Stochastic Optimization Models with Fixed Costs

John R. Birge
University of Michigan

Outline

- Examples
- Finance
- Manufacturing
- Power systems
- General Formulation
- Statement
- Optimality conditions
- Lagrangian Approach
- Duality gap
- Effect of increasing sample paths
- Computational Results
- Summary

Tracking a Security/Index

- GOAL: Create a portfolio of assets that follows another security or index with maximum deviation above the underlying asset

Asset Tracking Decisions

- Pool of Assets:
- TBills
- GNMAs, Other mortgage-backed securities
- Equity issues
- Underlying Security:
- Mortgage index
- Equity index
- Bond index
- How much to hold of each asset at each point in time?

Traditional Approach

- Constant Proportions:
- Keep a fixed proportion of portfolio in each asset
- Find the proportion in $i(u(i))$ that maximizes expected value for a single period
- Formulation:
$\operatorname{Max} \mathrm{E}_{\mathrm{s}}[\mathrm{x}(\mathrm{t},+)]$
s.t. $x(t,+)-x(t,-)=w(t-1) \Sigma_{i} u(i)(1+r(i, s))-y(s)$
$\Sigma_{\mathrm{i}} \mathbf{u}(\mathrm{i})=, \mathbf{u}, \mathbf{x} \geq \mathbf{0}$
where $w(t-1)$ is total value, $r(i, s)$ is return, $y(s)$ is underlying price under scenario s

Problems with Tradition

- MODEL: variant of Markowitz model
- SOLUTION: Nonlinear optimization
- PROBLEMS:
- Must rebalance each period
- Must pay transaction costs
- RESOLUTION:
- Make transaction costs explicit
- Include in dynamic model

Model with Transaction Costs

- FORMULATION:
$\operatorname{Max} E_{s}[x(T,+)]$
s.t. $\mathbf{x}(\mathrm{t},+)-\mathbf{x}(\mathrm{t},-)=\sum_{\mathrm{i}} \mathbf{u}(\mathrm{t}-1, \mathrm{i}, \mathrm{s})(1+r(\mathrm{t}-1, \mathrm{i}, \mathrm{s}))-\mathrm{y}(\mathrm{s})$
$\Sigma_{\mathrm{i}} \mathrm{u}(\mathrm{t}-2, \mathrm{i}, \mathrm{s})(1+\mathrm{r}(\mathrm{t}-2, \mathrm{i}, \mathrm{s}))=\Sigma_{\mathrm{i}} \mathrm{u}(\mathrm{t}-1, \mathrm{i}, \mathrm{s})$
$\mathrm{u}, \mathrm{x} \geq 0$
U is
Decisions only depend on the past and not on the specific scenario path s

Manufacturing to Meet Demand

- GOAL: Minimize the total cost of meeting demand, d, for products 1..n
- DECISIONS: Determine amount of each product to produce with each (limited) resource (machines)
- COSTS:
- Inventory (overproduce)
- Shortage (underproduce)

Manufacturing Formulation

- FORMULATION:

Min $E_{s}[h(t) x(t,+)+p(t) x(t,-)+J(u(t), s)]$
s.t. $x(t,+)-x(t,-)=x(t-1,+)-x(t-1,-)+$
$\Sigma_{\mathrm{i}} \mathrm{u}(\mathrm{t}-1, \mathrm{i}, \mathrm{s})(\mathrm{r}(\mathrm{t}-1, \mathrm{i}, \mathrm{s}))-\mathrm{d}(\mathrm{s})$
$\Sigma_{\mathrm{i}} \mathrm{g}(\mathrm{t}-1, \mathrm{i}, \mathrm{s}, \mathrm{j}) \mathrm{u}(\mathrm{t}-1, \mathrm{i}, \mathrm{s}) \leq 1$ (resource limits)
$\mathrm{u}, \mathrm{x} \geq 0$
U is NONANTICIPATIVE
(OFTEN

- DIFFERENCES: Need inventory (memory)
- Discrete decisions

Power Systems

- GOAL: Minimize the overall cost to meet power load over a given time horizon
- DECISIONS: Determine the set of units to commit and their levels of operation (which plants on Automatic Generation Control)
- RESTRICTIONS:
- Must maintain load
- Meet safety requirement
- Ramping times, switching limits

Power System Formulation

STOCHASTIC NONLINEAR INTEGER MODEL:

$$
\begin{aligned}
& \text { min } \\
& \Sigma_{\mathrm{s}} \mathrm{p}(\mathrm{~s})\left(\Sigma_{\mathrm{I}} \Sigma_{\mathrm{T}} \mathrm{f}_{\mathrm{i}}(\mathrm{x}(\mathrm{t}, \mathrm{i}, \mathrm{~s}), \mathrm{u}(\mathrm{t}, \mathrm{i}, \mathrm{~s}))\right. \\
& \text { s.t. (for all s): } \quad \Sigma_{k} \mathbf{x}(\mathrm{t}, \mathrm{i}, \mathrm{~s}) \geq \mathbf{d}(\mathrm{t}), \mathrm{t}=1 . . \mathrm{T}, \mathrm{x}(\mathrm{t}, \mathrm{i}, \mathrm{~s}) \text { in } \mathrm{X}(\mathrm{t}, \mathrm{i}, \mathrm{~s}, \mathrm{u}) \\
& \mathrm{u}(\mathrm{t}, \mathrm{i}, \mathrm{~s}) \text { integer, } \mathrm{X}(\mathrm{t}, \mathrm{i}, \mathrm{~s}) \quad \geq 0, \text { all } \mathrm{i}, \mathrm{t} \text {; } \\
& \text { Nonanticipativity: } \\
& E_{s^{\prime}} \mathbf{x}\left(k, t, s^{\prime}\right)-x(k, t, s)=0 \text { if } s^{\prime}, s \in S_{i}^{t} \text { for all } t, i, s \\
& \text { This says decision cannot depend on future. }
\end{aligned}
$$

Outline

- Examples
- Finance
- Manufacturing
- Power systems
- General Formulation
- Statement
- Optimality conditions
- Lagrangian Approach
- Duality gap
- Effect of increasing sample paths
- Computational Results
- Summary

GENERAL MULTISTAGE MODEL

- FORMULATION:

MIN $E\left[\Sigma_{t=1}^{\top} f_{t}\left(x_{t}, x_{t+1}\right)\right]$
s.t.
$X_{t} \in X_{t}$
X_{t} nonanticipative $P\left[h_{t}\left(x_{t} x_{t+1}\right) \leq 0\right] \geq a$ (chance constraint)

DEFINITIONS:
X_{t} - aggregate production
$\mathbf{f}_{\mathbf{t}}$ - defines transition - only if resources available and includes subtraction of demand

DYNAMIC PROGRAMMING VIEW

- STAGES: $t=1, \ldots, T$
- STATES: $\mathrm{x}_{\mathrm{t}} \rightarrow \mathrm{B}_{\mathrm{i}} \mathrm{x}_{\mathrm{t}}$ (or other transformation)
- VALUE FUNCTION:
$\angle \Psi_{t}\left(x_{t}\right)=E\left[\psi_{t}\left(x_{t}, \xi_{t}\right)\right]$ where
$\angle \xi_{t}$ is the random element and
$\angle \psi_{t}\left(x_{t} \xi_{t}\right)=\min f_{t}\left(x_{t}, x_{t+1}, \xi_{t}\right)+\Psi_{t+1}\left(x_{t+1}\right)$
$-\quad$ s.t. $x_{t+1} \in X_{t+11}\left(\xi_{\mathrm{t}}\right) \quad x_{\mathrm{t}}$ given
- FREQUENT ASSUMPTIONS:
- CONVEXITY
- EARLY AND LATENESS PENALTIES

PRODUCTION SCHEDULING RESULTS

- OPTIMALITY:
- CAN DEFINE OPTIMALITY CONDITIONS
- DERIVE SUPPORTING PRICES
- CYCLIC SCHEDULES:
- OPTIMAL IF STATIONARY OR CYCLIC DISTRIBUTIONS
- MAY INDICATE KANBAN/CONWIP TYPE OPTIMALITY
- TURNPIKE: (Birge/Dempster)
- FROM OTHER DISRUPTIONS:
- RETURN TO OPTIMAL CYCLE
- LEADS TO MATCH-UP FRAMEWORK

Outline

- Examples
- Finance
- Manufacturing
- Power systems
- General Formulation
- Statement
- Optimality conditions
- Duality gap
- Effect of increasing sample paths
- Computational Results
- Summary

Lagrangian-based Approaches

- General idea:
- Relax nonanticipativity
- Place in objective
- Separable problems
$\begin{array}{lc}\text { MIN } & E\left[\Sigma_{t=1}^{\top} f_{t}\left(x_{t}, x_{t+1}\right)\right] \\ \text { s.t. } & X_{t} \in X_{t}\end{array}$ x_{t} nonanticipative

Lagrangian Methods and Integer Variables

- Idea: Lagrangian dual provides bound for primal but
- Duality gap
- PHA may not converge

Alternative: standard augmented Lagrangian

- Convergence to dual solution
- Less separability
- Duality gap decreases to zero as number of scenarios increases
$-E_{s^{\prime}} \mathbf{u}\left(k, t, s^{\prime}\right)-u(k, t, s)=0$ if $s^{\prime}, s \in S_{i}^{t}$ for all t, i,
Power generation
problems
- Especially efficient on parallel processors

Outline

- Examples
- Finance
- Manufacturing
- Power systems
- General Formulation
- Statement
- Optimality conditions
- Lagrangian Approach
- Duality gap
- Effect of increasing sample paths
- Summary

NEW RESULTS

- BOUND ON ERROR in POWER SYSTEMS
- SIMILAR TO LAGRANGIAN RELAXATION (BERTSEKAS)
- GOES TO ZERO AS PROBLEM SIZE INCREASES
- DIFFERENCE FROM LAGRANGIAN RESULTS
- NOT IN NUMBER OF UNITS
- JUST IN NUMBER OF SCENARIOS
- IMPLICATION
- AS MORE SCENARIOS INCLUDED, CLOSER TO OPTIMAL
- MORE COMPUTATION POWER IMPLIES REAL CONVERGENCE
- NOT ARTIFICIAL IN NO. OF UNITS

COMPUTATIONAL RESULTS

- DATA:
- SEVERAL YEARS OF MICHIGAN DATA
- USED SEVERAL PERIODS IN YEAR
- SCENARIOS
- POSSIBLE YEARS (CLOSE FIT)
- HISTORICAL SUPPLY LOSS PATTERNS

IMPLEMENTATION

- RS6000 WORKSTATION (PLUS PARALLEL)
- IN C
- MOST SOLUTIONS FOR 60 UNITS IN 1 MINUTE

CHALLENGES

- DIFFICULTIES
- PUMP STORAGE FACILITY LINKING PERIODS IN WEEK
- LARGE GENERATORS WITH FAILURES
- DEMAND VOLATILITY
- COMPARISONS
- COMPARED TO CURRENT PRACTICE OF "CLOSEST WEEK"
- RESULTS:
" SAVINGS IN EXPECTED COST BY INCLUDING
» RANDOM OUTCOMES:

Summary

- MODELS:
- Wide variety
- Often critical factor for discrete variables
- Need to include dynamics/transient behavior
- SOLUTIONS:
- Use of Lagrangian
- Decreasing duality gap in sample size
- Direct parallel implementation
- Efficient solutions with improvement over existing methods

