Introduction to Stochastic Optimization in Supply Chain and Logistic Optimization

John R. Birge
Northwestern University

Outline

• Overview
• Part I - Models
 • Vehicle allocation (integer linear)
 • Financial plans (continuous nonlinear)
 • Manufacturing and real options (integer nonlinear)
• Part II – Optimization Methods
Overview

• Stochastic optimization
 • Traditional
 • Small problems
 • Impractical
 • Current
 • Integrate with large-scale optimization (stochastic programming)
 • Practical examples
 • Expanding rapidly
 • Integration of financial and operation considerations

Vehicle Allocation

• Decision:
 • How to position empty freight cars?

NOW: DAY 1: DAY 2:

5 cars A ? A 2 A

0 cars B ? B 2 B

DEMAND: DAY 1: B to A: Mean Value=2
 DAY 1: A to B: Mean Value=2
Vehicle Allocation: Mean Value Solution

Parameters: COST: 0.5 per empty car from A to B
REVENUE: 1.5 per full car from B to A, 1 from A to B

• **Maximize**: Revenue-Cost

 » MOVE TWO EMPTY CARS FROM A to B

NOW:

<table>
<thead>
<tr>
<th></th>
<th>Day 1:</th>
<th>Day 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

5 cars: A
0 cars: B

RESULT: Net 2: A to B; Net 2: B to A
TOTAL(MV) = 4

Expectation of Mean Value

Suppose: Demand is Random (Expectation from A to B=2)

• 0 from A to B with prob. 1/3
• 3 from A to B with prob. 2/3

• **Find**: Expected (Revenue-Cost)

 » MOVE Two EMPTY CARS FROM A to B

NOW:

<table>
<thead>
<tr>
<th></th>
<th>Day 1:</th>
<th>Day 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

5 cars: A
0 cars: B

Expected Value:

Net 2: A to B;
Net 2: B to A (w.p. 2/3)
-1: B to A (w.p. 1/3)

TOTAL (EMV): 3
Stochastic Program Solution

Suppose: Demand is Random (as before)
GOAL: A solution to obtain highest expected value

- **Maximize: Expected (Revenue-Cost)**

```
Suppose: Demand is Random (as before)
GOAL: A solution to obtain highest expected value

• Maximize: Expected (Revenue-Cost)

NOW:
A
5 cars

MOVE Three EMPTY CARS FROM A to B
DAY 1:
A
2

DAY 2:
A
1

Expected Value:
Net 2: A to B;
Net 3: B to A (w.p. 2/3)
-1.5 : B to A (w.p. 1/3)
TOTAL (RP): 3.5
RP=Recourse Problem

Suppose: Demand is Random (as before)
GOAL: A solution to obtain highest expected value

• Maximize: Expected (Revenue-Cost)

NOW:
A
5 cars

MOVE Three EMPTY CARS FROM A to B
DAY 1:
A
2

DAY 2:
A
1

Expected Value:
Net 2: A to B;
Net 3: B to A (w.p. 2/3)
-1.5 : B to A (w.p. 1/3)
TOTAL (RP): 3.5
RP=Recourse Problem
```

INFORMATION and MODEL VALUE

• INFORMATION VALUE:
 • FIND Expected Value with Perfect Information or Wait-and-See (WS) solution:
 • Know demand: if 3, send 3 from A to B; If 0, send 0 from A to B:
 • Earn: 2 (AtoB) + (2/3) (3) + (1/3)0= 4 = WS
 • Expected Value of Perfect Information (EVPI):
 • EVPI = WS - RP = 4 - 3.5 = 0.5
 • Value of knowing future demand precisely
 • MODEL VALUE:
 • FIND EMV, RP
 • Value of the Stochastic Solution (VSS):
 • VSS = RP - EMV=3.5 - 3 = 0.5
 • Value of using the correct optimization model
INFORMATION/MODEL OBSERVATIONS

- EVPI and VSS:
 - ALWAYS >= 0 (WS >= RP >= EMV)
 - OFTEN DIFFERENT (WS=RP but RP > EMV and vice versa)
- FIT CIRCUMSTANCES:
 - COST TO GATHER INFORMATION
 - COST TO BUILD MODEL AND SOLVE PROBLEM
- MEAN VALUE PROBLEMS:
 - MV IS OPTIMISTIC (MV=4 BUT EMV=3, RP=3.5)
 - ALWAYS TRUE IF CONVEX AND RANDOM
 - CONSTRAINT PARAMETERS
 - VSS LARGER FOR SKEWED DISTRIBUTIONS/COSTS

STOCHASTIC PROGRAM

- ASSUME: Random demand on AB and BA
- GOAL: maximize expected profits
 - (risk neutral)
- DECISIONS: xij - empty from i to j
 - yij(s) - full from i to j in scenario s (RECOUSE)
 - (prob. p(s))
- FORMULATION:
 \[
 \text{Max} \ -0.5 \times AB + \sum_{s=1}^{s=2} p(s) \ (1.5 \times yAB(s) + 1.5 \times yBA(s))
 \]
 \[
 \text{s.t.} \quad x_{AB} + x_{AA} = 5 \quad \text{(Initial)}
 \]
 \[
 -x_{AB} + y_{BA}(s) \leq 0 \quad \text{(Limit BA)}
 \]
 \[
 -x_{AA} + y_{AB}(s) \leq 0 \quad \text{(Limit AB)}
 \]
 \[
 y_{BA}(s) \leq D_{BA}(s) \quad \text{(Demand BA)}
 \]
 \[
 y_{AB}(s) \leq D_{AB}(s) \quad \text{(Demand AB)}
 \]
 \[
 x_{AA}, x_{AB}, y_{AA}(s), y_{AB}(s) \geq 0
 \]
- EXTENSIONS: Multiple stages; Constraint/objective complexity (Powell et al.)
Financial Planning

- **GOAL:** Accumulate G for tuition Y years from now
- **Assume:**
 - $W(0)$ - initial wealth
 - K - investments
 - concave utility (piecewise linear)

Utility

\[
\begin{array}{c}
\text{G} \\
\text{W(Y)}
\end{array}
\]

RANDOMNESS: returns $r(k,t)$ - for k in period t

where $Y \rightarrow T$ decision periods

FORMULATION

- **SCENARIOS:** $\sigma \in \Sigma$
 - Probability, $p(\sigma)$
 - Groups, $S^1, ..., S^t$, at t
- **MULTISTAGE STOCHASTIC NLP FORM:**

\[
\begin{align*}
\max & \quad \sum_{\sigma} p(\sigma) \left(U(W(\sigma), T) \right) \\
\text{s.t.} \quad & (\text{for all } \sigma): \sum_{\sigma} x(k,1, \sigma) = W(\sigma) \text{ (initial)} \\
& \sum_{\sigma} r(k,t-1, \sigma) x(k,t-1, \sigma) - \sum_{\sigma} x(k,t, \sigma) = 0, \text{ all } t > 1; \\
& \sum_{\sigma} r(k,T-1, \sigma) x(k,T-1, \sigma) - W(\sigma, T) = 0, \text{ (final)}; \\
& x(k,t, \sigma) \geq 0, \text{ all } k,t;
\end{align*}
\]

Nonanticipativity:

\[
x(k,t, \sigma') - x(k,t, \sigma) = 0 \text{ if } \sigma', \sigma \in S^i \text{ for all } t, i, \sigma', \sigma
\]

This says decision cannot depend on future.
DATA and SOLUTIONS

- **ASSUME:**
 - \(Y = 15 \) years
 - \(G = 80,000 \)
 - \(T = 3 \) (5 year intervals)
 - \(k = 2 \) (stock/bonds)

- **Returns (5 year):**
 - Scenario A: \(r(\text{stock}) = 1.25 \) \(r(\text{bonds}) = 1.14 \)
 - Scenario B: \(r(\text{stock}) = 1.06 \) \(r(\text{bonds}) = 1.12 \)

- **Solution:**

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>SCENARIO</th>
<th>STOCK</th>
<th>BONDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-8</td>
<td>41.5</td>
<td>13.5</td>
</tr>
<tr>
<td>2</td>
<td>1-4</td>
<td>65.1</td>
<td>2.17</td>
</tr>
<tr>
<td>2</td>
<td>5-8</td>
<td>36.7</td>
<td>22.4</td>
</tr>
<tr>
<td>3</td>
<td>1-2</td>
<td>83.8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3-4</td>
<td>0</td>
<td>71.4</td>
</tr>
<tr>
<td>3</td>
<td>5-6</td>
<td>0</td>
<td>71.4</td>
</tr>
<tr>
<td>3</td>
<td>7-8</td>
<td>64.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Manufacturing Planning

- **Goal:**
 - Decide on coordinated production, distribution capacity and vendor contracts for multiple models in multiple markets (e.g., NA, Eur, LA, Asia)

- **Traditional approach**
 - Forecast demand for each model/market
 - Forecast costs
 - Obtain piece rates and proposals
 - Construct cash flows and discount

 ➡️ **Optimize for a single-point forecast**
 ➡️ **Missing option value of flexible capacity**
Real Options

• Idea: Assets that are not fully used may still have option value (includes contracts, licenses)
• Value may be lost when the option is exercised (e.g., developing a new product, invoking option for second vendor)
• Traditional NPV analyses are flawed by missing the option value
• Missing parts:
 • Value to delay and learn
 • Option to scale and reuse
 • Option to change with demand variation (uncertainty)
 • Not changing discount rates for varying utilizations

Real Option Valuation for Capacity

• Goal: Production value with capacity K
 • Compute uncapacitated value based on Capital Asset Pricing Model:
 • $S = e^{r(T-t)}c_T S_T dF(S_T)$
 • where c_T=margin,F is distribution (with risk aversion),
 • r is rate from CAPM (with risk aversion)
 • Assume S_t now grows at riskfree rate, r_f; evaluate as if risk neutral:
 • Production value = $S_t - C_t = e^{r_f(T-t)}c_T \min(S_T,K) dF_f(S_T)$
 • where F_f is distribution (with risk neutrality)
Generalizations for Other Long-term Decisions

- Model: period t decisions: x_t
- START: Eliminate constraints on production
 - Demand uncertainty remains
 - Can value unconstrained revenue with market rate, r
 \[\frac{1}{1+r^t} c_t x_t \]

IMPLICATIONS OF RISK NEUTRAL HEDGE:
Can model as if investors are risk neutral
\Rightarrow value grows at riskfree rate, r_f

Future value: \(\left[\frac{1}{1+r^t} c_t (1+r_f^t) x_t \right] \)

BUT: This new quantity is constrained

New Period t Problem: Linear Constraints on Production

- WANT TO FIND (present value):
 \[1/ \left(1+r_f^t \right) \max \left[c_t x_t (1+r_f^t)/(1+r^t) \mid A_t x_t (1+r_f^t)/(1+r^t) \leq b \right] \]

EQUIVALENT TO:

\[1/ \left(1+r^t \right) \max \left[c_t x \mid A_t x \leq b (1+r_f^t)/(1+r^t) \right] \]

MEANING: To compensate for lower risk with constraints, constraints expand and risky discount is used
Constraint Modification

- FORMER CONSTRAINTS: $A_t x_t \leq b_t$
- NOW: $A_t x_t (1+r_f)^t/(1+r)^t \leq b_t$

EXTREME CASES

All slack constraints:

\[
\frac{1}{(1+r)^t} \max \{ c_t x \mid A_t x \leq b (1+r)^t/(1+r_f)^t \}
\]

becomes equivalent to:

\[
\frac{1}{(1+r)^t} \max \{ c_t x \mid A_t x \leq b \}
\]

i.e. same as if unconstrained - risky rate

NO SLACK:

becomes equivalent to:

\[
\frac{1}{(1+r)^t} \{ c_t x = B^{-1}b (1+r)^t/(1+r_f)^t = c_t B^{-1}b/(1+r_f)^t \}
\]

i.e. same as if deterministic - riskfree rate
Example: Capacity Planning

- What to produce?
- Where to produce? (When?)
- How much to produce?

EXAMPLE: Models 1, 2, 3; Plants A, B

Should B also build 2?

Result: Stochastic Linear Programming Model

- Key: Maximize the Added Value with Installed Capacity
 - Must choose best mix of models assigned to plants
 - Maximize Expected Value over $s[\Sigma_i e^{rt} \text{Profit}(i) \cdot \text{Production}(i,t,s) - \text{CapCost}(i, t) \cdot \text{Capacity}(i, t)]$
 - subject to: $\Sigma_j \text{Production}(i, j, t) >= \Sigma_j \text{Production}(i, j, t, s)$
 - $\Sigma_j \text{Production}(i, j, t) <= e^{(r-f)b} \cdot \text{Capacity}(i, t)$
 - $\text{Production}(i, j, t) <= e^{(r-f)b} \cdot \text{Capacity}(i, t)$
 - $\text{Production}(i, j, t) >= 0$
- Need $\text{MaxSales}(i, t, s)$ - random
- $\text{Capacity}(i, j, 0)$ - Decision in First Stage (now)

NOTE: Linear model that incorporates risk
Result with Option Approach

- Can include risk attitude in linear model
- Simple adjustment for the uncertainty in demand
- **Requirement 1**: correlation of all demand to market
- **Requirement 2**: assumptions of market completeness

Outline

- Overview
- Part I - Models
 - Vehicle allocation (integer linear)
 - Financial plans (continuous nonlinear)
 - Manufacturing and real options (integer nonlinear)
- Part II – Optimization Methods
General Stochastic Programming Model: Discrete Time

• Find $x=(x_1, x_2, \ldots, x_T)$ and p (unknown distribution) to

\[
\begin{align*}
\text{minimize} & \quad \mathbb{E}_p \left[\sum_{t=1}^{T} f_t(x_t, x_{t+1}, p) \right] \\
\text{s.t.} & \quad x_t \in X_t, \quad \text{nonanticipative } p \text{ in } P \text{ (distribution class)} \\
& \quad P[h_t(x_t, x_{t+1}, p_{t+1}) \leq 0] \geq a \text{ (chance constraint)}
\end{align*}
\]

General Approaches:
• Simplify distribution (e.g., sample) and form a mathematical program:
 • Solve step-by-step (dynamic program)
 • Solve as single large-scale optimization problem
 • Use iterative procedure of sampling and optimization steps

Simplified Finite Sample Model

• Assume p is fixed and random variables represented by sample ξ_i^t for $t=1,2,\ldots,T$, $i=1,\ldots,N_t$ with probabilities p^i_t, $a(i)$ an ancestor of i, then model becomes (no chance constraints):

\[
\begin{align*}
\text{minimize} & \quad \sum_{t=1}^{T} \sum_{i=1}^{N_t} p^i_t f_i(x_{a(i)}^t, x_i^{t+1}, \xi_i^t) \\
\text{s.t.} & \quad x_i^t \in X_i^t
\end{align*}
\]

Observations?
• Problems for different i are similar – solving one may help to solve others
• Problems may decompose across i and across t yielding
 • smaller problems (that may scale linearly in size)
 • opportunities for parallel computation.
Outline

• Overview
• Part I - Models
• Part II – Optimization Methods
 • Factorization/sparsity (interior point/barrier)
 • Decomposition
 • Lagrangian methods
• Conclusions

SOLVING AS LARGE-SCALE MATHEMATICAL PROGRAM

• PRINCIPLES:
 • DISCRETIZATION LEADS TO MATHEMATICAL PROGRAM BUT LARGE-SCALE
 • USE STANDARD METHODS BUT EXPLOIT STRUCTURE
• DIRECT METHODS
 • TAKE ADVANTAGE OF SPARSITY STRUCTURE
 • SOME EFFICIENCIES
 • USE SIMILAR SUBPROBLEM STRUCTURE
 • GREATER EFFICIENCY
• SIZE
 • UNLIMITED (INFINITE NUMBERS OF VARIABLES)
 • STILL SOLVABLE (CAUTION ON CLAIMS)
STANDARD APPROACHES

• Sparsity Structure Advantage
 • PARTITIONING
 • BASIS FACTORIZATION
 • INTERIOR POINT FACTORIZATION

• Similar/Small Problem Advantage
 • DP APPROACHES: DECOMPOSITION
 • BENDERS, L-SHAPED (VAN SLYKE – WETS)
 • DANTZIG-WOLFE (PRIMAL VERSION)
 • REGULARIZED (RUSZCZYNSKI)
 • VARIOUS SAMPLING SCHEMES (HIGLE/SEN Stochastic Decomposition, Abridge Nested Decomposition)

• LAGRANGIAN METHODS

Sparsity Methods: Stochastic Linear Program Example

• Two-stage Linear Model:
 \[X_1 = \{ x_1 | A x_1 = b, x_1 \geq 0 \} \]
 \[f_0(x_0,x_1) = c x_1 \]
 \[f_1(x_1, x_2^i, \xi_2^i) = q x_2^i \text{ if } T x_1 + W x_2^i = \xi_2^i, \]
 \[x_2^i \geq 0; + \infty \text{ otherwise} \]

• Result:
 \[\text{min } c x_1 + \sum_{i=1}^{N1} p_2^i q x_2^i \]
 s. t. \[A x_1 = b, x_1 \geq 0 \]
 \[T x_1 + W x_2^i = \xi_2^i, x_2^i \geq 0 \]
LP-BASED METHODS

• USING BASIS STRUCTURE

\[
\begin{align*}
A & \quad W \\
T & \quad W \\
T & \quad W \\
T & \quad W
\end{align*}
\]

PERIOD 1 \quad PERIOD 2

INTERIOR POINT MATRIX STRUCTURE

\[
A'D^2A'T = A'
\]

COMPLETE FILL-IN

• MODEST GAINS FOR SIMPLEX

ALTERNATIVES FOR INTERIOR POINTS

• VARIABLE SPLITTING (MULVEY ET AL.)

• PUT IN EXPLICIT NONANTICIPATIVITY CONSTRAINTS

\[
\begin{align*}
\text{NEW} & \quad \text{NEW} \\
& \quad \text{NEW}
\end{align*}
\]

\[
= A'
\]

•RESULT

•REDUCED FILL-IN BUT LARGER MATRIX
OTHER INTERIOR POINT APPROACHES

• USE OF DUAL FACTORIZATION OR MODIFIED SCHUR COMPLEMENT

\[A^T D^2 A' = \]

RESULTS:
• SPEEDUPS OF 2 TO 20
• SOME INSTABILITY ⇔ INDEFINITE SYSTEM (VANDERBEI ET AL., CZYZYK ET AL.)

Outline

• Overview
• Part I - Models
• Part II – Optimization Methods
 • Factorization/sparsity (interior point/barrier)
 • Decomposition
 • Lagrangian methods
• Conclusions
SIMILAR/SMALL PROBLEM STRUCTURE: DYNAMIC PROGRAMMING VIEW

- **STAGES**: \(t=1,\ldots,T \)
- **STATES**: \(x_t \rightarrow B_t x_t \) (or other transformation)
- **VALUE FUNCTION**:
 \[
 Q_t(x_t) = E[Q_{t+1}(x_{t+1})] \]
 where \(\xi_t \) is the random element and
 \[
 Q_t(x_t, \xi_t) = \min f_t(x_t, x_{t+1}, \xi_t) + Q_{t+1}(x_{t+1})
 \]
 subject to \(x_{t+1} \in X_{t+1}(\xi_t) \) \(x_t \) given
- **SOLVE**: iterate from \(T \) to \(1 \)

LINEAR MODEL STRUCTURE

Stage 1 \quad Stage 2 \quad Stage 3

\[
\begin{align*}
\min & \quad c_1 x_1 + Q_2(x_2) \\
\text{s.t.} & \quad W_1 x_1 = h_1 \\
& \quad x_1 \geq 0 \\
Q_t(x_{t-1, a(k)}) &= \sum_{\xi, \xi\in \Xi_t} \text{prob} \left(\xi_{t, k} \mid Q_{t+1}(x_{t+1}) \right) \\
Q_{t, a(k)} &\left(x_{t-1, a(k)}, \xi_{t, k} \right) = \min \frac{c_t \left(\xi_{t, k} \right) x_{t, k} + Q_{t+1} \left(x_{t+1} \right) }{x_{t, k}} \\
\text{s.t.} & \quad W_{t, a(k)} x_{t, k} = h_t \left(\xi_{t, k} \right) - T_{t, a(k)} \left(\xi_{t, k} \right) x_{t-1, a(k)} \\
& \quad x_{t, k} \geq 0
\end{align*}
\]

- \(Q_{N+1}(x_N) = 0 \), for all \(x_N \),
- \(Q_{t, a(k)}(x_{t-1, a(k)}) \) is a piecewise linear, convex function of \(x_{t-1, a(k)} \)
DECOMPOSITION METHODS

- BENDERS IDEA
 - FORM AN OUTER LINEARIZATION OF Q_t
 - ADD CUTS ON FUNCTION:
 - Feasible region
 - (feasibility cuts)
 - LINEARIZATION AT ITERATION k
 - NEW CUT (OPTIMALITY CUT)
 - MIN AT $k : < Q_t$

- USE AT EACH STAGE TO APPROX. VALUE FUNCTION
- ITERATE BETWEEN STAGES UNTIL ALL MIN = Q_t

Nested Decomposition

- In each subproblem, replace expected recourse function $Q_{t,k}(x_{t-1,a(t)})$ with unrestricted variable $\theta_{t,k}$
 - Forward Pass:
 - Starting at the root node and proceeding forward through the scenario tree, solve each node subproblem
 - $\hat{Q}_{t,k}(x_{t-1,a(t)}, \xi_{t,k}) = \min_{x,k} c_j(\xi_{t,k})x_{t,k} + \theta_{t,k}$
 - s.t. $W_{t,k}x_{t,k} = h_j(\xi_{t,k}) - T_{t-1,1}(\xi_{t,k})x_{t-1,a(t)}$ (optimality cuts)
 - $E_{t,k}x_{t,k} + \theta_{t,k} \geq e_{t,k}$ (feasibility cuts)
 - $D_{t,k}x_{t,k} \geq d_{t,k}$
 - Add feasibility cuts as infeasibilities arise
 - Backward Pass
 - Starting in top node of Stage $t = N-1$, use optimal dual values in descendant Stage $t+1$ nodes to construct new optimality cut. Repeat for all nodes in Stage t, resolve all Stage t nodes, then $t \rightarrow t-1$.
 - Convergence achieved when $\theta_t = Q_t(x_t)$
SAMPLE RESULTS

- SCAGR7 PROBLEM SET

 ![Graph showing CPU vs. Variables for Standard LP and Nested Decomposition]

 Log (CPU)
 Log (No. of Variables)

 Parallel: 60-80% Efficiency in Speedup

 Other Problems: Similar Results
 - Only < Order of Magnitude Speedup with Storm
 - Two-stages, Little Commonality in Subproblems
 - Still able to solve Order of Magnitude Larger Problems

Decomposition Enhancements

- Optimal basis repetition
 - Take advantage of having solved one problem to solve others
 - Use *bunching* to solve multiple problems from root basis
 - *Share* bases across levels of the scenario tree
 - Use solution of single scenario as *hot start*

- Multicuts
 - Create cuts for each descendant scenario

- Regularization
 - Add quadratic term to keep close to previous solution

- Sampling
 - Stochastic decomposition (Higle/Sen)
 - Importance sampling (Infanger/Dantzig/Glynn)
 - Multistage (Pereira/Pinto, Abridged ND)
Pereira-Pinto Method

- Incorporates sampling into the general framework of the Nested Decomposition algorithm
- Assumptions:
 - relatively complete recourse
 - no feasibility cuts needed
 - serial independence
 - an optimality cut generated for any Stage t node is valid for all Stage t nodes
- Successfully applied to multistage stochastic water resource problems

1. Randomly select $H N$-Stage scenarios
2. Starting at the root, a forward pass is made through the sampled portion of the scenario tree (solving ND subproblems)
3. A statistical estimate of the first stage objective value is calculated using the total objective value obtained in each sampled scenario
 - the algorithm terminates if current first stage objective value $c_j x_j + \theta_j$ is within a specified confidence interval of
4. Starting in sampled node of Stage $t = N - 1$, solve all Stage $t + 1$ descendant nodes and construct new optimality cut.
 - Repeat for all sampled nodes in Stage t, then repeat for $t = t - 1$
Pereira-Pinto Method

• Advantages
 • significantly reduces computation by eliminating a large portion of the scenario tree in the forward pass

• Disadvantages
 • requires a complete backward pass on all sampled scenarios
 • not well designed for bushier scenario trees

Abridged Nested Decomposition

• Also incorporates sampling into the general framework of Nested Decomposition
• Also assumes relatively complete recourse and serial independence
• Samples both the subproblems to solve and the solutions to continue from in the forward pass
Abridged Nested Decomposition

Forward Pass
1. Solve root node subproblem
2. Sample Stage 2 subproblems and solve selected subset
3. Sample Stage 2 subproblem solutions and branch in Stage 3 only from selected subset (i.e., nodes 1 and 2)
4. For each selected Stage t-1 subproblem solution, sample Stage t subproblems and solve selected subset
5. Sample Stage t subproblem solutions and branch in Stage t+1 only from selected subset

Convergence Test
1. Randomly select \(H \) N-Stage scenarios. For each sampled scenario, solve subproblems from root to leaf to obtain total objective value for scenario
2. Calculate statistical estimate of the first stage objective value \(\bar{\xi} \)
 • algorithm terminates if current first stage objective value \(c_j x_j + \theta_j \) is within a specified confidence interval of \(\bar{\xi} \) else, a new forward pass begins

IMA Tutorial, Stochastic Optimization, September 2002

Backward Pass
1. Starting in first branching node of Stage \(t = N-1 \), solve all Stage \(t+1 \) descendant nodes and construct new optimality cut for all stage \(t \) subproblems. Repeat for all sampled nodes in Stage \(t \), then repeat for \(t = t - 1 \)

IMA Tutorial, Stochastic Optimization, September 2002
Sample Computational Results

• Test Problems
 • Dynamic Vehicle Allocation (DVA) problems of various sizes
 • set of homogeneous vehicles move full loads between set of sites
 • vehicles can move empty or loaded, remain stationary
 • demand to move load between two sites is stochastic
 • DVA_{x,y,z}
 • x: number of sites (8, 12, 16)
 • y: number of stages (4, 5)
 • z: number of distinct realizations per stage (30, 45, 60, 75)
 • largest problem has > 30 million scenarios

Computational Results (DVA.8)
Outline

• Overview
• Part I - Models
• Part II – Optimization Methods
 • Factorization/sparsity (interior point/barrier)
 • Decomposition
 • Lagrangian methods
• Conclusions

Lagrangian-based Approaches

• General idea:
 • Relax nonanticipativity
 • Place in objective
 • Separable problems

\[
\begin{align*}
\text{MIN} \quad & E \left[\sum_{t=1}^{T} f_t(x_t, x_{t+1}) \right] \\
\text{s.t.} \quad & x_t \in X_t \\
\quad & x_t \text{ nonanticipative}
\end{align*}
\]

\[
\begin{align*}
\text{MIN} \quad & E \left[\sum_{t=1}^{T} f_t(x_t, x_{t+1}) \right] \\
\quad & x_t \in X_t \\
\quad & x_t \text{ nonanticipative}
\end{align*}
\]

\[
E[wx] + r/2||x-x||^2
\]

Update: \(w_i \); Project: \(x \) into \(N \) - nonanticipative space as \(x \)

Convergence: Convex problems - Progressive Hedging Alg. (Rockafellar and Wets)
Advantage: Maintain problem structure (networks)
Lagrangian Methods and Integer Variables

- **Idea:** Lagrangian dual provides bound for primal but
 - Duality gap
 - PHA may not converge
- **Alternative:** standard augmented Lagrangian
 - Convergence to dual solution
 - Less separability
 - May obtain simplified set for branching to integer solutions
- **Problem structure:** Power generation problems
 - Especially efficient on parallel processors
 - Decreasing duality gap in number of generation units

Outline

- **Overview**
- **Part I - Models**
- **Part II – Optimization Methods**
 - Factorization/sparsity (interior point/barrier)
 - Decomposition
 - Lagrangian methods
- **Conclusions**
SOME OPEN ISSUES

• MODELS
 • IMPACT ON METHODS
 • RELATION TO OTHER AREAS
• APPROXIMATIONS
 • USE WITH SAMPLING METHODS
 • COMPUTATION CONSTRAINED BOUNDS
 • SOLUTION BOUNDS
• SOLUTION METHODS
 • EXPLOIT SPECIFIC STRUCTURE
 • MASSIVELY PARALLEL ARCHITECTURES
 • LINKS TO APPROXIMATIONS

CRITICISMS

• UNKNOWN COSTS OR DISTRIBUTIONS
 • FIND ALL AVAILABLE INFORMATION
 • CAN CONSTRUCT BOUNDS OVER ALL DISTRIBUTIONS
 • FITTING THE INFORMATION
 • STILL HAVE KNOWN ERRORS BUT ALTERNATIVE SOLUTIONS
• COMPUTATIONAL DIFFICULTY
 • FIT MODEL TO SOLUTION ABILITY
 • SIZE OF PROBLEMS INCREASING RAPIDLY
View Ahead

• New Trends
 • Methods for integer variables
 • Capacity, suppliers, contracts
 • Vehicle routing
 • Integrating simulation
 • Sampling with optimization
 • On-line optimization
 • Low-discrepancy methods

More Trends

• Modeling languages
 • Ability to build stochastic programs directly
 • Integrating across systems
• Using application structure
 • Separation of problem (dimension reduction)
 • Network properties
 • Generalized versions of convexity
Summary

- Increasing application base
- Value for solving the stochastic problem
- Efficient implementations
- Opportunities for new results