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John R. Birge
University of Michigan

Slide Number 2

OUTLINE

•Models
•Vehicle Allocation
•Manufacturing capacity
•Financial planning

•Solutions
•Revisions
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Vehicle Allocation

• Decision:
» How to position empty freight cars?

NOW:

A

B

5 cars

0 cars

DAY 1: DAY 2:

A

B

A

B

DEMAND: DAY 1: B to A:Mean Value=2
DAY 1: A to B:Mean Value=2

?

?
2

2
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• Maximize: Revenue-Cost
» MOVE TWO EMPTY CARS FROM A to B

NOW:

A

B

5 cars

0 cars

DAY 1: DAY 2:

A

B

A

B

RESULT: Net 2: A to B; Net 2: B to A
TOTAL(MV) = 4

3 1

2

2

Parameters: COST: 0.5 per empty car from A to B
                      REVENUE: 1.5 per full car from A to B
      

2

2
2

Vehicle Allocation: Mean Value 
Solution
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• Find: Expected (Revenue-Cost)
» MOVE Two EMPTY CARS FROM A to B

NOW:

A

B

5 cars

0 cars

DAY 1: DAY 2:

A

B

A

B

Expected Value: Net 2: A to B; Net 2: B to A (w.p. 2/3)
      -1: B to A (w.p. 1/3)

TOTAL (EMV): 3

2

1

3 (w.p.2/3)

2

Suppose: Demand is Random (Expectation from A to B=2)
 • 0 from A to B with prob. 1/3

• 3 from A to B with prob. 2/3 
      

2 (w.p. 2/3)

2
2

2 (w.p. 2/3)

1

Expectation of Mean Value
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• Maximize: Expected (Revenue-Cost)
» MOVE Three EMPTY CARS FROM A to B

NOW:

A

B

5 cars

0 cars

DAY 1: DAY 2:

A

B

A

B

Expected Value: Net 2: A to B; Net 3: B to A (w.p. 2/3)
      -1.5 : B to A (w.p. 1/3)

TOTAL (RP): 3.5
RP=Recourse Problem

2

1

3 (w.p.2/3)

2

Suppose: Demand is Random (as before)
 GOAL: A solution to obtain highest expected value

3 (w.p. 2/3)

2
3

2 (w.p. 2/3)

1

Stochastic Program Solution
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INFORMATION and MODEL 
VALUE

• INFORMATION VALUE:
– FIND Expected Value with Perfect Information or Wait-

and-See (WS) solution:
» Know demand: if 3,  send 3 from A to B                        

If 0, send 0 from A to B: 
» Earn: 2  (AtoB) + (2/3) (3) + (1/3)0= 4 = WS

– Expected Value of Perfect Information (EVPI):
»  EVPI = WS - RP = 4 - 3.5 = 0.5
» Value of knowing  future demand precisely

• MODEL VALUE:
– FIND EMV, RP
– Value of the Stochastic Solution (VSS):

» VSS = RP - EMV=3.5 - 3 = 0.5
» Value of using the correct optimization model
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INFORMATION/MODEL 
OBSERVATIONS

• EVPI and VSS:
– ALWAYS ≥ 0 (WS ≥ RP ≥ EMV)
– OFTEN DIFFERENT (WS=RP but RP > EMV and vice 

versa)
– FIT CIRCUMSTANCES:

» COST TO GATHER INFORMATION 
» COST TO BUILD MODEL AND SOLVE PROBLEM

• MEAN VALUE PROBLEMS:
– MV IS OPTIMISTIC  (MV=4 BUT EMV=3, RP=3.5)

» ALWAYS TRUE IF CONVEX AND RANDOM
» CONSTRAINT PARAMETERS

– VSS LARGER FOR SKEWED DISTRIBUTIONS/COSTS
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STOCHASTIC PROGRAM

• ASSUME: Random demand on AB and BA
• GOAL: maximize expected profits 

– (risk neutral)

• DECISIONS: xij - empty from i to j 
–  yij(s) - full from i to j in scenario s  (RECOURSE)
–   (prob. p(s)) 

• FORMULATION:
Max -0.5xAB + Σ s=s1,s2 p(s)  (1.5 yAB(s) + 1.5 yBA(s))
s.t. xAB     +xAA                  =  5  (Initial)
             -xAB                                        + yBA(s)   ≤ 0  (Limit BA)
              -xAA                         + yAB(s)                  ≤ 0  (Limit AB)
                                                yBA(s)   ≤ DBA(s)    (Demand BA)
                                              + yAB(s)  ≤ DAB(s)    (Demand AB)

 xAA, XAB, yAA(s), yAB (s) ≥ 0
– EXTENSIONS: Multiple stages

–Constraint/objective complexity (Powell et al.)
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Outline

•Models
•Vehicle Allocation
•Manufacturing Capacity
•Financial Planning
•General

•Solutions
•Revisions
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• Where to Install Capacity for Different Models 
among Different Plants?

A
1

2

 3
B

•Where to add flexibility? (multiple models)

Manufacturing Capacity
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Traditional Problems

• Correlated Demand
– Models 1,2,3 similar 

• Capacity Limit
– => Asymmetric payoff

Revenue

SalesCapacity

  =>  OPTIONS
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• Previous work:
– S. Andreou, C. Byrd

• Assumption: risk free hedge
– Can evaluate as if risk neutral
– As in Black-Scholes model

• Steps
– Adjust revenue to risk-free equivalent
– Discount at riskless rate

Option Approaches
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• Key: Evaluate Expected Optimal with Installed 
Capacity

– Must choose best mix of models assigned to plants
– Maximize  Σi Profit (i) Production(i)
– subject to:   MaxSales(i) >= Σ j Production(i at j)
–  Σ i Production(i at j) <= Capacity (i)  
–   Production(i at j)  <= Capacity (i at j)
– Production(i at j) >= 0

• Transportation Problem
• Need MaxSales(i) - random - unknown 

distribution
– Capacity(i at j) - Decision in First Stage

Recourse Payoff Evaluation
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• Model Data: from Graves/Jordan
• Vary: Model Lifetimes

– Longer => More flexibility

• Start: 1 Year

A

B

C

D

E

F

1

2

3

4

5

6

Original New

Solution Results
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• Note: new additions for 5 year
• Additional model years => more flexibility

A

B

C

D

E

F

1

2

3

4

5

6

5 YearOriginal 1 year

Five Year Lifetime Solution
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OUTLINE

•Models
•Vehicle Allocation
•Manufacturing Capacity
•Financial Planning

•Solutions
•Revisions
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Financial Planning

• GOAL: Accumulate $G for tuition Y years 
from now

• Assume: 
– $ W(0) - initial wealth
– K - investments
– concave utility (piecewise linear)

G
W(Y)

Utility

RANDOMNESS: returns r(k,t) - for k in period t
  where Y                T decision periods
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FORMULATION

• SCENARIOS: σ ∈ Σ
– Probability, p(σ)
– Groups, St

1, ...,  St
St  at t 

• MULTISTAGE STOCHASTIC NLP FORM:

max                         Σσ  p(σ) ( U(W( σ , T) )
s.t. (for all σ): Σk x(k,1, σ)                            = W(o)  (initial)
           Σk r(k,t-1, σ) x(k,t-1, σ)  - Σk x(k,t, σ) =  0 ,  all t >1;
           Σk r(k,T-1, σ) x(k,T-1, σ) - W( σ , T)   =  0, (final);
                                                     x(k,t, σ)     ≥ 0, all k,t;
Nonanticipativity:
          x(k,t, σ’)  - x(k,t, σ) =  0 if σ’, σ ∈ St

i for all t, i, σ’, σ
        This says decision cannot depend on future.
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DATA and SOLUTIONS

• ASSUME:
– Y=15 years
– G=$80,000
– T=3 (5 year intervals)
– k=2 (stock/bonds)

• Returns (5 year):
– Scenario A: r(stock) = 1.25   r(bonds)= 1.14
– Scenario B: r(stock) = 1.06   r(bonds)= 1.12

• Solution:
PERIOD SCENARIO STOCK BONDS
     1    1-8    41.5    13.5
     2    1-4    65.1     2.17
     2    5-8    36.7     22.4
     3    1-2    83.8       0
     3    3-4      0     71.4
     3    5-6      0     71.4
     3    7-8    64.0        0
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MODEL VALUES

• COMPARISON TO MEAN VALUES:
– RP = -7         EMS=-19 (all stock investments)

» VSS = RP - EMS = 12

• HORIZON/PERIOD  EFFECTS
– TRUNCATION AT 10 YEARS

» MORE CONSERVATIVE
» HEAVY BOND INVESTMENT

– LONG PERIODS
» MORE MEAN EFFECT - LESS DISTRIBUTION
» HEAVY STOCK INVESTMENT

• RESULT
– NEED THREE PERIODS FOR HEDGING SOLUTION
– MANY CURRENT USERS (ALM MODELING, ZIEMBA, 

MULVEY, ZENIOS, et al.)
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OUTLINE

•Models
•Vehicle Allocation
•Manufacturing Capacity 
•Financial Planning

•Solutions
•Revisions
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GENERAL MULTISTAGE 
MODEL

• FORMULATION:
MIN    E [ Σt=1

T ft(xt,xt+1) ]
s.t.          xt ∈   Xt
               xt   nonanticipative
          P[ ht (xt,xt+1) ≤ 0 ] ≥ a (chance constraint)

EXAMPLES:

Vehicle Allocation:    Linear functions, continuous or
                                    integer variables

Capacity: Linear plus integer variables

Financial Planning: Nonlinear objective, continuous variables
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DECOMPOSITION METHODS

• BENDERS IDEA
– FORM AN OUTER LINEARIZATION OF Ψt

– ADD CUTS ON FUNCTION :

– Ψt

LINEARIZATION AT ITERATION k
min at k : < Ψt

new cut

USE AT EACH STAGE TO APPROXIMATE  VALUE FUNCTION

    • ITERATE BETWEEN STAGES UNTIL ALL MIN = Ψt
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DECOMPOSITION 
IMPLEMENTATION

• NESTED DECOMPOSITION
– LINEARIZATION OF VALUE FUNCTION AT EACH STAGE
– DECISIONS ON WHICH STAGE TO SOLVE, WHICH 

PROBLEMS AT EACH STAGE

• LINEAR PROGRAMMING SOLUTIONS
– USE OSL FOR LINEAR SUBPROBLEMS
– USE MINOS FOR  NONLINEAR PROBLEMS

• PARALLEL IMPLEMENTATION
– USE NETWORK OF RS6000S 
– PVM PROTOCOL
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RESULTS 

• SCAGR7 PROBLEM SET

LOG (NO. OF VARIABLES)

LOG (CPUS)

3 4 5 6 7
1

 2

3

4 OSL 
NESTED DECOMP.

PARALLEL: 60-80% EFFICIENCY IN SPEEDUP

OTHER PROBLEMS:   SIMILAR RESULTS
    • ONLY <  ORDER OF MAGNITUDE SPEEDUP WITH STORM 
       - TWO-STAGES - LITTLE COMMONALITY IN SUBPROBLEMS
       - STILL ABLE TO SOLVE ORDER OF MAGNITUDE LARGER PROBLEMS
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CONCLUSIONS

• STOCHASTIC PROGRAMS CAN BE:
– LINEAR, NONLINEAR, INTEGER PROGRAMS
– CONTINUOUS OR DISCRETE R.V.’S
– OF SIGNIFICANT VALUE (VSS) OVER DETERMINISTIC 

MODELS

• RANDOMNESS =>
– VALUE OF MODELING
– DIFFICULTY IN EVALUATING OBJECTIVES
– MOTIVATION FOR APPROXIMATION

• SOLUTIONS
– DECOMPOSITION FOR LINEAR PROBLEMS
– SPEEDUPS OF ORDERS OF MAGNITUDE


