Real-Options Valuation and Supply-Chain Management

> John R. Birge Northwestern University

Outline

- Supply chain planning questions
- Problems with traditional analyses
- Real-option structure
- Assumptions
- Resolving inconsistencies
- Conclusions

Supply Chain Situation: Automotive Company

- Goal:
 - Decide on coordinated production, distribution capacity and vendor contracts for multiple models in multiple markets (e.g., NA, Eur, LA, Asia)
- Traditional approach
 - Forecast demand for each model/market
 - Forecast costs
 - Obtain piece rates and proposals
 - Construct cash flows and discount
- Optimize supply chain for a single-point forecast

Traditional Methods Results

- Focus on:
 - Cost orientation (not revenue management)
 - Single program (model, product)
 - NPV
 - Piece rates
- Result: support of traditional, fixed designs, little flexibility, little ability to change, immediate investment or no investment

Trends Limiting Traditional Analysis

- Market changes
 - Former competition:
 - Cost
 - Quality
 - New competition:
 - Customization
 - Responsiveness

Limitations of Traditional Methods for New Trends

- Myopic ignoring long-term effects
- Often missing time value of cash flow
- Excluding potential synergies
- Ignoring uncertainty effects
- Not capturing option value of delay, scalability, and agility (changing product mix)

Real Options

- Idea: Assets that are not fully used may still have option value (includes contracts, licenses)
- Value may be lost when the option is exercised (e.g., developing a new product, invoking option for second vendor)
- Traditional NPV analyses are flawed by missing the option value
- Missing parts:
 - Value to delay and learn
 - Option to scale and reuse
 - Option to change with demand variation (uncertainty)
 - Not changing discount rates for varying utilizations

Value to Delay Example

- Suppose a project may earn:
 - \$100M if economy booms
 - \$-50M if economy busts
- Each (boom or bust) is equally likely
- NPV = \$25M (expected) Start project
- Missing: Can we wait to observe economy?

Here, we don't need to invest in "Bust" -Now we expect \$50M It's worth \$25M to wait.

Scale Option Example

- Scalability
- Suppose a five year program
 - Cost of fixed capacity is \$100M
 - Cost of scalable capacity is \$150M for same capacity
 - Predicted cash flow stream:

Scalability Example - cont.

- Assume 15% opportunity cost of capital:
 - NPV(Traditional) = \$50M
 - NPV(Scalable)= 0
- Problem: Scalable can be configured over time:

Scalability Result

Cash flow for Scalable:

Year	0	1	2	3	4	5
Net	-50	-25	0	75	50	25

Now, NPV(Scalable)=\$75M > NPV(Fixed) Traditional approach misses scalability advantage.

Discount Rate Determination

- Traditional approach
 - Discount rate is the same for all decisions in program evaluation
- Problems
 - Program evaluation includes decisions on capacity, distribution channel, vendor contracts
 - These decisions affect correlation to market hence, change the discount rate
- Need: discount rate to change with decisions as they are determined; How?

Discount Rate Determination

- USE CAP-M? FIND CORRELATION TO THE MARKET?
 - Can measure for known markets (beta values)
 - If capacitated, depends on decisions
 - Constrained resources capacity
 - Correlations among demands
 Revenue

- ALTERNATIVES?
 - Option Theory
 - Allows for non-symmetric risk
 - Explicitly considers constraints -
 - As if selling excess to competitors at a given price

Using Option Valuation for Capacity

- Goal: Production value with capacity K
 - Compute uncapacitated value based on CAPM:
 - $S_t = e^{-r(T-t)} \mathcal{R}_T S_T dF(S_T)$
 - where c_T =margin,F is distribution (with risk aversion),
 - r is rate from CAPM (with risk aversion)
 - Assume S_t now grows at riskfree rate, r_f; evaluate as if risk neutral:
 - Production value = $S_t C_t = e^{-r} f^{(T-t)} \mathcal{L}_T \min(S_T, K) dF_f(S_T)$
 - where F_f is distribution (with risk neutrality)

Assumptions

- Process of prices or sales forecasts
- No transaction fees
- Complete market
 - How to construct a hedge?
 - If NPV>0, inconsistency
 - Process: Trade option and asset to create riskfree security

Creating Best Hedge

- Underlying asset: Max potential sales in market
- Option: Plant or contract with given capacity
- Other marketable securities:
 - Competitors' shares
 - Overall all securities min residual volatility
 - Due to incompleteness, some volatility remains (otherwise, NPV=0)
- Result:
 - Remaining volatility provides a range of choices which cannot be arbitraged
 - Can use utility max or other factors to choose within range

Summary

- Options apply to supply chain problems
- Can evaluate supply chain planning with proper option evaluation techniques
- Relaxed market assumptions lead to models that determine a range of policies
- Firm or investor utility can choose within range