Optimal Policy Structure in Dynamic Asset-Liability Management

OUTLINE

-Mean-variance versus other utility functions
-Mean-Variance in dynamic portfolios
-Discrete time, piecewise linear utility
-Policy structure
-Enhanced models

Static Portfolio Model

| M arkowitz model
-Choose portfolio to minimize risk for a given return
-Find the efficient frontier

Markowitz Mean-Variance model

| For a given set of assets, find

- fixed percentages to invest in each asset
- maintain same percentage over time

। Needs

- rebalance as returns vary
- cash to meet obligations

Alternative Dynamic Model

| Assume possible outcomes over time - discretize generally

। In each period, choose mix of assets
। Can include transaction costs and taxes
। Can include liabilities over time

- Can include different measures of risk aversion

Example: Retirement Planning

- GOAL: Accumulate \$G Y years from now
- Assume:
- \$ W(0) - initial wealth
- K - investments

Utititeoncave utility (piecewise linear)

RANDOMNESS: returns $r(k, t)$ - for k in period t where $\mathrm{Y} \longrightarrow \mathrm{T}$ decision periods

FORMULATION

- SCENARIOS: ? ?! ??
- Probability, p(?)
- Groups, $\mathrm{S}_{1}^{\mathrm{t}}, \ldots, \mathrm{S}_{\mathrm{St}}^{\mathrm{t}}$ at t
- MULTISTAGE STOCHASTIC NLP FORM:
$\max \quad ?_{2} \mathbf{p}(?$? $? \mathrm{M}(\mathrm{W}(?, \mathrm{~T}))$
s.t. (for all ?): ? ${ }_{k} \mathbf{x}(\mathbf{k}, \mathbf{1}$, ?) $\quad=\mathrm{W}(0)$ (initial)

$$
\begin{array}{r}
?_{\mathrm{k}} \mathrm{r}(\mathbf{k}, \mathrm{t}-1, ?) \mathrm{x}(\mathrm{k}, \mathrm{t}-1, ?)-?_{\mathrm{k}} \mathbf{x}(\mathrm{k}, \mathrm{t}, ?)=0, \text { all } \mathrm{t}>1 ; \\
?_{\mathrm{k}} \mathrm{r}(\mathrm{k}, \mathrm{~T}-1, ?) \mathrm{f}(\mathrm{k}, \mathrm{~T}-1, ?)-\mathrm{W}(?, \mathrm{~T})=0,(\text { final }) ; \\
\mathrm{x}(\mathrm{k}, \mathrm{t}, ?) \quad>=0, \text { all } \mathrm{k}, \mathrm{t}
\end{array}
$$

Nonanticipativity:

$$
\mathbf{x}\left(\mathbf{k}, \mathbf{t}, ?^{\prime}\right)-\mathbf{x}(\mathbf{k}, \mathbf{t}, ?)=0 \text { if ?', ? ?? 'S } \mathbf{S}_{\mathrm{i}}^{\mathrm{t}} \text { for all t, i, ?', ? }
$$

?!?!?!?This says decision cannot depend on future.

DATA and SOLUTIONS

- ASSUME:
- Y=15 years
- G=\$80,000
- $\mathrm{T}=3$ (5 year intervals)
- k=2 (stock/bonds)
- Returns (5 year):
- Scenario A: r(stock) $=1.25 \quad r$ (bonds $)=1.14$
- Scenario B: r(stock) $=1.06 \quad r($ bonds $)=1.12$
- Selution:

1
2
2
3
3
3
3

SCENARIO	STOCK	BONDS
$1-8$	41.5	13.5
$1-4$	65.1	2.17
$5-8$	36.7	22.4
$1-2$	83.8	0
$3-4$	0	71.4
$5-6$	0	71.4
$7-8$	64.0	0

Static Markowitz Solution

| Find efficient frontier:

Results with Static Model

| Fixed proportion in stock and bonds in each period
। 80\% stock for 15\% return
| 40\% stock for 14\% return
| Results: no fixed proportion achieves target better than 50\% of time
D ynamic achieves target 87.5% of time

Analysis of Dynamic Model

- With discrete outcomes, p.1. utility:
- Optimal solution has number of investments equal to number of branches in each period
- Constrain the number of positive investments with the number of outcomes per period
- Impact of transaction fees and taxes
- Additional constraints
- Creates potential for more active investments in each period
- Additional constraints can be imposed with linearization (representation other variance information)

Other Model Gains

। Include transaction costs
-Fixed proportion requires transaction costs each period just to re-balance
-can accumulate
। M aintain consistent utility

Current Study

| Portfolios of major indexes
। Constructed efficient frontier
D eveloped decision tree form for stochastic program
G ains in basic model for stochastic program of 3-5\% over 10 periods

