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Presentation Overview

u Motivating Problem

u Example

u Decomposition Methods

u Future Work
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Motivating Problem

u Airline Crew Scheduling
– Extensively studied

– Currently able to find good solutions to crew 
scheduling problems when given all 
information

– What happens when delays are encountered?
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Example
Solution 1 Solution 2
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Problem Formulation
For each disruption ω, we have the following:

where 

is the expected value of future actions due to 
disruptions ω in the original schedule
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Decomposition Methods

u Frank Wolfe Method of Feasible Directions

u Quadratic approximation of polynomial 
recourse function

u Benders Decomposition with cutting planes 
on linear program recourse form
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Frank-Wolfe Method
u  Begin with some feasible set of pairings, 

xk, and find feasible point, y, that minimizes 
the gradient of the objective function 
evaluated at xk 

u next interate xk+1 is a convex combination of 
xk  and y which minimizes the objective 
function 

u Problem: difficult to interpret fractional 
solutions
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Quadratic Approximation

u Can construct delay recourse function Q(x) 
analytically as polynomial for given 
disruption ω 
– based on branching of disruption effects

u for each ω, minimize cost of delay subject 
to flight coverage constraints
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Quadratic Approximation (2)

u Problems
– quadratic approximations do not work well 

because delay function magnitude quickly 
grows

– nonconvexity of polynomial form
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Bender’s Decomposition Method

u Can contruct an LP to find a recourse cost 
– Given the LP, want to construct cutting planes 

and derive a subgradient from repeated 
solutions to linear program under different 
delay scenarios

u Problem: x enters into the constraints 
directly 
– see ** on following slide

– in general Q(x) is not convex
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Recourse LP Formulation

time_arr(j)     -      time_dep(j) ≥ time(j,ω)

≤time_arr(j)      -      delay(j) sched_arr(j)

≥time_dep(j)      -      delay(j) sched_dep(j)

≥time_dep(j)      -      time_arr(plane_pred(j)) plane_grd(j,ω)

≥delay(j) 0
j pairing∈
∑

 k
≥time_dep(j)      -          time_arr(crew_pred(j,k)-crew_grd(j,k))xk 0**

Q x penalty
j

( , ) minω = ⋅∑
 segments

delay(j)

subject to:

ω : delay scenario  j : flight  k : round trip itinerary
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General form of LP

u This form is not convex in general in x

u Does the structure of the crew problem 
yield convexity?
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Dealing with Nonlinearity

u Want to know the convexity of the delay 
function
– Can use the recourse LP formulation for given 

solutions x to construct pseudogradient.
t use finite different methods

t inconclusive, some instances of nonconvexity

– Example of nonconvexity for polynomial form
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Convexity of LP

u Suppose an optimal solution y1 to the 
recourse LP includes time_dep(j,1) given an 
input x1  and optimal y2 includes 
time_dep(j,2) given an input x2 

u Consider a convex combination of y1  and 
y2,  λ y1 + (1-λ) y2 

– feasible for all constraints without x

– for constraint ** note:
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Convexity of LP (cont)

u Rewrite as 

u Then

u Hence, λ y1 + (1-λ) y2  is feasible for input 

λx1 + (1-λ) x2 , but not necessarily optimal.
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Convexity of LP (cont)

u So, 

Q(λ x1 + (1-λ) x2 ) <= λQ( x1 ) + (1-λ) Q(x2 )

  gives convexity.

u Result: Convexity holds with the LP 
formulations but not the polynomial form.  
Both values agree on integer x points, so the 
LP formulatoin is still valid and can be used 
for optimization.
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Example of Convexity
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Towards an Algorithm

u Given an input x, can construct a valid 
subgradient for Q(x) 

u Add a constraint (cut) to the master crew 
scheduling problem in x
– this creates a crew scheduling problem with 

additional constraints and additional variable(s) 
corresponding to Q(x)
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Algorithm (cont)

u Constraints are added until θk = Q(xk) as in 
standard Benders’ or L-shaped methods

min
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Future Work

u Refine algorithm - subgradient construction

u Testing with actual data

u Generalization to other network design 
problems with similar structure



21

Recourse LP Formulation

subject to:

ω : delay scenario  j : flight  k : round trip itinerary
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