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OUTLINE

•Mean-variance versus other utility 
functions
•Discrete time, piecewise linear utility
•Policy structure
•Enhanced models
•Computation: abridged nested 
decomposition



Static Portfolio Model

?Markowitz model 
–Choose portfolio to minimize 

risk for a given return
–Find the efficient frontier

Return

Risk



Markowitz Mean-Variance model

?For a given set of assets, find
– fixed percentages to invest in each 

asset
– maintain same percentage over time

?Needs
– rebalance as returns vary
– cash to meet obligations



Alternative Dynamic Model

?Assume possible outcomes over time
– discretize generally

? In each period, choose mix of assets
?Can include transaction costs and taxes
?Can include liabilities over time
?Can include different measures of risk 

aversion



Example: Retirement Planning

• GOAL: Accumulate $G Y years from now
• Assume: 

– $ W(0) - initial wealth
– K - investments
– concave utility (piecewise linear)

G
W(Y)

Utility

Note: Similar to meeting a target or benchmark 



Formulation with No 
Transactions Fees

• SCENARIOS: ? ?? ??
– Probability, p(? )
– Groups, St

1, ..., St
St at t 

• MULTISTAGE STOCHASTIC NLP FORM:
max                         ? ? p(? ????U(W( ? , T) )
s.t. (for all ? ): ? k x(k,1, ? )                            = W(o)  (initial)

? k r(k,t-1, ? ) x(k,t-1, ? )  - ? k x(k,t, ? ) =  0 ,  all t >1;
? k r(k,T-1, ? ) x(k,T-1, ? ) - W( ? , T)   =  0, (final);

x(k,t, ? )    >= 0, all k,t;
Nonanticipativity:

x(k,t, ? ’)  - x(k,t, ? ) =  0 if ? ’, ? ?? ?St
i for all t, i, ? ’, ?

????????This says decision cannot depend on future.



DATA and SOLUTIONS
• ASSUME:

– Y=15 years
– G=$80,000
– T=3 (5 year intervals)
– k=2 (stock/bonds)

• Returns (5 year):
– Scenario A: r(stock) = 1.25   r(bonds)= 1.14
– Scenario B: r(stock) = 1.06   r(bonds)= 1.12

• Solution:
PERIOD SCENARIO STOCK BONDS

1 1-8 41.5 13.5
2 1-4 65.1 2.17
2 5-8 36.7 22.4
3 1-2 83.8 0
3 3-4 0 71.4
3 5-6 0 71.4
3 7-8 64.0 0



Static Markowitz Solution

?Find efficient frontier:
Return
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Results with Static Model

?Fixed proportion in stock and bonds in 
each period

? 80% stock for 15% return
? 40% stock for 14% return
?Results: no fixed proportion achieves 

target better than 50% of time
?Dynamic achieves target 87.5% of time



Analysis of Dynamic Model
• With discrete outcomes, p.l. utility:

– Optimal solution has number of investments at most 
equal to number of branches in each period 

– Constrain the number of positive investments with the 
number of outcomes per period

• Impact of transaction fees and taxes
– Additional constraints
– Creates potential for more active investments in each 

period
– Additional constraints can be imposed with 

linearization (representation other variance information)
– Number of constraints can be used to limit number of 

investments



Other Model Gains
?Can include transaction costs

– Fixed proportion requires 
transaction costs each period 
just to re-balance

– can accumulate
•Can include tax considerations

– Model size grows (lots of each 
asset)

?Maintain consistent utility



Current Study

?Portfolios of major indexes
?Constructed efficient frontier
?Developed decision tree form for 

stochastic program
?Gains in basic model for 

stochastic program of 3-5% over 10 
periods



Solution Procedure

• Goal:
– Take advantage of the problem structure
– Reduce solutions of similar problems

• Approach:
– Nested decomposition
– Include sampling of large tree



General Multistage Stochastic 
Program
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• QN+1(xN) = 0, for all xN,

• Qt,k(xt-1,a(k)) is a piecewise linear, 
convex function of xt-1,a(k)



Nested Decomposition
• In each subproblem, replace expected recourse function Qt,k(xt-

1,a(k)) with unrestricted variable ? t,k
– Forward Pass:

• Starting at the root node and proceeding forward through the scenario tree, 
solve each node subproblem

• Add feasibility cuts as infeasibilities arise
– Backward Pass

• Starting in top node of Stage t = N-1, use optimal dual values in descendant 
Stage t+1 nodes to construct new optimality cut.  Repeat for all nodes in 
Stage t, resolve all Stage t nodes, then t       t-1. 

– Convergence achieved when
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Pereira-Pinto Method
• Incorporates sampling into the general framework of 

the Nested Decomposition algorithm
• Assumptions:

– relatively complete recourse
• no feasibility cuts needed

– serial independence
• an optimality cut generated for any Stage t node is valid for all 

Stage t nodes

• Successfully applied to multistage stochastic water 
resource problems



Pereira-Pinto Method
1. Randomly select H N-Stage scenarios
2. Starting at the root, a forward pass is made 

through the sampled portion of the scenario tree 
(solving ND subproblems)

3. A statistical estimate of the first stage objective 
value     is calculated using the total objective 
value obtained in each sampled scenario

the algorithm terminates if current first stage 
objective value c1x1 + ?1 is within a specified 
confidence interval of

4. Starting in sampled node of Stage t = N-
1,  solve all Stage t+1 descendant nodes 
and construct new optimality cut.  
Repeat for all sampled nodes in Stage t, 
then repeat for        t = t - 1

Sampled
Scenario #1

Sampled
Scenario #2

Sampled
Scenario #3

z

z



Pereira-Pinto Method

• Advantages
– significantly reduces computation by 

eliminating a large portion of the scenario tree 
in the forward pass

• Disadvantages
– requires a complete backward pass on all 

sampled scenarios
• not well designed for bushier scenario trees



Abridged Nested Decomposition

• Also incorporates sampling into the general 
framework of Nested Decomposition

• Also assumes relatively complete recourse 
and serial independence

• Samples both the subproblems to solve and 
the solutions to continue from in the 
forward pass



Abridged Nested Decomposition

4. For each selected Stage t-1 subproblem solution, sample Stage t
subproblems and solve selected subset

5. Sample Stage t subproblem solutions and branch in Stage t+1 only 
from selected subset

1

2

3

4

5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Forward Pass
1. Solve root node subproblem

2. Sample Stage 2 subproblems
and solve selected subset

3. Sample Stage 2 subproblem
solutions and branch in Stage 
3 only from selected subset 
(i.e., nodes 1 and 2)



Abridged Nested Decomposition

Convergence Test
1. Randomly select H N-Stage scenarios.  For each sampled scenario, solve

subproblems from root to leaf to obtain total objective value for scenario
2. Calculate statistical estimate of the first stage objective value

– algorithm terminates if current first stage objective value c1x1 + ?1 is within a 
specified confidence interval of    ; else, a new forward pass begins
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Backward Pass
1. Starting in first branching 

node of Stage t = N-1,  solve 
all Stage t+1 descendant 
nodes and construct new 
optimality cut for all stage t
subproblems.  Repeat for all 
sampled nodes in Stage t, 
then repeat for t = t - 1

z

z



Computational Results
• Implementation of Pereira & Pinto Method and Abridged 

Nested Decomposition
– written in C, uses CPLEX to solve subproblems

• Pereira & Pinto Method
– uses a sample size of 30 for each problem

• Abridged Nested Decomposition
– number of Stage t subproblems solved from each Stage t-1 branching 

value: 15
– initial number of Stage t branching values: 2

• number of Stage t branching values increases with each failed convergence 
test

• Both methods terminate when first stage objective value is 
within one standard deviation of statistical estimate 



Computational Results
• Initial Test Problems

– Dynamic Vehicle Allocation (DVA) problems of various 
sizes

• set of homogeneous vehicles move full loads between set of sites
• vehicles can move empty or loaded, remain stationary
• demand to move load between two sites is stochastic

– DVA.x.y.z
• x number of sites (8, 12, 16)
• y number of stages (4, 5)
• z number of distinct realizations per stage (30, 45, 60, 75)

– largest problem has > 30 million scenarios



Computational Results (DVA.8)
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Computational Results (DVA.12)
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Computational Results (DVA.16)
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Additional Features for Portfolio 
Problems

• Serial independence
– Increments are generally serial
– Formulation is complex to address problem directly
– Slows computation speed 

• Using structure
– Can still use structure but assume not correlation of 

returns over time
– Currently under development



Conclusions

• Static portfolio models have problems with:
– benchmark targets
– transaction costs and taxes

• Dynamic stochastic programming models can 
address difficulties
– variety of objectives
– can use structure to meet additional requirements

• Computation of large problems using 
decomposition and special structure


