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European Farming

® Decision:

*Issues: Livestock needs, quotas, costs,
yields, prices

Farm Parameters

Livestock requirements

— 200 Tons of wheat

— 240 Tons of corn
Prices

— Wheat: $170 /ton to sell/ $238/ton to buy

— Corn: $150 /ton to sell/ $210/ton to buy

— Beets: $36/ton up to 6000 ton ( ); $10/ton if over
Planting costs

— Wheat: $150/acre; Corn: $230/acre

— Beets: $260/acre

— Wheat: 2.5 tons/acre; Corn: 3 tons/acre
— Beets: 20 tons/acre




Deterministic Farmer's
Problem
e Formulation

Min 150 x1 + 230 x2 + 260 x3 + 238 al - 170 vl + 210 a2 - 150
v2 -36 v3-10v4

s.t. x1 +X2 +x3
25x1 +al -vl
3x2 +a2 -v2
20 x3 -v3 -v4
v3
x1,x2,x3,al,a2,v1i,v2,v3,v4

500 (acres)
200 (wheat)
240 (corn)
0  (beets)
6000 (quota)
0

VoA v v IVIA

SOLUTION:

120 80 300

300 240 6000
$118,600 per season

Tight constraints

Scenario Solutions

® Random Factor:

Yield variations: +/- 20% of the mean
® Scenario Approach

A - Optimistic - Assume +20%
SOLUTION:
183 67

550 240
= $167,667 per season

B - Pessimistic - Assume -20%

SOLUTION:

100 25
200 60
= $59,950 per season




STOCHASTIC PROGRAM

Plant without knowing future
— Suppose each scenario equally likely (prob.= 1/3 each)
— Place in single mathematical program
maximize expected profits
— (risk neutral)
°

Min 150 x1 + 230 x2 + 260 x3 + 1/3 X i=1,3 (238 ali - 170 v1i +

210 a2i - 150 v2i -36 v3i - 10 v4i)

S.t. x1 +X2 + X3
(1+.2(2-1))2.5 x1 +ali  -vii
(1+.2(2-1))3 x2 +a2i -v2i
(1+.2(2-1))20 x3 -v3i -vdi 0  (beets)
v3i 6000 (quota)
x1,x2,x3,ali,a2i,v1i,v2i,v3ivdi = 0

500 (acres)
200 (wheat)
240 (corn)

NIV IV A

L i Axle Design
. Example

Figure 1. An axle of length I, diameter d, with a central load P.

[
I<

Random: d(d)

00 (d — 0.9d) if 0.9d < d < d;
fald) = 190(1.1d —d) ifd <d =< 1.1d;
otherwise.

Decision: d < d™ax and [ < [max

Selling price:
s(1 — e—0-10),
Manufacturing cost:

o lvd2 ).




9.27.AX|e con(tzhfn

e Stress constraint:
7
a3

e Deflection constraint: obtain:

A
L = o.
= 6316

e Nonlinear recourse function:
73
—y = 39.27, i 300y =< 63169},

(2.4.6)

— i w2 s
= min{weg s. t.
i {wy 5

QU,d,d) :

e Expected recourse function:

oL, d) :A‘Q(Z,(I,d)fg(d)(ld,

Full Problem

max (total revenue per itemm — manufacturing cost per item
— expected future cost per item). (2.4.9)

R

ue

ax 7 — s(1 — e—011y _ oclmd=y 7
maxz(l,d) = s(1 —e ) —¢( 1 ) — Q,d) (2.4.10)

s.t.0< I <™ 0<d< dm*.

Stochastic Solution

max _ 35 gmax — 1 95 s = 10

c=.025,w =1

1* = 33.6,d" = 1.038,2* = z(I*, d*) = 8.94
[ ]

Deterministic Solution

1Pt = 35.0719, AP = 0.963, 2Pt (1P, dP) = 9.07, z(1P*, AP = 5.88l
]

Value of the Stochastic Solution

2% — z(1Pet, dPet) = 3.06




Example for Yacht Design

@ Yacht velocity prediction program - A. Philpott
— Determines velocity based on input parameters
— Can be optimized for various conditions
— Includes design parameters
e Stochastic variables
— Wind velocity
— Angle to wind
— Hydrodynamic resistance

Deterministic Problem -

. Example
@ Decision variables:

— Length: Long, medium, short

e Conditions:
— Wind: Strong or light

e Outcomes:

Wind Length Prob. of Win

Strong 0.8 -Optimal /Strong
Strong 0.6

Strong 0.2

Light 0.2

Light 0.6

Light 0.8 -Optimal /Light




Deterministic Value

® Suppose equal likelihood on conditions

® Prob. of win:
— If Long, (1/2)(0.8) + (1/2)(0.2)=0.5
— If Short, (1/2)(0.8) + (1/2)(0.2)=0.5

— If Medium, (1/2)(0.6) + (1/2)(0.6)=0.6

@ Note: Deterministic is not optimal, also no
deterministic opt. value is opt. overall

@ Value of Stochastic Solution=0.6-0.5=0.1

Portfolio Problem

® Suppose two boats possible

® Suppose choice given previous
conditions,

— If strong now, then P(Strong at race)=0.8
— If light now, then P(Light at race)=0.8.

® Prob. of win=
— If Strong now, choose Long, P(Win/Lo andSt)=(0.8)(0.8)+
(0.2)(0.2)=0.68
— If Light now, choose Short, P(Win/Sh and Li)=0.68
— If Light or Strong now, choose Medium, P(Win/Medium)=0.6




Portfolio Observations

e Portfolio allows:
— Increased prob. of win
— Use of learning about uncertainty
— Partial hedging
@ Note: Change in solution structure

e Difficulties in probability evaluation and
integration with yacht design problem

GENERAL MULTISTAGE
MODEL

® FORMULATION:

EXAMPLES:
FARM
AXLE:

YACHT:




DYNAMIC PROGRAMMING
VIEW

STAGES: t=1,...,T
STATES: x,-> Bxx,(or other transformation)
VALUE FUNCTION:

0 Wi(x) = E[W(x.&)] where

O &,is the random element and

O
SOLVE : iterate from T to 1

: How to find E[Y(x,&)1?
U

ALTERNATIVES FOR

FINDING v,

® DIRECT NUMERICAL INTEGRATION
— Possible only if very small or
— Not applicable to general, large problems
® SIMULATION
— Limited convergence rate (1/ vn error for n samples)
— Difficult estimates of confidence intervals on solutions

e BOUNDING APPROXIMATIONS
— Find w,'*and Wtksuch that:
¥ ks W < Puk
—lim W, k=W, =lim, YUk
—where limit is “epigraphical”




BOUNDING
APPROXIMATIONS

® GOALS
— MAINTAIN SOLVABLE SYSTEM
— ENSURE SOLUTION VALUE WITHIN BOUNDS
— CONVERGENCE OF BOUNDS
® BASIC IDEA
— USE CONVEXITY/DUALITY
— CONSTRUCT FEASIBLE:
SOLUTIONS
BOUNDS
PRIMAL SOLUTIONS
UPPER ROUNDS
® CONVERGENCE
— NO DUALITY GAP
— IMPROVING REFINEMENTS

DISCRETIZATIONS

e SIMPLIFY THE DISTRIBUTION
PKWHICH HAS FINITE

MIAIN PROCEDURES:
: JENSEN (MEAN)
: EDMUNDSON-MADANSKY (EXTREME POINTS)




BOUND IMPROVEMENTS

® PARTITIONING
— SPLIT = (SUPPORT OF RANDOM VECTOR) INTO SUBREGIONS

— MAKE FUNCTION W AS LINEAR AS POSSIBLE ON EACH
SUBREGION

ENFORCE SEPARABILITY:

SOLVING AS LARGE-SCALE
MATHEMATICAL PROGRAMS

® ORIGIN:

— DISCRETIZATION LEADS TO MATHEMATICAL PROGRAM BUT
LARGE-SCALE

— USE STANDARD METHODS BUT EXPLOIT STRUCTURE
e DIRECT METHODS
— TAKE ADVANTAGE OF STRUCTURE
SOME EFFICIENCIES
— USE STRUCTURE
GREATER EFFICIENCY - DECOMPOSITION
e SIZE
— UNLIMITED (INFINITE NUMBERS OF VARIABLES)
— STILL SOLVABLE (CAUTION ON CLAIMS)




DECOMPOSITION

METHODS

e BENDERS IDEA

— FORM AN OUTER LINEARIZATION

OF W,

\_ HJtADD CUTS ON FUNCTION :

USE AT EACH STAGE TO APPROXIMATE VALUE FUNCTION
* ITERATE BETWEEN STAGES UNTIL ALL MIN = LP:

DECOMPOSITION
IMPLEMENTATION

— LINEARIZATION OF VALUE FUNCTION AT EACH
STAGE

— DECISIONS ON WHICH STAGE TO SOLVE, WHICH
PROBLEMS AT EACH STAGE

® LINEAR PROGRAMMING SOLUTIONS

— USE OSL FOR LINEAR SUBPROBLEMS

— USE MINOS FOR NONLINEAR PROBLEMS
® PARALLEL IMPLEMENTATION

— USE NETWORK OF RS6000S

- PVM PROTOCOL




RESULTS

%C(ZAGR7 PROBLEM SET

|
LOG (NO. OF VARIABLES)

PARALLEL:

OTHER PROBLEMS: SIMILAR RESULTS
* ONLY < ORDER OF MAGNITUDE SPEEDUP WITH STORM
- TWO-STAGES - LITTLE COMMONALITY IN SUBPROBLEMS
- STILL ABLE TO SOLVE ORDER OF MAGNITUDE LARGER PROBLEMS

SOME OPEN ISSUES

® MODELS
— IM PACT ON METHODS
— RELATION TO OTHER AREAS
® APPROXIMATIONS
— USE WITH SAMPLING METHODS
— COMPUTATION CONSTRAINED BOUNDS
- BOUNDS
® SOLUTION METHODS
— EXPLOIT SPECIFIC STRUCTURE
— MASSIVELY PARALLEL ARCHITECTURES
— LINKS TO APPROXIMATIONS




CRITICISMS

FIND ALL AVAILABLE INFORMATION
CAN CONSTRUCT BOUNDS OVER ALL DISTRIBUTIONS
FITTING THE INFORMATION

STILL HAVE KNOWN ERRORS BUT ALTERNATIVE
SOLUTIONS

FIT MODEL TO SOLUTION ABILITY

SIZE OF PROBLEMS INCREASING RAPIDLY (OVER 20
MILLION VARIABLES)

CONCLUSIONS

® STOCHASTIC PROGRAMS CAN BE:
LINEAR, NONLINEAR, INTEGER PROGRAMS
CONTINUOUS OR DISCRETE R.V.'S

OF SIGNIFICANT VALUE (VSS) OVER DETERMINISTIC
MODELS

INTEGRATION INTO DESIGN PROBLEMS
PORTFOLIOS to HEDGE
® RANDOMNESS =>
— VALUE OF MODELING
— DIFFICULTY IN EVALUATING OBJECTIVES
— MOTIVATION FOR APPROXIMATION
® SOLUTIONS
— DECOMPOSITION FOR LINEAR PROBLEMS
— SPEEDUPS OF ORDERS OF MAGNITUDE




