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Outline

• Example - Vehicle Allocation
• Formulation
• General Approximations
• New Bounds using Structure
• Computational Methods

– Stochastic Out-of-Kilter
– Decomposition implementation

• Results
• Conclusions
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Example: Vehicle Allocations

• GOAL: maximize revenue from loads carried 
(minus costs of all movements)

• DECISIONS: Number of vehicles to move 
between each pair of locations at each time 
(may be empty or loaded if demand is 
sufficient)
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Solution with 
mean values only
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Value of the Stochastic 
Solution

• Problems with Mean Value Solution:
– Demand from B to A may have mean 1 but may be 0 with 

prob. 1/2 and 2 with prob. 1/2 
– Leaving one vehicle at A means that a second load is lost 

with prob. 1/2 
– Moving a second vehicle from A to B at time 0 yields:
   Value of the Stochastic Solution 
= -Cost of empty ABmove + (1/2)(Profit on load from B to A)
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Formulation

• FORMULATION:
Min Es[Σt [-r(t)u(t,l,s)+p(t)u(t,e,s)]  ]

s.t.  x(t,s)+ T(u(t,l,s)+u(t,e,s)) = x(t+1,s)
u(t,l,s)≤ d(s) (random demand)
u,x≥ 0 

u,x are NONANTICIPATIVE (cannot depend on future)
(ALSO INTEGRAL)

• x  - state (no. in each location)
• u  - control ( components ij) with l for loaded, e for empty
• s - demand scenario 
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Dynamic Programming View

• STAGES: t=1,...,T
• STATES: xt (or other transformation)
• Value Function:

∠ Ψ t(xt) = E[ψt(xt,ξt)] where
∠ ξ t is the random element and
∠ ψ t(xt,ξt)  = min ft(xt,xt+1,ξt) + Ψt+1(xt+1)
–            s.t. xt+1 ∈   Xt+1t(,ξt)     xt  given

• Frequent Assumptions:
–  Convexity
–  Relaxed integrality

• Basic Problem: how to evaluate Ψt(xt)?
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Common Approaches

• Use of convexity:
– Bounds in general: Jensen (lower), Edmundson-

Madansky (upper)
– Using network structure: Powell, Frantzeskakis, Cheung

• Basic idea: at each node i approximate the 
expected revenue as a function of the state, 
x(t,i,s)

x(t,i,s)

Exp. Negative Profit
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Problems in Previous 
Approaches

• Lower Bounds:
– Generally separable - losing interaction effects
– Accuracy overall

• Upper Bounds
– Inefficient (exponential in number of arcs)
– Inaccurate in general

• Objectives in new bounds
– Include interactions
– Increase efficiency and accuracy in upper bound
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Lower Bounding Procedure

• Idea: 
– Use cut generation as in decomposition approaches to 

generate higher dimensional approximation of value 
function graph

– Solve large system from each node
– Use new assumptions:

» Relatively complete recourse (can always find 
feasible solution in future)

» Serial independence

Just solve here to generate
one cut on value function. 
Apply it everywhere.
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Upper Bounding Procedure

• Idea: Use a property called: convex marginal 
returns

– occurs if the marginal return from any individual state 
element cannot increase if some other element is 
increased

– holds for all arcs with common end-nodes

• Result: An upper bound is obtained by 
combining results from all high and all low 
demands

Low

High

Demand for ij

Demand for ik
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Upper Bounding Results

• Transportation and vehicle allocation problems 
of varying sizes (sample)

No of Random Arcs Nodes UB-LB/LB(%) 
105 15 2.2
30   9 0.5
46 14 10.5
15   8 2.3
• Extensions: Can use the method in constructing 

a stochastic out-of-kilter method
• Problem:  Exponent  is reduced from arcs to nodes 

but still exponential no. of solutions to consider
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Alternative: Decomposition and 
Sampling

• Use procedure (modified) from Pereira and 
Pinto

• Observation:
– As long as scenarios are chosen to approach true 

probability distribution, the sample mean of the sum of 
one period values provides an asymptotic upper bound

– Only need to generate branches - not the whole tree 
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Decomposition Computational 
Results

• Small sample problems (up to 10,000 variables)- CPUs
Variables   Nested Decomp.   Det. Eq. Stoch. Out-of-Kilter
460 1.6    1.2 13.0
790   2.1    2.4 42.4
1450 2.9    6.8  122.8
2800 3.4  20.9 477.8
5380 2.1  75.2          1778.1
6600*          12.6 278.4          8423.2
* different problem form.
• Solutions include problems with 10+ million variables
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Conclusions

• Value: stochastic models can have significant 
value for a solution

• Structure: stochastic networks have structure 
that enables efficiency in bounding and 
solution procedures

• Computation: Decomposition procedures 
using the problem structure have achieved 
significant efficiencies over direct 
deterministic approaches  

http://www-personal.engin.umich.edu/~jrbirge


