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Motivating Problem

+ Airline Crew Scheduling
- Extensively studied

— Currently able to find good solutions to crew
scheduling problems when given all
information

- What happens when delays are encountered?
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Problem Formulation
For each disruption w, we have the following:

minimize ¢ x+2(x)

subject to Ax=b
0<x<l1
X integer

where Z (%) = [ O(x, @) P(d )

is the expected value of future actions due to
disruptions win the original schedule

Decomposition Methods

¢ Frank Wolfe Method of Feasible Directions

+ Quadratic approximation of polynomial
recourse function

+ Benders Decomposition with cutting planes
on linear program recourse form



Frank-Wolfe Method

+ Begin with some feasible set of pairings,
X, and find feasible point, y, that minimizes
the gradient of the objective function
evaluated at x,

+ next interate x,,, is aconvex combination of
X, and y which minimizes the objective
function

+ Problem: difficult to interpret fractional

e Solutloni . e

Quadratic Approximation

+ Can construct delay recourse function £{x)
analytically as polynomial for given
disruption w
— based on branching of disruption effects

# for each w, minimize cost of delay subject
to flight coverage constraints



Quadratic Approximation (2)

¢ Problems

— quadratic approximations do not work well
because delay function magnitude quickly
grows

— nonconvexity of polynomial form

Bender’ s Decomposition Method

¢ Can contruct an LP to find a recourse cost

- Given the LP, want to construct cutting planes
and derive a subgradient from repeated
solutions to linear program under different
delay scenarios

+ Problem: x entersinto the constraints
directly

- see** onfollowing dlide



Recourse LP Formulation
O(x,w) = min Z penalty [delay(])
stibject to:
time arr() - time_dep(j) = time(f,w)
time arr(j) - deay(j) < sched_arr(j)
time dep(j) - deay(j) >  sched_dep(j)

time dep() - time arr(plane pred(j)) =  plane_grd(j,w)
time_dep(j) - Ztime_arr(crew _pred(j,K)-crew_grd(j k)x, = 0"
: jOpairing k

: Jipaing delayg) = O

w : delay scenario j : flight k : round trip itinerary

Genera form of LP

O(x,w) =ming' y
s.t. (W+Gx)y =h(w)
y=20
¢ Thisform is not convex in general in x

+ Does the structure of the crew problem
yield convexity?

*



Dealing with Nonlinearity

+ Want to know the convexity of the delay
function
— Can use the recourse LP formulation for given
solutions x to construct pseudogradient.
v use finite different methods
v inconclusive, some instances of nonconvexity

— Example of nonconvexity for polynomial form

Convexity of LP

+ Suppose an optimal solution y, to the
recourse LP includes time _dep(j,1) given an
input X, and optimal y, includes
time_dep(j,2) given an input X,

+ Consider aconvex combination of y, and
yz’ A y1+ (1')\) y2
- feasible for all constraints without x
— for constraint ** note:



Convexity of LP (cont)

time_dep(j)— z time_arr(crew_ pred(j,k)—crew_grd(j,k))x, 20 o

JjOpairing k

¢ Rewrite as time dep(j) = z G(j,k)x,
jOpairing k
¢ Then

time_dep(j.1)+(1=N)time_dep(j,2)

v

AGGk)x, +(1-NGGk)x,
A Y GGk +A=A) S GlLk)x;

JOpairingk, JjOpairing k,

> GULk)Ax, +(1-A)x,)

o Hence, Ay, + (1-A) y, isfeasible for input
X, , but not necessarily optimal.
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Convexity of LP (cont)

¢ S0,
QA Xy + (1-A) X5) <= AQ(xy) + (1-A) Q(x;)
gives convexity.
+ Result: Convexity holds with the LP
formulations but not the polynomial form.

Both values agree on integer X points, so the
LP formulatoin is still valid and can be used



Example of Convexity

Towards an Algorithm

+ Given an input x, can construct avalid
subgradient for Q(x)

+ Add aconstraint (cut) to the master crew
scheduling problem in x

— this creates a crew scheduling problem with
additional constraints and additional variable(s)
corresponding to Q(x)



Algorithm (cont)

min c¢'x+6
S.t. Ax=b |
Ex+0=e (these are additional constraints)
x binary 5

# Constraints are added until 6k = Q(x¥) asin
standard Benders' or L-shaped methods

Future Work

+ Refine algorithm - subgradient construction
+ Testing with actual data

+ Generalization to other network design
problems with similar structure



Recourse LP Formulation

O(x,w) = min z penalty [delay(j)

J segments

subject to:
time_arr(j) — time_dep(j) =  time(j,w)
time_arr(j) —  delay(j) < sched arr(j)
time_dep(j) —  delay(j) > sched dep(j)

time_dep(j) — time_arr(plane_pred(j)) = plane grd(j,w)
time_dep(j)— z time_arr(crew_pred(j,k)—crew_grd(j,k))x, 20 o
jOpairing k
T delay(j) =0 -

w : delay scenario j : flight k : round trip itinerary



