Introduction to Stochastic Programming

John R. Birge Northwestern University

CUSTOM Conference, December 2001

1

Outline

- Overview
- Examples
 - Vehicle Allocation
 - Financial planning
 - Manufacturing
- Methods
- · View ahead

CUSTOM Conference, December 2001

Overview

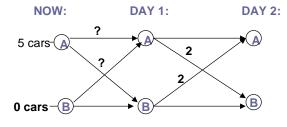
- Stochastic optimization
 - Traditional
 - Small problems
 - Impractical
 - Current
 - Integrate with large-scale optimization (stochastic programming)
 - Practical examples
 - Expanding rapidly

CUSTOM Conference, December 2001

3

Vehicle Allocation

- Decision:
 - How to position empty freight cars?



DEMAND: DAY 1: B to A:Mean Value=2
DAY 1: A to B:Mean Value=2

CUSTOM Conference, December 2001

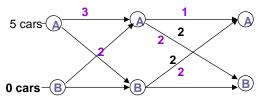
Vehicle Allocation: Mean Value Solution

Parameters: COST: 0.5 per empty car from A to B REVENUE: 1.5 per full car from A to B

Maximize: Revenue-Cost

» MOVE TWO EMPTY CARS FROM A to B **DAY 2:**

NOW: **DAY 1:**



Net 2: A to B; Net 2: B to A **RESULT:** TOTAL(MV) = 4

CUSTOM Conference, December 2001

5

Expectation of Mean Value

Suppose: Demand is Random (Expectation from A to B=2)

- 0 from A to B with prob. 1/3
- 3 from A to B with prob. 2/3
 Find: Expected (Revenue-Cost)
 - » MOVE Two EMPTY CARS FROM A to B

NOW: **DAY 2:** 5 cars (A) 3 (w.p.2/3) 0 cars—B

Expected Value:

Net 2: A to B; Net 2: B to A (w.p. 2/3) -1: B to A (w.p. 1/3) TOTAL (EMV): 3

CUSTOM Conference, December 2001

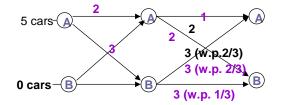
Stochastic Program Solution

Suppose: Demand is Random (as before)

GOAL: A solution to obtain highest expected value

Maximize: Expected (Revenue-Cost)

» MOVE Three EMPTY CARS FROM A to B NOW: DAY 1: Expected Value:



Net 2: A to B; Net 3: B to A (w.p. 2/3) -1.5: B to A (w.p. 1/3) TOTAL (RP): 3.5 RP=Recourse Problem

CUSTOM Conference, December 2001

7

INFORMATION and MODEL VALUE

- INFORMATION VALUE:
 - FIND Expected Value with Perfect Information or Wait-and-See (WS) solution:
 - Know demand: if 3, send 3 from A to B; If 0, send 0 from A to B:
 - Earn: 2 (AtoB) + (2/3) (3) + (1/3)0 = 4 = WS
 - Expected Value of Perfect Information (EVPI):
 - EVPI = WS RP = 4 3.5 = 0.5
 - · Value of knowing future demand precisely
- MODEL VALUE:
 - FIND EMV, RP
 - Value of the Stochastic Solution (VSS):
 - VSS = RP EMV = 3.5 3 = 0.5
 - · Value of using the correct optimization model

CUSTOM Conference, December 2001

INFORMATION/MODEL OBSERVATIONS

- EVPI and VSS:
 - ALWAYS >= 0 (WS >= RP >= EMV)
 - OFTEN DIFFERENT (WS=RP but RP > EMV and vice versa)
 - FIT CIRCUMSTANCES:
 - COST TO GATHER INFORMATION
 - COST TO BUILD MODEL AND SOLVE PROBLEM
- MEAN VALUE PROBLEMS:
 - MV IS OPTIMISTIC (MV=4 BUT EMV=3, RP=3.5)
 - ALWAYS TRUE IF CONVEX AND RANDOM
 - CONSTRAINT PARAMETERS
 - VSS LARGER FOR SKEWED DISTRIBUTIONS/COSTS

CUSTOM Conference, December 2001

9

STOCHASTIC PROGRAM

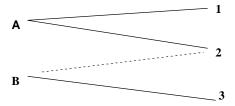
- · ASSUME: Random demand on AB and BA
- GOAL: maximize expected profits
 - (risk neutral)
- DECISIONS: x_{ii} empty from i to j
 - $y_{ij}(s)$ full from i to j in scenario s (RECOURSE)
 - (prob. p(s))
- FORMULATION:

```
\begin{array}{lll} \text{Max -0.5xAB} + \Sigma_{s=s1,s2} \, p(s) \, \left(1.5 \, \text{yAB(s)} + 1.5 \, \text{yBA(s)} \right) \\ \text{s.t.} & \text{xAB} & + \text{xAA} & = 5 \, \left( \text{Initial} \right) \\ -\text{xAB} & + \text{yBA(s)} <= 0 \, \left( \text{Limit BA} \right) \\ -\text{xAA} & + \text{yAB(s)} & <= 0 \, \left( \text{Limit AB} \right) \\ & \text{yBA(s)} <= \text{DBA(s)} \, \left( \text{Demand BA} \right) \\ & + \text{yAB(s)} <= \text{DAB(s)} \, \left( \text{Demand AB} \right) \\ & \text{xAA, XAB, yAA(s), yAB (s)} >= 0 \\ \\ \text{EXTENSIONS: Multiple stages; Constraint/objective} \\ \text{complexity (Powell et al.)} \end{array}
```

CUSTOM Conference, December 2001

Manufacturing Capacity

 Where to Install Capacity for Different Models among Different Plants?



Where to add flexibility? (multiple models)

CUSTOM Conference, December 2001

11

Recourse Payoff Evaluation

Key: Evaluate Expected Optimal with Installed Capacity

Must choose best mix of models assigned to plants Maximize Σ i Profit (i) Production(i) subject to: MaxSales(i) >= Σ j Production(i at j) Σ i Production(i at j) <= Capacity (i) Production(i at j) <= Capacity (i at j) Production(i at j) >= 0

- Transportation Problem
- Need MaxSales(i) random unknown distribution
 - Capacity(i at j) Decision in First Stage

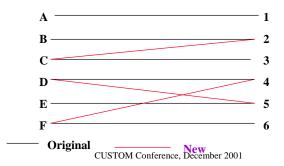
CUSTOM Conference, December 2001

Solution Results

• Model Data: from Graves/Jordan

Vary: Model Lifetimes
 Longer => More flexibility

• Start: 1 Year



13

Financial Planning

- GOAL: Accumulate \$G for tuition Y years from now
- Assume
 - W(0) initial wealth
 - K investments
 - concave utility (piecewise linear)

RANDOMNESS: returns r(k,t) - for k in period t where Y T decision periods CUSTOM Conference, December 2001

FORMULATION

- SCENARIOS: $\sigma \in \Sigma$
 - Probability, $p(\sigma)$
 - Groups, S_1^t , ..., S_{St}^t at t
- MULTISTAGE STOCHASTIC NLP FORM:

 $x(k,t,\sigma')$ - $x(k,t,\sigma)$ = 0 if σ' , $\sigma \in S^t_i$ for all t,i,σ',σ This says decision cannot depend on future.

CUSTOM Conference, December 2001

15

DATA and SOLUTIONS

- ASSUME:
 - Y=15 years
 - G=\$80,000
 - T=3 (5 year intervals)
 - k=2 (stock/bonds)
- Returns (5 year):
 - Scenario A: r(stock) = 1.25 r(bonds)= 1.14
 - Scenario B: r(stock) = 1.06 r(bonds)= 1.12

•	Solution: PERIOD	SCENARIO	STOCK	BONDS
	1	1-8	41.5	13.5
	2	1-4	65.1	2.17
	2	5-8	36.7	22.4
	3	1-2	83.8	0
	3	3-4	0	71.4
	3	5-6	0	71.4
	3	7-8	64.0	0

CUSTOM Conference, December 2001

GENERAL MULTISTAGE MODEL

• FORMULATION:

```
\label{eq:minimizer} \begin{split} \text{MIN} \quad & \text{E} \left[ \left. \sum_{t=1}^{T} f_t(x_t, x_{t+1}) \right. \right] \\ \text{s.t.} \quad & x_t \in X_t \\ & x_t \quad \text{nonanticipative} \\ & \text{P} \left[ \left. h_t \left( x_t, x_{t+1} \right) <= 0 \right. \right] >= a \left. \text{(chance constraint)} \right. \end{split}
```

EXAMPLES:

Vehicle Allocation: Linear functions, continuous or

integer variables

Capacity: Linear plus integer variables

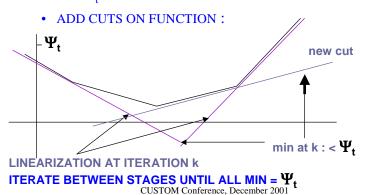
Financial Planning: Nonlinear objective, continuous variables

CUSTOM Conference, December 2001

17

DECOMPOSITION METHODS

- BENDERS IDEA
 - FORM AN OUTER LINEARIZATION OF Ψ_t VALUE FUNCTION AT STAGE t



DECOMPOSITION IMPLEMENTATION

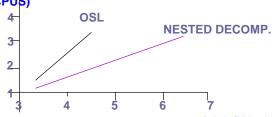
- NESTED DECOMPOSITION
 - LINEARIZATION OF VALUE FUNCTION AT EACH STAGE
 - DECISIONS ON WHICH STAGE TO SOLVE, WHICH PROBLEMS AT EACH STAGE
- LINEAR PROGRAMMING SOLUTIONS
 - USED OSL/CPLEX FOR LINEAR SUBPROBLEMS
 - USE MINOS FOR NONLINEAR PROBLEMS
- PARALLEL IMPLEMENTATION

CUSTOM Conference, December 2001

19

RESULTS

• SCAGR7 PROBLEM SET



LOG (NO. OF VARIABLES)

PARALLEL: 60-80% EFFICIENCY IN SPEEDUP

OTHER PROBLEMS: SIMILAR RESULTS

- ONLY < ORDER OF MAGNITUDE SPEEDUP WITH STORM
- TWO-STAGES LITTLE COMMONALITY IN SUBPROBLEMS
- STILL ABLE TO SOLVE ORDER OF MAGNITUDE LARGER PROBLEMS

CUSTOM Conference, December 2001

View Ahead

- New Trends
 - Methods for integer variables
 - Power system implementations
 - Vehicle routing
 - Integrating simulation
 - Sampling with optimization
 - On-line optimization
 - Low-discrepancy methods

CUSTOM Conference, December 2001

21

More Trends

- Modeling languages
 - Ability to build stochastic programs directly
 - Integrating across systems
- Using application structure
 - Separation of problem (dimension reduction)
 - Network properties
 - Generalized versions of convexity

CUSTOM Conference, December 2001

Summary

- Increasing application base
- Value for solving the stochastic problem
- Efficient implementations
- Opportunities for new results

CUSTOM Conference, December 2001