









### Constant Proportions:

- Keep a fixed proportion of portfolio in each asset
- Find the proportion in i (u(i)) that maximizes expected value for a single period
- Formulation:
  - $Max E_s[x(t,+)]$
- s.t.  $x(t,+) x(t,-) = w(t-1)\Sigma_i u(i)(1+r(i,s)) y(s)$  $\Sigma_i u(i) = , u, x \ge 0$
- where w(t-1) is total value, r(i,s) is return, y(s) is underlying price under scenario s



# **Model with Transaction Costs**

• FORMULATION: Max  $E_s[x(T,+)]$ s.t.  $x(t,+) - x(t,-)=\Sigma_i u(t-1,i,s)(1+r(t-1,i,s)) - y(s)$   $\Sigma_i u(t-2,i,s)(1+r(t-2,i,s))=\Sigma_i u(t-1,i,s)$   $u,x \ge 0$ U is NONANTICIPATIVE

Decisions only depend on the past and not on the specific scenario path s





### **Manufacturing Formulation**

# FORMULATION: Min E<sub>s</sub>[h(t)x(t,+)+p(t)x(t,-) + J(u(t),s)] s.t. x(t,+) - x(t,-)=x(t-1,+) - x(t-1,-) + Σ<sub>1</sub> u(t-1,i,s)(r(t-1,i,s)) - d(s) Σ<sub>1</sub> g(t-1,i,s,j) u(t-1,i,s)≤ 1 (resource limits) u,x≥ 0 U is NONANTICIPATIVE (OFTEN INTEGRAL) DIFFERENCES: Need inventory (memory)

- Discrete decisions







### GENERAL MULTISTAGE MODEL

### FORMULATION:

- $\begin{array}{ll} \text{MIN} & \text{E} \left[ \begin{array}{c} \boldsymbol{\Sigma}_{t=1}^{\mathsf{T}} f_t(\boldsymbol{x}_t, \boldsymbol{x}_{t+1}) \end{array} \right] \\ \text{s.t.} & \boldsymbol{x}_t \in \boldsymbol{X}_t \end{array}$ 
  - $x_t$  nonanticipative P[  $h_t(x_t, x_{t+1}) \le 0$  ]  $\ge$  a (chance constraint)

#### **DEFINITIONS:**

- $\mathbf{x}_{t}$  aggregate production
- $\mathbf{f}_t$  defines transition only if resources available and includes subtraction of demand



# PRODUCTION SCHEDULING RESULTS

- OPTIMALITY:
  - CAN DEFINE OPTIMALITY CONDITIONS
  - DERIVE SUPPORTING PRICES
- CYCLIC SCHEDULES:
  - OPTIMAL IF STATIONARY OR CYCLIC DISTRIBUTIONS
  - MAY INDICATE KANBAN/CONWIP TYPE OPTIMALITY
- TURNPIKE: (Birge/Dempster)
  - FROM OTHER DISRUPTIONS:
  - RETURN TO OPTIMAL CYCLE
- LEADS TO MATCH-UP FRAMEWORK











# **COMPUTATIONAL RESULTS**

### • DATA:

- SEVERAL YEARS OF MICHIGAN DATA
- USED SEVERAL PERIODS IN YEAR

### • SCENARIOS

- POSSIBLE YEARS (CLOSE FIT)
- HISTORICAL SUPPLY LOSS PATTERNS
- IMPLEMENTATION
  - RS6000 WORKSTATION (PLUS PARALLEL)
  - IN C
- TIME
  - MOST SOLUTIONS FOR 60 UNITS IN 1 MINUTE



# Summary

- MODELS:
  - Wide variety
  - Often critical factor for discrete variables
  - Need to include dynamics/transient behavior
- SOLUTIONS:
  - Use of Lagrangian
  - Decreasing duality gap in sample size
- COMPUTATION:
  - Direct parallel implementation
  - Efficient solutions with improvement over existing methods