

Option Pricing and Capacity Expansion

John R. Birge University of Michigan

- Capacity expansion
- Basics for option evaluation
- Modeling as stochastic program
- Assumptions
- Toward resolving inconsistencies
- Conclusions

Capacity Expansion Problem

• Goal:

- Find an optimal sequence of decisions on where to expand or contract
- Problems:
 - How to measure objective?
 - Risk varies with decision
 - Discounted cash flow insufficient

Modeling Steps

- Identify problem
- Determine objectives
- Specify decisions
- Find operating conditions
- Define metrics
 - How to measure objectives?
 - How to quantify requirements, limits?
 - How to include effect of uncertainty?

- Formulate

Utility Function Approach

- Observation:
 - Most decision makers are adverse to risk
- Assume:
 - Outcomes can be described by a utility function
 - Decision makers want to maximize expected utility
- Difficulties:
 - Is the decision maker the sole stakeholder?
 - Whose utility should be used?
 - How to define a utility?
 - How to solve?
- Alternative to decision maker investor

Measuring Investor Value

- SUPPOSE RISK NEUTRAL?
- (expected cost) objective
 - RESULT: Does not correspond to preference
 - Difficult to assess real value this way
- **RESOLUTION**:
 - Assume investors prefer lower risk
 - Investors can diversify away unique risk
 - Only important risk is market contribution to portfolio
- CONSEQUENCE: Capital asset pricing model (CAPM)

Determing Risk Contribution

- USE CORRELATION?
 - Can measure for known markets (beta values)
 - If capacitated, depends on decisions
 - » Constrained resources
 - » Correlations among demands
- ALTERNATIVES?
 - Option Theory
 - » Allows for non-symmetric risk
 - » Explicitly considers constraints -
 - » As if selling excess to competitors at a given price

Capacity limits potential sales
View: option sold to competitor
RESULTS FROM FINANCE:

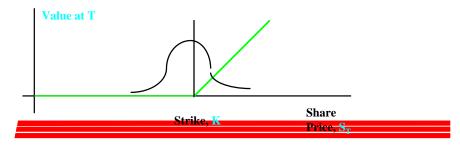
Assumption: risk free hedge

-Can evaluate as if risk neutral -As in Black-Scholes model

- •Steps in modeling:
 - Adjust revenue to risk-free equivalentDiscount at riskless rate

- (European) Call Option on Share assuming:
 - Buy at K at time T;Current time: t; Share price: S_t
 - Volatility: s; Riskfree rate: r_f; No fees; Price follows Ito process
- Valuing option:
 - Assume risk neutral world (annual return=r_f independent of risk)
 - Find future expected value and discount back by $\ensuremath{r_{\rm f}}$

```
Call value at \mathbf{t} = \mathbf{C}_{\mathbf{t}} = \mathbf{e}^{-\mathbf{r}} \mathbf{f}^{(T-t)} \check{\mathbf{U}}(\mathbf{S}_{T}\mathbf{K})^{+} \mathbf{d} \mathbf{F}_{\mathbf{f}}(\mathbf{S}_{T})
```



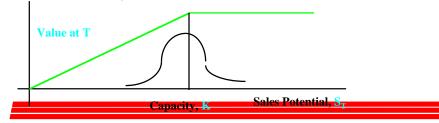
Relation to Capacity Evaluation

- What is the value of a plant with capacity K?
 - Discounted value of production up to K?
- Problems:
 - Production is limited by demand also (may be > K)
 - How to discount?
- Resolution:
 - Model as an option
 - Assume:
 - » Market for demand (substitutes)
 - » Forecast follows Ito process
 - » No transaction costs
- => Model like share minus call

- Goal: Production value with capacity K
 - Compute uncapacitated value based on CAPM:

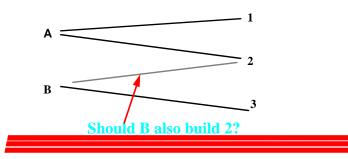
 $= e^{-r(T-t)} U_F S_T dF(S_T)$

- » where c_T=margin,F is distribution (with risk aversion),
- » r is rate from CAPM (with risk aversion)
- Assume S_t now grows at riskfree rate, r_f; evaluate as if risk neutral:
 - » Production value = $S_t C_t = e^{-r} f^{(T-t)} \acute{U}_T min(S_T, K) dF_f(S_T)$
 - » where F_f is distribution (with risk neutrality)



Example: Capacity Planning

- What to produce?
- Where to produce? (When?)
- How much to produce? EXAMPLE: Models 1,2, 3 ; Plants A,B



Stochastic Programming Model

- Key: Maximize the Added Value with Installed Capacity
 - Must choose best mix of models assigned to plants
 - Maximize Expected Value[S_{i,t} e⁻ⁿProfit (i) Production(i,t)
 - CapCost(i at j,t)Capacity (i at j,t)]
 - subject to: $MaxSales(i,t) \ge S_i$ Production(i at j,t)
 - S_i Production(i at j,t) $\pm e^{(r-rf)t}$ Capacity (i,t)
 - Production(i at j,t) $\pounds e^{(r-rf)t}$ Capacity (i at j,t)
 - Production(i at j,t) ≥ 0
- Need MaxSales(i,t) random
 - Capacity(i at j,0) Decision in First Stage (now)
- FIRST: Construct sales scenarios

Assumptions

- Process of prices or sales forecasts
- No transaction fees
- Complete market
 - How to construct a hedge?
 - If NPV>0, inconsistency
 - Process: Trade option and asset to create riskfree security

Creating Best Hedge

- Underlying asset: Max potential sales in market
- Option: Plant with given capacity
- Other marketable securities:
 - Competitors' shares
 - Overall all securities min residual volatility
 - Due to incompleteness, some volatility remains (otherwise, NPV=0)

Result of Residual Risk

 In binomial model, asset price moves from S_t to uS_t + v₁ or dS_t + v₂ where v₁ and v₂ vary independently and have smallest volatility

• For standard call option,

$$\begin{split} &C_t = [\ (S_t - d\ S_t + v_1) / (uS_t - dS_t + v_2\)\]\ (uS_t - K) \\ &= [(S_t - d\ S_t + v_1) / p(uS_t - dS_t + v_2)\]p\ (uS_t - K) \\ &= e^{-r(T-t)} (E[(S_t-K)^+]) \text{ where } r \text{ is in a range} \\ &determined \ by\ [v2,v1] \end{split}$$

Capacity Implication

- Can adjust capacity limits by varying discount factor with risk neutral assumptions on forecasts
- Can vary constraint multipliers with original forecast distribution
- All optimal policies for the given range are consistent

- Options apply to many capacity problems
- Can find simple modification with complete market assumptions
- Relaxed market assumptions lead to models with parametric constraints
- How to interpret this range of policies?