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OUTLINE

Mean-variance versus other utility
functions

Discrete time, piecewise linear utility
*Policy structure
Enhanced models

Computation: abridged nested
decomposition



Static Portfolio Model

~Markowitz model

—Choose portfolio to minimize
risk for a given return

—Find the efficient frontier
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Markowitz M ean-V ariance model

= For a given set of assets, find

— fixed percentages to invest in each
asset

— maintain same percentage over time
= Needs

—rebalance as returns vary

— cash to meet obligations



Alternative Dynamic Model

= Assume possible outcomes over time
—discretize generally

= In each period, choose mix of assets

= Can Include transaction costs and taxes

=~ Can include liabilities over time

=~ Can Include different measures of risk
aversion



Example: Retirement Planning

« GOAL: Accumulate $G Y years from now

e ASSUME;
— $W(O0) - initial wealth
— K - Investments

— concave utility (piecewise linear)
Utility

/G W(Y)

Note: Similar to meeting atarget or benchmark




Formulation with No
Transactions Fees

o SCENARIOS: 227
— Probability, p(?)
— Groups, S, ..., Sg att
e MULTISTAGE STOCHASTIC NLP FORM:

max 2, pRUW(?,T))

s.t. (for all ?): ?, x(k,1, ?) =W(o) (initial)
?,. rkt-1, ?) x(k,t-1, ?) -?, x(k,t,?)= 0, all t >1;
?r(k,T-1, ?) x(k,T-1, ?) -W(? ,T) = 0, (final);

x(k,t, ?) >=0, all k,t;

Nonanticipativity:

x(k,t, ?") -x(k;t,?)= 0if ?", 2?28t for all t, i, ?", ?




DATA and SOLUTIONS

« ASSUME:

— Y=15years
— G=$80,000
— T=3 (5 year intervals)
— k=2 (stock/bonds)
e Returns (5 year):
— Scenario A: r(stock) = 1.25 r(bonds)= 1.14
— Scenario B: r(stock) = 1.06 r(bonds)=1.12

() . "
I%HIBBO”' SCENARIO STOCK BONDS

1 1-8 41.5 13.5

2 1-4 65.1 2.17
2 5-8 36.7 22.4
3 1-2 83.8 0

3 3-4 0 71.4
3 5-6 0 71.4
3 /-8 64.0 0



Static Markowitz Solution

~=FInd efficient frontier:
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Results with Static M odel

= Fixed proportion in stock and bonds In
each period

= 80% stock for 15% return
= 40% stock for 14% return

= Results: no fixed proportion achieves
target better than 50% of time

= Dynamic achieves target 87.5% of time



Analysis of Dynamic Modé€l

 With discrete outcomes, p.l. utility:

— Optimal solution has number of investments at most
equal to number of branchesin each period

— Constrain the number of positive investments with the

number of outcomes per period
e |mpact of transaction fees and taxes

— Additional constraints

— Creates potential for more active investmentsin each
period

— Additional constraints can be imposed with
lineari zation (representation other variance information)

— Number of constraints can be used to limit number of
|nvestments



Other Moddl Gains

~Can Include transaction costs

—Fixed proportion requires
transaction costs each period
just to re-balance

—can accumulate

e Can Include tax considerations

—Model size grows (lots of each
asset)

= Malintain consistent utility



Current Study

«~Portfolios of major indexes
=Constructed efficient frontier

«~Developed decision tree form for
stochastic program

~Galns In basic model for
stochastic program of 3-5% over 10
periods



Solution Procedure

e Goal:
— Take advantage of the problem structure
— Reduce solutions of similar problems

e Approach:

— Nested decomposition
— Include sampling of large tree



General Multistage Stochastic
Program

min ¢x ?Q,x, "
st. Wx, ? h
X, ? 0

r f’) ’) fD r r 7 r
Q Xeopax2!? 2 Prob?, Q,y Kooy anr P !
O ?t,k??t
r r . r r r r
\\/\Q Qt,k :Xt?l,a?k?’?t,k 7. min C, 'r?t,k Xt k ? Qt?l Kk

st.  Wix, ? ht??t,k??Tt?l?)t,k' 21,a%?
X k ? 0

Stage 1 Stage 2 Stage 3

* Qne10%y) = 0, for al xy,
@*6‘@—'63*@ o Qu(%.1.a0¢) IS apiecewise linear,

convex function of X, ;



Nested Decomposition

* In each subproblem, replace expected recourse function Q, (.
1.a(k) With unrestricted variable 7,
— Forward Pass:

» Starting at the root node and proceeding forward through the scenario tree,
solve each node subproblem

A Vd Vd . r r
D 27
Qt,k :X’['?La%?’?t,k :? mln Ct - t,k :Xt,k - t,k

St. VVtXt,k ? ht??t,k ?? Tt?l??t,k 3<1?1,a'ﬂ<?
E X« ?? ? &,  ptimality cuts?
Dy i X, ? d,  7feashility cuts?

?2 0
o Add feasihility cutsasi)r(ff'éasibiliti&sarise
— Backward Pass

» Starting in top node of Staget = N-1, use optimal dual values in descendant
Stage t+1 nodes to construct new optimality cut. Repeat for all nodesin
Staget, resolve al Staget nodes, thent — t-1.

— Convergence achieved when

r r
?, 7?7 QX!



Pereira-Pinto M ethod

 |ncorporates sampling into the general framework of
the Nested Decomposition algorithm

e Assumptions.
— relatively complete recourse
* no feasihility cuts needed

— serial independence

« an optimality cut generated for any Stage t node is valid for all
Stage t nodes

 Successfully applied to multistage stochastic water
resource problems



Pereira-Pinto M ethod

1. Randomly select H N-Stage scenarios

2. Starting at the root, aforward pass is made (7)) Sampled
through the sampled portion of the scenario tree Scenario #1
(solving ND subproblems) O<=——0O

3. A statistical estimate of the first stage objective O

value iscalculated using the total objective
value obtained irfeach sampled scenario

the algorithm terminates if current first stage &\

Sampled
Scenario #2

)

objectivevalue c x, + ?, iswithin a specified O
confidence interval of )

4. Starting in sampled node of Staget = N- =
1, solveall Stage t+1 descendant nodes () sampled
and construct new optimality cut. Scenario #3

Repeat for all sampled nodesin Staget,
then repeat for t=t-1



Pereira-Pinto M ethod

e Advantages

— significantly reduces computation by
eliminating alarge portion of the scenario tree
In the forward pass

e Disadvantages

— requires a complete backward pass on all
sampled scenarios
 not well designed for bushier scenario trees



Abridged Nested Decomposition

 Also incorporates sampling into the general
framework of Nested Decomposition

* Also assumes relatively complete recourse
and seria Independence

o Samples both the subproblems to solve and
the solutions to continue from in the
forward pass



Abridged Nested Decomposi})ion

Forward Pass
1. Solveroot node subproblem

2. Sample Stage 2 subproblems
and solve selected subset

3. Sample Stage 2 subproblem
solutions and branch in Stage
3 only from selected subset

(i.e., nodes 1 and 2) - = I —

4. For each selected Stage t-1 subproblem solution, sample Stage t
subproblems and solve selected subset

5. Sample Stage t subproblem solutions and branch in Stage t+1 only
from selected subset



Abridged Nested Decomposition

Backward Pass

1. Startingin first branching
node of Staget = N-1, solve
all Staget+1 descendant
nodes and construct new
optimality cut for all staget
subproblems. Repeat for all
sampled nodesin Staget,
thenrepeat for t=t-1 | . . ,

| | |
Stage 1 Stage 2 Stage 3 Stage 4

Convergence Test

1. Randomly select H N-Stage scenarios. For each sampled scenario, solve
subproblems from root to leaf to obtain total objective value for scenario

2. Calculate statistical estimate of the first stage objectivevalue  Z

— agorithm terminates if current first stage objective value c,x, + ?, iswithina
specified confidence interval of Z else, a new forward pass begins




Computational Results

|mplementation of Pereira & Pinto Method and Abridged
Nested Decomposition
— written in C, uses CPLEX to solve subproblems

Pereira & Pinto Method
— uses asample size of 30 for each problem

Abridged Nested Decomposition

— number of Stage t subproblems solved from each Stage t-1 branching
value: 15

— 1nitial number of Staget branching values: 2

* number of Stage t branching values increases with each failed convergence
test

Both methods terminate when first stage objective valueis
within one standard deviation of statistical estimate



Computational Results

e |nitia Test Problems

— Dynamic Vehicle Allocation (DVA) problems of various
sizes
 set of homogeneous vehicles move full loads between set of sites
« vehicles can move empty or loaded, remain stationary
» demand to move load between two sites is stochastic

— DVA.Xy.z
° X number of sites (8, 12, 16)
oy number of stages (4, 5)
° Z number of distinct realizations per stage (30, 45, 60, 75)

— largest problem has > 30 million scenarios



Computational Results (DVA.8)
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Computational Results (DVA.12)
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Computational Results (DVA.16)
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Additional Features for Portfolio

Problems

e Seria Independence
— Increments are generally serial
— Formulation is complex to address problem directly
— Slows computation speed

e Using structure

— Can still use structure but assume not correlation of
returns over time

— Currently under development



Conclusions

« Static portfolio models have problems with:
— benchmark targets
— transaction costs and taxes

e Dynamic stochastic programming models can
address difficulties
— variety of objectives
— can use structure to meet additional requirements

o Computation of large problems using
decomposition and special structure



