Optimal Policy Structure in Dynamic Asset-Liability Management

John R. Birge Northwestern University

OUTLINE

- •Mean-variance versus other utility functions
- •Mean-Variance in dynamic portfolios
- •Discrete time, piecewise linear utility
- •Policy structure
- Enhanced models

Static Portfolio Model

Markowitz model Choose portfolio to minimize risk for a given return Find the efficient frontier

Markowitz Mean-Variance model

For a given set of assets, find

- fixed percentages to invest in each asset
- maintain same percentage over time
- **Needs**
 - rebalance as returns vary
 - cash to meet obligations

Alternative Dynamic Model

- Assume possible outcomes over time
 discretize generally
- In each period, choose mix of assets
- Can include transaction costs and taxes
- Can include liabilities over time
- Can include different measures of risk aversion

Example: Retirement Planning

- GOAL: Accumulate \$G Y years from now
- Assume:
 - \$ W(0) initial wealth
 - K investments

Utility (piecewise linear)

FORMULATION

- **SCENARIOS**: ? ?? ??
 - Probability, p(?)
 - Groups, S_{1}^{t} , ..., S_{St}^{t} at t
- MULTISTAGE STOCHASTIC NLP FORM:

 $\begin{array}{ll} \max & ?_{?} \ p(????U(W(?,T)) \\ \text{s.t. (for all ?): }_{k} \ x(k,1,?) & = W(o) \ (initial) \\ & ?_{k} \ r(k,t-1,?) \ x(k,t-1,?) \ - ?_{k} \ x(k,t,?) = 0 \ , \ all \ t > 1; \\ & ?_{k} \ r(k,T-1,?) \ x(k,T-1,?) \ - W(?,T) & = 0, \ (final); \\ & x(k,t,?) & >= 0, \ all \ k,t; \end{array}$

Nonanticipativity:

x(k,t,?') - x(k,t,?) = 0 if ?', ???? S_i^t for all t, i, ?', ? ????This says decision cannot depend on future.

DATA and SOLUTIONS

• ASSUME:

- Y=15 years
- G=\$80,000
- T=3 (5 year intervals)
- k=2 (stock/bonds)
- Returns (5 year):
 - Scenario A: r(stock) = 1.25 r(bonds) = 1.14
 - Scenario B: r(stock) = 1.06 r(bonds) = 1.12

• Solution:	SCENARIO	STOCK	BONDS
1	1-8	41.5	13.5
2	1-4	65.1	2.17
2	5-8	36.7	22.4
3	1-2	83.8	0
3	3-4	0	71.4
3	5-6	0	71.4
3	7-8	64.0	0

Static Markowitz Solution

Find efficient frontier:

Results with Static Model

- Fixed proportion in stock and bonds in each period
- 80% stock for 15% return
- 40% stock for 14% return
- Results: no fixed proportion achieves target better than 50% of time
- **Dynamic achieves target 87.5% of time**

Analysis of Dynamic Model

- With discrete outcomes, p.l. utility:
 - Optimal solution has number of investments equal to number of branches in each period
 - Constrain the number of positive investments with the number of outcomes per period
- Impact of transaction fees and taxes
 - Additional constraints
 - Creates potential for more active investments in each period
 - Additional constraints can be imposed with linearization (representation other variance information)

Other Model Gains

Include transaction costs -Fixed proportion requires transaction costs each period just to re-balance -can accumulate Maintain consistent utility

Current Study

- **Portfolios of major indexes**
- **Constructed efficient frontier**
- Developed decision tree form for stochastic program
- Gains in basic model for stochastic program of 3-5% over 10 periods