Comparison of Static and Dynamic Asset Allocation Models

John R. Birge
University of Michigan

Outline

- Basic Models
 - Static Markowitz mean-variance
 - Dynamic stochastic programming
- Difficulties in static model
- Example results
- Other tests
Static Model

- Markowitz model
 - Choose portfolio to minimize risk for a given return
 - Find the **efficient frontier**

 ![Graph](image)

Markowitz model

- For a given set of assets, find
 - fixed percentages to invest in each asset
 - maintain same percentage over time

- **Needs**
 - rebalance as returns vary
 - cash to meet obligations
Dynamic Model

- Assume possible outcomes over time
 - discretize generally
- In each period, choose mix of assets
- Can include transaction costs
- Can include liabilities over time
- Can include different measures of risk aversion

FORMULATION

- **SCENARIOS**: \(\sigma \in \Sigma \)
 - Probability, \(p(\sigma) \)
 - \(\Gamma_{t_1}, \ldots, \Gamma_{t_r}, S_{s_k} \) at \(t \)

MULTISTAGE STOCHASTIC NLP FORM:

\[
\begin{align*}
\text{max} & \quad \sum_{\sigma} p(\sigma) \left(U(W(\sigma, T)) \right) \\
\text{s.t.} (\text{for all } \sigma) & \quad \sum_k x(k, 1, \sigma) = W(\sigma) \quad \text{(initial)} \\
& \quad \sum_k r(k, t-1, \sigma) x(k, t-1, \sigma) - \sum_k x(k, t, \sigma) = 0, \quad \text{all } t > 1; \\
& \quad \sum_k r(k, T-1, \sigma) x(k, T-1, \sigma) - W(\sigma, T) = 0, \quad \text{(final)}; \\
& \quad x(k, t, \sigma) \geq 0, \quad \text{all } k, t; \\
\end{align*}
\]

Nonanticipativity:

\[
\begin{align*}
x(k, t, \sigma') - x(k, t, \sigma) = 0 \quad \text{if } \sigma', \sigma \in S_i, \text{for all } t, i, \sigma', \sigma
\end{align*}
\]

This says decision cannot depend on future.
GENERAL MULTISTAGE MODEL

FORMULATION:

\[
\begin{align*}
\text{MIN} & \quad E \left[\sum_{t=1}^T f_t(x_t,x_{t+1}) \right] \\
\text{s.t.} & \quad x_t \in X_t \\
& \quad x_t \text{ nonanticipative} \\
& \quad P[h_t(x_t,x_{t+1}) \leq 0] \geq a \text{ (chance constraint)}
\end{align*}
\]

EXAMPLES:

- **Vehicle Allocation:** Linear functions, continuous or integer variables
- **Capacity:** Linear plus integer variables
- **Financial Planning:** Nonlinear objective, continuous variables

Problems in Static Approach

- **Utility form**
 - Not consistent over multiple periods
 - If near end, may be conservative
 - Different behavior at beginning
- **Transaction costs**
 - Missing actual needs over time - target utility
Financial Planning

- **GOAL:** Accumulate G for tuition Y years from now
- **Assume:**
 - $W(0)$ - initial wealth
 - K - investments
 - concave utility (piecewise linear)

![Utility diagram]

RANDOMNESS: returns $r(k,t)$ - for k in period t

where Y = decision period

DATA and SOLUTIONS

- **ASSUME:**
 - $Y=15$ years
 - $G=$80,000
 - $T=3$ (5 year intervals)
 - $k=2$ (stock/bonds)

- Returns (5 year):
 - Scenario A: r(stock) = 1.25 r(bonds)= 1.14
 - Scenario B: r(stock) = 1.06 r(bonds)= 1.12

- Solution:

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>SCENARIO</th>
<th>STOCK</th>
<th>BONDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-8</td>
<td>41.5</td>
<td>13.5</td>
</tr>
<tr>
<td>2</td>
<td>1-4</td>
<td>65.1</td>
<td>2.17</td>
</tr>
<tr>
<td>2</td>
<td>5-8</td>
<td>36.7</td>
<td>22.4</td>
</tr>
<tr>
<td>3</td>
<td>1-2</td>
<td>83.8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3-4</td>
<td>0</td>
<td>71.4</td>
</tr>
<tr>
<td>3</td>
<td>6-8</td>
<td>0</td>
<td>71.4</td>
</tr>
<tr>
<td>3</td>
<td>7-8</td>
<td>64.0</td>
<td>0</td>
</tr>
</tbody>
</table>

J.R. Birge, Industrial and Operations Engineering
University of Michigan
Static Markowitz Solution

- Find efficient frontier:

 ![Efficient Frontier Diagram]

Results with Static Model

- Fixed proportion in stock and bonds in each period
- 80% stock for 15% return
- 40% stock for 14% return
- Results: no fixed proportion achieves target better than 50% of time
- Dynamic achieves target 87.5% of time
Other Model Gains

- Include transaction costs
 - Fixed proportion has 0.1% per period just to re-balance
 - can accumulate
- Maintain consistent utility

Current Study

- Portfolios of major indexes
- Constructed efficient frontier
- Developed decision tree form for stochastic program
- Gains in basic model for stochastic program of 3-5% over 10 periods
Summary

- Static models have real problems for dynamic problems
- Biggest gains may be in ability to change positions over time
- Large study on indices to continue