Real-Options Valuation and Supply-Chain Management

John R. Birge
Northwestern University
Outline

• Supply chain planning questions
• Problems with traditional analyses
• Real-option structure
• Assumptions
• Resolving inconsistencies
• Conclusions
Supply Chain Situation: Automotive Company

• Goal:
 • Decide on coordinated production, distribution capacity and vendor contracts for multiple models in multiple markets (e.g., NA, Eur, LA, Asia)

• Traditional approach
 • Forecast demand for each model/market
 • Forecast costs
 • Obtain piece rates and proposals
 • Construct cash flows and discount

• ☀ Optimize supply chain for a single-point forecast
Traditional Methods Results

• **Focus on:**
 • Cost orientation (not revenue management)
 • Single program (model, product)
 • NPV
 • Piece rates

• **Result:** support of traditional, fixed designs, little flexibility, little ability to change, immediate investment or no investment
Trends Limiting Traditional Analysis

- **Market changes**
 - **Former competition:**
 - Cost
 - Quality
 - **New competition:**
 - Customization
 - Responsiveness
Limitations of Traditional Methods for New Trends

- Myopic - ignoring long-term effects
- Often missing time value of cash flow
- Excluding potential synergies
- Ignoring uncertainty effects
- Not capturing option value of delay, scalability, and agility (changing product mix)
Real Options

- Idea: Assets that are not fully used may still have option value (includes contracts, licenses)
- Value may be lost when the option is exercised (e.g., developing a new product, invoking option for second vendor)
- Traditional NPV analyses are flawed by missing the option value
- Missing parts:
 - Value to delay and learn
 - Option to scale and reuse
 - Option to change with demand variation (uncertainty)
 - Not changing discount rates for varying utilizations
Value to Delay Example

- Suppose a project may earn:
 - $100M if economy booms
 - $-50M if economy busts
- Each (boom or bust) is equally likely
- NPV = $25M (expected) - Start project
- Missing: Can we wait to observe economy?

Here, we don’t need to invest in “Bust” - Now we expect $50M

It’s worth $25M to wait.
Scale Option Example

- Scalability

- Suppose a five year program
 - Cost of fixed capacity is $100M
 - Cost of scalable capacity is $150M for same capacity
 - Predicted cash flow stream:

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>
Scalability Example - cont.

• Assume 15% opportunity cost of capital:
 • NPV(Traditional) = $50M
 • NPV(Scalable) = 0

• Problem: Scalable can be configured over time:

<table>
<thead>
<tr>
<th>Year 0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spend $50M for capacity to $25M</td>
<td>Spend $50M for cap. to $50M</td>
<td>Spend $50M for cap. to $75M</td>
</tr>
</tbody>
</table>
Scalability Result

Cash flow for Scalable:

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net</td>
<td>-50</td>
<td>-25</td>
<td>0</td>
<td>75</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

Now, \(\text{NPV(Scalable)} = 75M > \text{NPV(Fixed)} \)

Traditional approach misses scalability advantage.
Discount Rate Determination

• Traditional approach
 – **Discount rate is the same for all decisions in program evaluation**

• Problems
 – **Program evaluation includes decisions on capacity, distribution channel, vendor contracts**
 – **These decisions affect correlation to market – hence, change the discount rate**

• Need: **discount rate to change with decisions as they are determined; How?**
Discount Rate Determination

- USE CAP-M? FIND CORRELATION TO THE MARKET?
 - Can measure for known markets (beta values)
 - If capacitated, depends on decisions
 - Constrained resources - capacity
 - Correlations among demands

- ALTERNATIVES?
 - Option Theory
 - Allows for non-symmetric risk
 - Explicitly considers constraints -
 • As if selling excess to competitors at a given price
Using Option Valuation for Capacity

- **Goal:** Production value with capacity K
 - Compute uncapacitated value based on CAPM:
 - $S_t = e^{-r(T-t)}c_T S_T dF(S_T)$
 - where c_T = margin, F is distribution (with risk aversion),
 - r is rate from CAPM (with risk aversion)
 - Assume S_t now grows at riskfree rate, r_f; evaluate as if risk neutral:
 - Production value $= S_t - C_t = e^{-r_f(T-t)}c_T \min(S_T, K) dF_f(S_T)$
 - where F_f is distribution (with risk neutrality)
Assumptions

• Process of prices or sales forecasts
• No transaction fees
• Complete market
 • How to construct a hedge?
 • If NPV > 0, inconsistency
 • Process: Trade option and asset to create riskfree security
Creating Best Hedge

- Underlying asset: Max potential sales in market
- Option: Plant or contract with given capacity
- Other marketable securities:
 - Competitors’ shares
 - Overall all securities min residual volatility
 - Due to incompleteness, some volatility remains (otherwise, NPV=0)
- Result:
 - Remaining volatility provides a range of choices which cannot be arbitrated
 - Can use utility max or other factors to choose within range
Summary

- Options apply to supply chain problems
- Can evaluate supply chain planning with proper option evaluation techniques
- Relaxed market assumptions lead to models that determine a range of policies
- Firm or investor utility can choose within range