occurs if the marginal return from any individual state element cannot increase if some other element is increased
 - holds for all arcs with common end-nodes
- Result: An upper bound is obtained by combining results from all high and all low demands



Upper Bounding Results

 Transportation and vehicle allocation problems of varying sizes (sample)

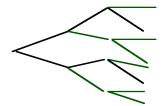
No of Random Arcs	Nodes	UB-LB/LB(%)
105	15	2.2
30	9	0.5
46	14	10.5
15	8	2.3

- Extensions: Can use the method in constructing a stochastic out-of-kilter method
- Problem: Exponent is reduced from arcs to nodes but still exponential no. of solutions to consider

Slide Number 11

Alternative: Decomposition and Sampling

- Use procedure (modified) from Pereira and Pinto
- Observation:
 - As long as scenarios are chosen to approach true probability distribution, the sample mean of the sum of one period values provides an asymptotic upper bound
 - Only need to generate branches not the whole tree



Decomposition Computational Results

Small sample problems (up to 10,000 variables)- CPUs
 Variables Nested Decomp. Det. Eq. Stoch. Out-of-Kilter

Variable 3	Nested Decomp.	Det. Eq. Otoen. Out-or-Mitter	
460	1.6	1.2	13.0
790	2.1	2.4	42.4
1450	2.9	6.8	122.8
2800	3.4	20.9	477.8
5380	2.1	75.2	1778.1
6600*	12.6	278.4	8423.2

^{*} different problem form.

Slide Number 13

Conclusions

- Value: stochastic models can have significant value for a solution
- Structure: stochastic networks have structure that enables efficiency in bounding and solution procedures
- Computation: Decomposition procedures using the problem structure have achieved significant efficiencies over direct deterministic approaches

http://www-personal.engin.umich.edu/~jrbirge

Solutions include problems with 10+ million variables