Using Management Science to Reduce Enterprise Risks: Defining the Role of Operational and Financial Hedges

John R. Birge
Northwestern University

Is a Sure Thing Always a Good Thing?

• Traditional view
 Uncertainty is Risk
 Risk is Bad
 → Uncertainty is Bad
• True? Always?
• How do we know when and what uncertainties to remove? (what to hedge?)
Themes

- Risk management is big business
- Managing risk is not the same as eliminating risk
- Management science can yield better risk management
- Key tools are stochastic modeling, optimization, and option pricing

Outline

- What is a hedge?
- Who should hedge?
- How can you find a best hedge?
- Where do we go from here?
Risk Management and Hedging

- What is a hedge?
 - Action designed to reduce risk of future outcome
 - In finance, perfect hedge leads to no risk (riskfree return)

- Use of hedges
 - Allow pricing of financial derivatives
 - Lead to markets in derivatives
 - Also possible with operations (operational hedges)
 - Quantity - flexible production
 - Timing

Who Should Hedge?

- Farmers?
- Situation:
 - Suppose either high-yield low-yield years for crops
 - Prices up in high years and down in the low years
Farmer’s Example

- Suppose yield of corn is either 200 k-bushels (high) or 100 k-bushels (low).
- Suppose price with high yield is $1 and price with low yield is $2.
- Should the farmer use financial hedge? i.e., sell a future?
 - If so, how much?

Futures Contracts as Hedges

- *Futures contract*: an agreement to buy or sell a fixed quantity at given price at fixed time in future (marked to market every day).
- Example: can agree to sell 100 k-bushels at $1.50/bushel on October 15.
- On October 15, we receive $150K and must deliver 100 k-bushels.
Futures for the Farmer

- **Advantages**
 - Can accept the expected price now
 - No risk in the price for the amount we sell

- **Potential problems**
 - Risk on amount we can produce
 - May have to go into market

- **Analysis:** Hedge our expected yield (150 k-bushels)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guaranteed (all the time)</td>
<td>$225K</td>
</tr>
<tr>
<td>High yield – can sell 50 more</td>
<td>+ $50K (probability ½)</td>
</tr>
<tr>
<td>Low yield – must buy 50</td>
<td>- $100K (probability ½)</td>
</tr>
</tbody>
</table>

 Expectation = $225 + $50/2 - $100/2 = $200k (same as no hedge)

 BUT variance (risk) is up (either $275k or $125 instead of $200k all the time)

- **RESULT:** should not use futures (alone)

Farmer’s Operational Hedge for Risk Management

- What else does the farmer have?
 - **SILO!!**
 - *Operational hedge*
 - *Keep corn from high yield to sell at low yield*

- Now, suppose we keep 50 k-bushels in silo from high to low yield years
Farmer’s Silo Hedge

- Expected returns
 - High-yield years (prob. ½) $150 k
 - Low-yield years (prob. ½) $300 k
 - Expectation: ½(150+300)= $225k
 - Worth $225k-200k = $25k to use the silo
 - Value of the operational hedge (option value of silo)

- Combine with future?
 - Now, sell 150 k-bushels for $1.50 in October
 - Now, have the return guaranteed $225K

- Moral: Financial instrument only has value if farmer uses operational hedge

Copper Miner’s Example

- Should a copper mine hedge its output with futures?
- What is the nature of copper price differences?
- Demand versus supply curve change means high price-high quantity and low price-low quantity
Copper Hedging

- Suppose high demand leads to 200 k-pounds at $2/pound and low demand leads to 100 k-pounds at $1/pound
- Earn $400k (prob. ½) or $100k (prob. ½)
- Expected value of $250k
- Operational hedge? (save 50 k-lbs from high to low years?)
 - High years: earn $300k (prob. ½)
 - Low years: earn $150k (prob. ½)
 - Expectation: $225k (lower value!)

Copper Futures?

- Suppose we sell 200 k-lbs at $1.50 in future
- Result now:
 - Futures return: $300k (all the time)
 - High demand: + $0k (with probability ½)
 - Low demand: − $100k (with probability ½)
 - Expectation: $250k
 - Risk reduced ($300 or $200 v. $400 or $100)
- Here: financial derivatives give value (how much? present value?)
Manufacturer’s Example

- Suppose we can produce in US or Europe
- Demand and currency rates may vary
- Where to put production capacity?
- How much to produce in each country?
- Should we use currency futures (or other options)?

Manufacturer Details

- Suppose high demand in US v. Europe means higher US$ value per Euro
- High US demand 100K, Euro is 50k, and $1/Euro
- Low US demand 50k, Euro is 100k, and $2/Euro
- Sell for 20K E or $ in each region
- Cost is 10K E or $ in each region
- How to hedge? Futures?
Manufacturer and Futures

- Suppose produce and sell in own country
- Use futures to guarantee value in $
- Sell 500M Euros in future for $1.50 (expectation)
 - $750M = (50K sales)(10K E margin)($1.5/E)
- Return:
 - Guaranteed $750M
 - High US: $1000M (1/2 prob.)
 - Low US: $1500M (1/2 pr. 500US plus 1B E)
 - Expectation: $2000M

Using Operational Hedges in Place of Financial

- Suppose we just produce in Europe when US demand is high and just in Europe when US demand is low
- Result:
 - US Demand high:
 - Sales: $2000M in US + $1000M in Europe
 - Cost: $1500M in Europe
 - Net: $3000-1500=$1500M
 - US Demand low:
 - $1000M in US + $4000M in Europe - $1500M in US
 - Net: $5000-1500=3500M
 - Expectation: $2500M!! (>> $2000M with financial hedging)
Lessons from the Manufacturer

- Operational hedges can give a large advantage
- Excess capacity in different markets can be worthwhile
- Analysis of all the possibilities is complicated
- How to measure present value of capacity investment?
- How to find the best hedges overall?

Overall Observations

- Farmer:
 - Financial and operational together
- Miner:
 - Financial alone
- Manufacturer
 - Operational alone
- Unifying framework? Present values of risky returns?
Outline

• What is a hedge?
• Who should hedge?
• How can you find a best hedge?
• Where do we go from here?

Unifying Element: Real Options

• Real options: real assets that have some (option) value that can be exercised
• Create operational hedges (i.e., manage risks)
• How can we value them?
• What tools do we need?
• Example: *How much is a factory with capacity of 150,000 units worth?*
Key: How to Discount Future Cash Flows?

- Traditional approach
 - Discount rate is the same for all decisions in firm

- Problems
 - Program evaluation includes decisions on capacity, distribution channel, vendor contracts – *all different risks*
 - These decisions affect correlation to market – hence, change the discount rate

- Need: discount rate to change with decisions as they are determined; How?

Discount Rate Determination

- USE CAP-M? FIND CORRELATION TO THE MARKET?
 - Can measure for known markets (beta values)
 - How to do this for a single plant?
 - Want high discount if slack – low discount if tight

 ![Revenue-Demand-Capacity Diagram]

- ALTERNATIVES?
 - Option Theory
 - Allows for non-symmetric risk
 - Explicitly considers constraints -
 - As if selling excess to competitors at a given price
Valuing an Option

- (European) Call Option on Share assuming:
 - Buy at K at time T; Current time: t; Share price: S_t
 - Volatility: σ; Riskfree rate: r_f; No fees; Price follows particular process
 - Can find perfect hedge
- Valuing option:
 - Assume risk neutral world (annual return=r_f independent of risk)
 - Find future expected value and discount back by r_f

Call value at $t = C_t = e^{-r_f(T-t)}\int (S_T-K)^+dF_f(S_T)$

Relation to Real Options

- Example: What is the value of a plant with capacity K?
 - Discounted value of production up to K?
- Solution:
 - Model as an option
 - Assume:
 - Market for demand (substitutes)
 - Forecast follows certain process
 - No transaction costs

\Rightarrow Model like share minus call
Using Option Valuation for Capacity

- **Goal:** Production value with capacity \(K \)
- **Compute uncapacitated value based on CAPM:**
 - \(S_t = e^{(r(T-t))} \int c_T S_t dF(S_T) \)
 - where \(c_T = \text{margin}, F \) is distribution (with risk aversion),
 - \(r \) is rate from CAPM (with risk aversion)
- **Assume \(S_t \) now grows at risk-free rate, \(r_f \); evaluate as if risk neutral:**
 - Production value = \(S_t - C_t = e^{r(T-t)} \int c_T \min(S_T, K) dF_f(S_T) \)
 - where \(F_f \) is distribution (with risk neutrality)

Results with Real Option Prices

- Can value capacity of the plants in each market
- Now, can use operational choices to determine best mix of financial hedges and production decisions
- Maximize the return (to investors) and minimize the risk
Overall Enterprise Risk Management

- Find the levels of capacity, production, and future contracts to:

 maximize expected present value of future cash flow

 subject to:

 Not exceeding capacity in any markets
 Transportation and transaction costs

- Real options allows for putting all of these decisions into a stochastic linear program.

Result: Stochastic Linear Programming Model

- Key: Maximize the Added Value of Installed Capacity

 - Must choose best mix of poroducts assigned to plants

 - Maximize Expected Value over $s \sum_i e^{-r} \text{Profit (i)}$

 Production(i,t,s) - CapCost(i at j,t)Capacity (i at j,t)

 - subject to: MaxSales(i,t,s) $\geq \sum_j \text{Production(i at j,t,s)}$

 - $\sum_j \text{Production(i at j,t,s)} \leq e^{(r-f) t} \text{Capacity (i,t)}$

 - Production(i at j,t,s) $\leq e^{(r-f) t} \text{Capacity (i at j,t)}$

 - Production(i at j,t,s) ≥ 0

NOTE: Linear model that incorporates risk
Outline

• What is a hedge?
• Who should hedge?
• How can you find a best hedge?
• Where do we go from here?

Extensions and Challenges

• Examine assumptions for using real options (complete markets)
• Relax assumptions and have ranges for decisions
• Other challenges:
 – Effects of pricing decisions
 – Effects of competitors
 – Distribution changes from decisions
Conclusions

• Risk managements should involve both financial and operational decisions
• Different circumstances require different approaches
• Real options give a unifying framework
• Results can be optimization models to determine best risk management policy
• Great opportunity to expand management science in enterprise-level management