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European FarmingEuropean Farming

l Decision:
• How to plant 500 acres with wheat, corn 

and sugar beets?

Wheat Beets

Corn

•Issues: Livestock needs, quotas, costs, 
yields, prices

Farm ParametersFarm Parameters
l Livestock requirements

– 200 Tons of wheat
– 240 Tons of corn

l Prices

– Wheat: $170 /ton to sell/ $238/ton to buy
– Corn: $150 /ton to sell/ $210/ton to buy
– Beets: $36/ton up to 6000 ton (quota); $10/ton if over

l Planting costs
– Wheat: $150/acre;  Corn: $230/acre
– Beets: $260/acre

l Yields (means)
– Wheat: 2.5 tons/acre;  Corn: 3 tons/acre
– Beets: 20 tons/acre



Deterministic Farmer’s Deterministic Farmer’s 
ProblemProblem

l Formulation
Min 150 x1 + 230 x2 + 260 x3 + 238 a1 - 170 v1 + 210 a2 - 150 
v2  -36 v3 - 10 v4
s.t. x1      +x2         + x3           ≤   500  (acres)
        2.5 x1                                     + a1     -v1     ≥   200  (wheat)

  3 x2                         +a2     -v2      ≥   240  (corn)
                 20 x3        -v3      -v4      ≥   0      (beets)

                            v3                 ≤  6000 (quota)
x1,x2,x3,a1,a2,v1,v2,v3,v4     ≥   0

SOLUTION:  WHEAT CORN BEETS
    ACRES (xi)=      120  80   300
    YIELD =             300 240  6000
    PROFIT = $118,600 per season

Tight constraints

Scenario SolutionsScenario Solutions
l Random Factor: Weather

• Yield variations: +/- 20% of the mean
l Scenario Approach

• A - Optimistic - Assume +20%
SOLUTION:  WHEAT CORN BEETS
    ACRES (xi)=      183  67   250
    YIELD =             550 240  6000
    PROFiT=  $167,667 per season

• B - Pessimistic - Assume -20%
–

SOLUTION:  WHEAT CORN BEETS
    ACRES (xi)=      100  25   375
    YIELD =             200  60  6000
    PROFiT=  $59,950  per season



STOCHASTIC PROGRAMSTOCHASTIC PROGRAM

l ASSUME: Plant without knowing future
– Suppose each scenario equally likely (prob.= 1/3 each)
– Place in single mathematical program

l GOAL: maximize expected profits 

– (risk neutral)
l FORMULATION:

Min 150 x1 + 230 x2 + 260 x3 + 1/3 Σ i=1,3 (238 a1i - 170 v1i + 
210 a2i - 150 v2i  -36 v3i - 10 v4i)
s.t. x1      +x2         + x3             ≤   500  (acres)
    (1+.2(2-i))2.5 x1                         + a1i     -v1i     ≥   200  (wheat)

(1+.2(2-i))3 x2                  +a2i    -v2 i     ≥   240  (corn)
 (1+.2(2-i))20 x3        -v3i      -v4i     ≥   0      (beets)

                            v3 i                ≤  6000 (quota)
x1,x2,x3,a1i,a2i,v1i,v2i,v3i,v4i     ≥   0

Axle Design Axle Design 
ExampleExamplel

P
 d

Figure 1. An axle of length l, diameter d, with a central load P .

• Random: d(d̄)

• Density

fd̄(d) =


100
d̄2

(d− 0.9d̄) if 0.9d̄ ≤ d < d̄;
100
d̄2

(1.1d̄− d) if d̄ ≤ d≤ 1.1d̄;
0 otherwise.

(2.4.1)

• Decision: d̄ ≤ dmax and l ≤ lmax

• Selling price:

s(1− e−0.1l̄), (2.4.2)

• Manufacturing cost:

c(
lπd̄2

4
). (2.4.3)
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Axle cont.Axle cont.• Stress constraint:
l

d3
≤ 39.27. (2.4.4)

• Deflection constraint: obtain:

l3

d4
≤ 63169. (2.4.5)

• Nonlinear recourse function:

Q(l, d̄, d) := min
y
{wy2 s. t. l

d3
− y ≤ 39.27, l

3

d4
− 300y ≤ 63169},

(2.4.6)

• Expected recourse function:

Q(l, d̄) =
∫
d

Q(l, d̄, d)fd̄(d)dd, (2.4.7)

Full Problem

max (total revenue per item − manufacturing cost per item

− expected future cost per item). (2.4.9)

⇐⇒
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Formulation and ValueFormulation and Value
maxz(l, d̄) = s(1− e−0.1l) − c(

lπd̄2

4
) −Q(l, d̄)

s. t. 0 ≤ l ≤ lmax, 0 ≤ d̄ ≤ dmax.

(2.4.10)

Stochastic Solution

• Data:

lmax = 35, dmax = 1.25, s = 10

c = .025, w = 1

• Solution:

l∗ = 33.6, d̄∗ = 1.038, z∗ = z(l∗, d̄∗) = 8.94

Deterministic Solution

lDet = 35.0719, d̄Det = 0.963, zDet(lDet, d̄Det) = 9.07, z(lDet, d̄Det) = 5.88

Value of the Stochastic Solution

z∗ − z(lDet, d̄Det) = 3.06



Example for Yacht Design Example for Yacht Design 

l Yacht velocity prediction program - A. Philpott
– Determines velocity based on input parameters
– Can be optimized for various conditions
– Includes design parameters

l Stochastic variables
– Wind velocity 
– Angle to wind
– Hydrodynamic resistance

Deterministic Problem - Deterministic Problem - 
ExampleExample

l Decision variables:
– Length: Long, medium, short

l Conditions: 
– Wind: Strong or light

l Outcomes:
Wind Length Prob. of Win

Strong L 0.8 -Optimal /Strong
Strong M 0.6
Strong S 0.2
Light L 0.2
Light M 0.6
Light S 0.8 -Optimal /Light



Deterministic Value Deterministic Value 

l Suppose equal likelihood on conditions
l Prob. of win:

–   If Long, (1/2)(0.8) + (1/2)(0.2)=0.5
–   If Short, (1/2)(0.8) + (1/2)(0.2)=0.5
–   If Medium, (1/2)(0.6) + (1/2)(0.6)=0.6

l Note: Deterministic is not optimal, also no 
deterministic opt. value is opt. overall

l Value of Stochastic Solution=0.6-0.5=0.1

Portfolio ProblemPortfolio Problem

l Suppose two boats possible 
l Suppose choice given previous 

conditions, 
– If strong now, then P(Strong at race)=0.8
– If light now, then P(Light at race)=0.8.

l Prob. of win=
– If Strong now, choose Long, P(Win/Lo andSt)=(0.8)(0.8)+

(0.2)(0.2)=0.68

– If Light now, choose Short, P(Win/Sh and Li)=0.68
– If Light or Strong now, choose Medium, P(Win/Medium)=0.6



Portfolio ObservationsPortfolio Observations

l Portfolio allows:
– Increased prob. of win
– Use of learning about uncertainty
– Partial hedging

l Note: Change in solution structure
l Difficulties in probability evaluation and 

integration with yacht design problem

GENERAL MULTISTAGE GENERAL MULTISTAGE 
MODELMODEL

l FORMULATION:
MIN    E [ Σt=1

T ft(xt,xt+1) ]
s.t.          xt ∈   Xt
               xt   nonanticipative
          P[ ht (xt,xt+1) ≤ 0 ] ≥ a (chance constraint)

EXAMPLES:

FARM:    Linear functions, continuous variables

AXLE: Nonlinear plus continuous variables

YACHT: Nonlinear objective, integer variables



DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING 
VIEWVIEW

l STAGES: t=1,...,T
l STATES: xt -> Btxt(or other transformation)
l VALUE FUNCTION:

∠ Ψt(xt) = E[ψt(xt,ξ t)] where
∠ ξt is the random element and
∠ ψt(xt,ξt)  = min ft(xt,xt+1,ξt) + Ψt+1(xt+1)
–            s.t. xt+1 ∈   Xt+1t(,ξt)     xt  given

l SOLVE : iterate from T to 1
l PROBLEM: How to find  E[ψt(xt,ξt)]?

∠ ξt  may have high dimension

ALTERNATIVES FORALTERNATIVES FOR
 FINDING  FINDING ΨΨtt  

l DIRECT NUMERICAL INTEGRATION
– Possible only if very small or special structure 
– Not applicable to general, large problems

l SIMULATION

– Limited convergence rate (1/ √n error for n samples)
– Difficult estimates of confidence intervals on solutions

l BOUNDING APPROXIMATIONS
– Find Ψt

 l,k and Ψt
u,k such  that:

∠ Ψ t
 l,k≤  Ψt ≤  Ψt

u,k 

– limkΨt
 l,k

 = Ψt = limk Ψt
u,k

–where limit is “epigraphical”



BOUNDING BOUNDING 
APPROXIMATIONSAPPROXIMATIONS

l GOALS

– MAINTAIN SOLVABLE SYSTEM
– ENSURE SOLUTION VALUE WITHIN BOUNDS
– CONVERGENCE OF BOUNDS

l BASIC IDEA
– USE CONVEXITY/DUALITY
– CONSTRUCT FEASIBLE:

• DUAL SOLUTIONS
– LOWER BOUNDS

• PRIMAL SOLUTIONS
– UPPER ROUNDS

l CONVERGENCE
– NO DUALITY GAP

– IMPROVING REFINEMENTS

DISCRETIZATIONSDISCRETIZATIONS

l SIMPLIFY  THE  DISTRIBUTION
– REPLACE P BY PK WHICH HAS FINITE 

SUPPORT:

P PK

ΞΞ

MIAIN PROCEDURES:
     LOWER: JENSEN (MEAN)
     UPPER:  EDMUNDSON-MADANSKY (EXTREME POINTS)



BOUND IMPROVEMENTSBOUND IMPROVEMENTS

l PARTITIONING
– SPLIT Ξ (SUPPORT OF RANDOM VECTOR) INTO SUBREGIONS
– MAKE FUNCTION Ψ AS LINEAR AS POSSIBLE ON EACH 

SUBREGION

ORIG. MEAN (JENSEN)

ORIGINAL EM

SUB - 1SUB -2

NEW  EM

NEW JENSEN

ENFORCE SEPARABILITY:
      - FIND SEPARABLE RESPONSES TO ALL RANDOM
        PARAMETER CHANGES 

SOLVING AS LARGE-SCALE SOLVING AS LARGE-SCALE 
MATHEMATICAL PROGRAMSMATHEMATICAL PROGRAMS

l ORIGIN:
– DISCRETIZATION LEADS TO MATHEMATICAL PROGRAM BUT 

LARGE-SCALE
– USE STANDARD METHODS BUT EXPLOIT STRUCTURE

l DIRECT METHODS

– TAKE ADVANTAGE OF SPARSITY STRUCTURE
• SOME EFFICIENCIES

– USE SIMILAR SUBPROBLEM STRUCTURE
• GREATER EFFICIENCY - DECOMPOSITION

l SIZE
– UNLIMITED (INFINITE NUMBERS OF VARIABLES)

– STILL SOLVABLE (CAUTION ON CLAIMS)



DECOMPOSITION DECOMPOSITION 
METHODSMETHODS

l BENDERS IDEA
– FORM AN OUTER LINEARIZATION 

OF Ψt

– ADD CUTS ON FUNCTION :– Ψt

LINEARIZATION AT ITERATION k
min at k : < Ψt

new cut

USE AT EACH STAGE TO APPROXIMATE  VALUE FUNCTION

    • ITERATE BETWEEN STAGES UNTIL ALL MIN = Ψt

DECOMPOSITION DECOMPOSITION 
IMPLEMENTATIONIMPLEMENTATION

l NESTED DECOMPOSITION
– LINEARIZATION OF VALUE FUNCTION AT EACH 

STAGE
– DECISIONS ON WHICH STAGE TO SOLVE, WHICH 

PROBLEMS AT EACH STAGE
l LINEAR PROGRAMMING SOLUTIONS

– USE OSL FOR LINEAR SUBPROBLEMS
– USE MINOS FOR  NONLINEAR PROBLEMS

l PARALLEL IMPLEMENTATION
– USE NETWORK OF RS6000S 
– PVM PROTOCOL



RESULTS RESULTS 

l SCAGR7 PROBLEM SET

LOG (NO. OF VARIABLES)

LOG (CPUS)

3 4 5 6 7
1

 2

3

4 OSL 
NESTED DECOMP.

PARALLEL: 60-80% EFFICIENCY IN SPEEDUP
OTHER PROBLEMS:   SIMILAR RESULTS
    • ONLY <  ORDER OF MAGNITUDE SPEEDUP WITH STORM 
       - TWO-STAGES - LITTLE COMMONALITY IN SUBPROBLEMS
       - STILL ABLE TO SOLVE ORDER OF MAGNITUDE LARGER PROBLEMS

SOME OPEN ISSUESSOME OPEN ISSUES

l MODELS
– IM PACT ON METHODS
– RELATION TO OTHER AREAS

l APPROXIMATIONS

– USE WITH SAMPLING METHODS
– COMPUTATION CONSTRAINED BOUNDS
– SOLUTION BOUNDS

l SOLUTION METHODS
– EXPLOIT SPECIFIC STRUCTURE
– MASSIVELY PARALLEL ARCHITECTURES

– LINKS TO APPROXIMATIONS



CRITICISMSCRITICISMS

l UNKNOWN COSTS OR DISTRIBUTIONS
– FIND ALL AVAILABLE INFORMATION
– CAN CONSTRUCT BOUNDS OVER ALL DISTRIBUTIONS

• FITTING THE INFORMATION
– STILL HAVE KNOWN ERRORS BUT ALTERNATIVE 

SOLUTIONS
l COMPUTATIONAL DIFFICULTY

– FIT MODEL TO SOLUTION ABILITY
– SIZE OF PROBLEMS INCREASING RAPIDLY (OVER 20 

MILLION VARIABLES)

CONCLUSIONSCONCLUSIONS
l STOCHASTIC PROGRAMS CAN BE:

– LINEAR, NONLINEAR, INTEGER PROGRAMS
– CONTINUOUS OR DISCRETE R.V.’S
– OF SIGNIFICANT VALUE (VSS) OVER DETERMINISTIC 

MODELS

– INTEGRATION INTO DESIGN PROBLEMS
– PORTFOLIOS  to HEDGE

l RANDOMNESS =>
– VALUE OF MODELING
– DIFFICULTY IN EVALUATING OBJECTIVES
– MOTIVATION FOR APPROXIMATION

l SOLUTIONS
– DECOMPOSITION FOR LINEAR PROBLEMS
– SPEEDUPS OF ORDERS OF MAGNITUDE


