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Abstract

Motivated by our work with machine tool manufacturers who are building "recon ḡurable"

machines, and auto companies who are considering buying them, we investigate the conditions

under which it would be economically advantageous to invest in recon ḡurable capacity. Recon-

ḡurable machines are those which can be recon ḡured to produce more than one generation of

product with relatively little cost or in little time. In general, a buyer's choice is between buying

dedicated equipment for every generation of product or buying recon ḡurable equipment which

will last more than one generation. The attractiveness of recon ḡurable equipment depends on

the probability that the next generation product will soon be demanded, and the relative costs

of recon ḡurable or new dedicated equipment. We develop several models to gain insight into

the question of when it would be optimal to invest in recon ḡurable capacity and present some

structural results on these decisions.

1 I ntr oduction

We consider the machine investment decisions of a manufacturer who produces a single product.

Driven by increasing competition, and changing customer tastes, the manufacturer has to introduce

new or updated generations of this product over time. Should this manufacturer buy new dedicated

equipment each time the next generation product is introduced or would it be economically advan-

tageous to consider equipment which is more expensive in initial capital investment, but less costly

to convert to produce several generations of products? Our paper is focused on this question.

The situation described above arises in many industries. Our work is motivated by machine

tool manufacturers in the auto industry who are now producing such \recon ḡurable" machinery for

the automobile companies and their suppliers. A typical example is in valve machining for cylinder

heads. Whereas a dedicated machine would be capable of producing only one type of engine valve,

a recon ḡurable machine can be adjusted (recon ḡured) to produce multiple types (e.g., angles) of
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valves. To allow for such changes, several engine manufacturers have bought recon ḡurable machinery

that allows them to switch from producing cylinder heads with 2 valves per cylinder to those with

3 or 4 valves per cylinder. Another example of a recon ḡurable purchase is a Cummins Engine

plant that bought machinery capable of producing di®erent sizes of cyclinder heads. They initially

produced 5.9 liter engine heads but eventually when the demand switched, they recon ḡured the

machinery to produce 6.8 liter engine heads.

Although most of our experience is with auto manufacturing, similar examples abound in other

industries. For example, in semiconductor manufacturing, the average lifetime of a chip is rather

short. Given the huge capital expense of semiconductor manufacturing equipment, companies are

paying signi c̄ant attention to machines that can be easily adjusted to produce multiple generations

of chips.

Our paper is focused on determining the conditions under which it would be optimal to invest in

recon ḡurable machines rather than dedicated ones. As such, it is related to a large body of work that

exists in the machine replacement and °exible manufacturing literature. First, unlike most papers

in the °exible manufacturing literature, the recon ḡurable machines we consider can only produce

one product at a time. That is, although both °exible and recon ḡurable machines can be set up

to produce more than one product type, what di®erentiates them is one of time scale. Whereas a

°exible machine may be set up to produce a di®erent type of product every day or every week, the

recon ḡurable machines that machine tool manufacturers are producing will be set up at most once

or twice in their lifetime to produce a di®erent generation product. Whereas °exible equipment can

switch very quickly between previously determined types of products, recon ḡurable equipment is

designed to be able to be set up less quickly but over a wider range of possible con ḡurations that

might be required by changing customer tastes (e.g, a changeover time of 5-10 minutes for °exible

equipment versus 3-20 days for recon ḡurable equipment). The main reason for considering these

single-product-at-a-time models is that we consider high-volume products that can easily consume

the capacity of one or several dedicated lines. Typical °exible equipment tends to be much slower

than dedicated equipment. The recon ḡurable equipment we consider is typically as fast as dedicated

equipment. From these observations, our investment problem is di®erent than those addressed in

typical °exible manufacturing investment decisions.

Typical examples of papers on °exible manufacturing investment are Fine and Freund (1990),

Gupta et al. (1992) and Laengle et al. (1994). For example, Laengle et al. assume that whereas a sin-

gle product can be assigned to dedicated capacity during a single time period, multiple products can

be assigned to °exible capacity. In our modelling framework, a single product can be assigned to both

recon ḡurable and dedicated capacity in a single period. However, whereas a technology or demand
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shift makes the dedicated equipment obsolete, the recon ḡurable equipment is able to produce the

next generation product. For further perspectives on °exibility, see Buzacott and Kahyaoglu(1998),

Gerwin (1993) and Milgrom and Roberts (1990). Sethi and Sethi (1990) and Gray et. al. (1993)

provide surverys on manufacturing °exibility. Birge (1995) illustrates the relationship between -̄

nancial options and investment in °exibility. Dixit and Pindyck (1994) provide general approches to

use option pricing theory to determine the economic value of a °exible manufacturing system. Fine

and Freund (1990) and Van Mieghem (1995) formulate two-stage stochastic programs to determine

optimal investment levels in °exible manufacturing systems.

There is a large literature on machine replacement. In recent years much attention has focused

on machine replacement under technological change. Luss (1982) provides an extensive survey of

capacity expansion problems. Pierskella and Voelker (1976) and Sherif and Smith (1981) provide

reviews of replacement of deteriorating systems. The papers that are closest to our work in scope

are those focusing on machine replacement under technological change. Hopp and Nair (1991)

consider a machine replacement problem where the decision maker is deciding whether to replace

the machine in an environment where a machine with better technology might appear sometime in

the future. They assume that bene t̄s and costs of current and future technologies are known but

the arrival time of the future technology is uncertain. The decision is then between keeping the

old machine for another period (and observing whether the new technology becomes available) or

replacing it with a new machine using the existing technology. Nair and Hopp (1992) extend the

problem to include non-stationary revenue functions. Goldstein et. al. (1988) and Hopp and Nair

(1994) also take machine deterioration into consideration and show the optimality of a control limit

policy. Finally, whereas the previous papers by Nair and Hopp limit the analysis to at most two

future technologies, Nair(1995) considers the more general problem with n future technologies. In

related work, Rajagopalan et al. (1996) analyzes capacity expansion and replacement models under

uncertain technology breakthroughs.

What di®erentiates the present paper from the previous work on machine replacement under

uncertain technology change is that in all the previous papers, the uncertainty a®ects the timing of

when the new, more advanced machine will become available for purchase. The decision maker then

decides between using his present machine longer until new technology is available or not waiting and

replacing the present machine with a new machine using the present technology. (An exception is a

recent paper by Gardner and Buzacott (1998) where the uncertainty is captured by the probability

p that the new technology will be successful and available to everyone a given number of years from

now. Using a stochastic modelling framework and a case study based upon direct steelmaking, the

authors discuss three di®erent planning strategies. The r̄st two, common in industry, are plan for
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success and plan for failure, i.e., assuming p = 1 or p = 0 and constructing a capacity plan based on

this assumption. The authors contrast this strategy with a stochastic programming approach based

on the r̄m's estimate of p, which they call the hedging strategy and show that in one sense, this

strategy is an insurance against either failure or success). In our modelling framework, the decision

maker can at the present time purchase either the dedicated or the recon ḡurable machine. What

is uncertain is when (if ever) the recon ḡurable machine will be recon ḡured to produce a di®erent

product than the one being currently produced. That is, production start time for the next generation

product is uncertain. This leads to a di®erent type of model than the previous ones in the literature.

For example, whereas in previous models (e.g., Hopp and Nair (1994)), the decision maker only had

to choose between the two decisions (e.g., keep and replace) described above when taking the age

(or deterioration level) of the machine into account, in our models, the decision maker faces three

choices: 1) keep the existing dedicated machine for one more period, 2) replace the current dedicated

machine by a new dedicated machine, 3) replace the current dedicated machine by a recon ḡurable

machine. Therefore, although the uncertainty is still one of timing, our model is signi c̄antly di®erent

than previous models in the uncertain technology-change literature. (We can view the decision to

buy recon ḡurable machinery as a hedging strategy (as in Gardner and Buzacott) where the r̄m is

hedging against the probability that a new model that can not be produced by current machinery

will be introduced. In that sense, our models evealuate when such hedging makes sense.)

Before we start presenting our models, we mention some modelling assumptions motivated by our

work with industrial sponsors. First, we assume only a single product change during the planning

horizon. This is largely based on our experience with the auto industry where it was extremely

uncommon for the same equipment to be used for more than two generations of products. Typical

planning horizons of the useful life of equipment are 10-12 years and manufacturers usually expect

only a single product change in that horizon. Therefore, in our models, we assume that there is

only one product change over our planning horizon. (Although manufacturers produce a new model

year car every year, signi c̄ant changes requiring tooling occur typically only every 4-5 years. For

example, the 1996 Taurus was a new Taurus requiring signi c̄ant new tooling whereas the Tauruses

in previous years only had minor changes.) Second, in our models, we assume that the time when (if

ever) recon ḡuration becomes necessary is uncertain. For example, styling changes might require new

locations for mounting feature on an engine, CAFE (Corporate Average Fuel Economy) requirements

might require an engine valve-angle change. It is very hard to have certain information on these

requirements 5-10 years in advance. Therefore, from the point of view of individuals responsible

for buying tooling, the time when they will need new dedicated tooling or when they will have

to recon ḡure their equipment is a random variable. (As background, Walton (1997) has several
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interesting examples of the last minute design changes in the creation of the 1996 Taurus and the

e®ects that these had on tooling and other functions).

The rest of this paper is organized as follows: In Section 2, we present a very basic model that

does not take into account machine deterioration. In Section 3, we extend this model to take machine

deterioration into account. In Section 4, we undertake a numerical study to explore the sensitivity

of decisions to problem parameters. The paper concludes in Section 5.

2 B asic M odel

We start with a very basic model to gain insight into the main tradeo®s involved between purchasing

dedicated capacity and recon ḡurable capacity. We consider the situation of a manufacturer who

currently has C units of capacity dedicated to the present product. He can purchase recon ḡurable

capacity (and dispose of dedicated capacity) which will also produce the next generation product at

a net cost of K1 per unit capacity. We assume that the probability that the next generation product

will arrive in any given period is geometric with probability p. When the next generation product

arrives, the manufacturer has to immediately convert all his remaining dedicated capacity to be able

to produce the next generation product. The conversion cost at that point is K2 per unit capacity

which we assume is larger than K1. This is due to the fact that 1) the r̄m may have to lose some

capacity and sales if the conversion is done at the last moment rather than planned in advance (as

is very typical in the auto industry) and 2) the emergency cost of acquiring the equipment will be

larger than ordinary cost. Using a discount factor of ± per unit time, we can then write the dynamic

program for computing the optimal decision as follows:

V (C) = min
0· y· C

fK1y + ±pK2(C ¡ y) + ±(1 ¡ p)V (C ¡ y)g: (2.1)

In the DP formulation, the state variable is the amount of dedicated capacity we have. We can

decide to convert some of it at a cost of K1 per unit now or if we have to produce the next generation

product in the next period and we are left with any capacity dedicated to the current product, we

can pay K2 per unit cost then. In this case, we can show that it would never be optimal to convert

a part of the dedicated capacity to recon ḡurable capacity. One would either convert all or none of

it. This is stated in the following

Theorem 1 1. If K1
K2

¸ ±p
1¡ ±(1¡ p) , an optimal policy is to keep all current capacity in every state

and V (C) = C±pK2
1¡ ±(1¡ p) :

2. If K1
K2

< ±p
1¡ ±(1¡ p) , an optimal policy is to replace all current capacity in every state and V (C) =

K1C.
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Proof: We give the proof for the r̄st part only as the proof for the second part is virtually identical.

We prove the result by induction on C. At C = 1, V (1) = minf±[pK2 + (1 ¡ p)V (1)];K1g
. Suppose an optimal policy is to keep, then

V (1) = ±[pK2 + (1 ¡ p)V (1)]

=
±pK2

1 ¡ ±(1 ¡ p)
:

Therefore, V (1) = minf ±pK2
1¡ ±(1¡ p) ;K1g. The hypothesis implies that ±pK2

1¡ ±(1¡ p) · K1. Therefore,

V (1) = ±pK2
1¡ ±(1¡ p) , i.e., the optimal policy at state C = 1 is to keep the existing capacity.

Suppose the optimal policy is to keep all dedicated capacity in states 2; : : : ; (k ¡ 1), then at C = k

V (k) = min0· y · kfK1y + ±pK2(k ¡ y) + ±(1 ¡ p)V ((k ¡ y))g
= min0· y · kfK1y + ±pK2(k ¡ y) + ±(1¡ p)(k¡ y)±pK2

1¡ ±(1¡ p) g
= min0· y · kfK1y + ±pK2(k¡ y)

1¡ ±(1¡ p) g
= min0· y · kf(K1 ¡ ±pK2

1¡ ±(1¡ p))y + ±pK2k
1¡ ±(1¡ p)g.

Since ±pK2
1¡ ±(1¡ p) · K1 then y = 0 minimizes V (k). Therefore the optimal policy at state C = k is to

keep all current dedicated capacity and V (k) = k±pK2
1¡ ±(1¡ p) . Hence, the result is proven.

We note that Theorem 1 implies that under the given cost and probability structure, it is never

optimal to carry dedicated and recon ḡurable capacity at the same time. One would either have all

dedicated or all recon ḡurable capacity. It is straightforward to show that this property that it is not

optimal to mix dedicated and recon ḡurable capacity still holds assuming increasing concave cost

functions. That is, if we assume that, the cost for y units of capacity is K1(y) and K2(y) (depending

on when the capacity is purchased), where K1 and K2 are increasing, concave functions of y, the

optimal policy still has the property that one would not mix dedicated and recon ḡurable capacity.

In fact, we formally show this result below where we also assume a more general distribution for the

probability of arrival of the next generation product.

We can extend the DP formulation 2.1 by assuming that the probability that the next generation

product will arrive in any given period has a general discrete distribution. We assume that at time 0,

we are given a probability vector Q which speci ēs the probability that the next generation product

will arrive n periods from now for all n. We also assume that the next generation product must

arrive until period N + 1. We solve the DP assuming we have no new information a®ecting the

arrival of new product. (Should such information arrive changing the probabilities in one of the

future periods, one would formulate and solve a new DP.) We de n̄e pn to be the probability that

the next generation product will arrive in period n given it has not arrived in periods 1; : : : ; n ¡ 1.
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That is pn = Qn=(1 ¡ Pn¡ 1
i=1 Qi). We assume that pn is increasing in n. (Note that this is a discrete

version of the Increasing Failure Rate (IFR) requirement.) We also assume increasing and concave

costs K1(y) and K2(y) with K1(0) = K2(0) = 0 and K1(y) < K2(y) for all y > 0.

De n̄e V (C;n); n = 0; 1; : : : ;N as the minimum expected total cost of having C units of dedicated

capacity at time n. We let V (C;N + 1) = K2(C); that is if in period N + 1, by which time the

next generation product has arrived, we still have some dedicated capacity, we immediately need to

replace it with capacity for the new product. Then, V (C;n) = min0· y · CfW (C;n; y)g where

W (C;n; y) = K1(y) + ±pn+1K2(C ¡ y) + ±(1 ¡ pn+1)V (C ¡ y; n + 1)

for n = 0; 1; : : : ;N . The optimal policy for this case is described in the following

Theorem 2 W (C;n; y) is concave in y for x̄ed C, V (C; n) is concave in C, and V (0; n) = 0

for n = 0; 1; : : : ;N: Furthermore, the optimal policy is to either replace all dedicated capacity by

recon ḡurable capacity or to keep all dedicated capacity in any period.

Proof: We prove the result by induction on n. First observe that V (C; N + 1) = K2(C) is concave

in C by de n̄ition.

At n = N and for a x̄ed C,

W (C; N ; y) = K1(y) + ±pN+1K2(C ¡ y) + ±(1 ¡ pN+1)V (C ¡ y;N + 1)

= K1(y) + ±pN+1K2(C ¡ y) + ±(1 ¡ pN+1)K2(C ¡ y)

= K1(y) + ±K2(C ¡ y):

The concavity of W (C; N ; y) follows from the concavity of K1 and K2. This implies that either y = 0

or y = C minimizes V (C;N) = min0· y · CfW (C; N ; y)g. Therefore, V (C;N) = minfK1(C); ±K2(C)g
which is also concave in C. Notice that V (0;N) = 0 since K1(0) = K2(0) = 0 by assumption.

Now assume it is also true that W (C;n; y) is concave in y, V (C;n) is concave in C, V (0; n) = 0

for n = k + 1; k + 2; : : : ;N + 1. At n = k, and for any x̄ed C and 0 · ¸ · 1,

W (C;k; ¸y1 + (1 ¡ ¸)y2) = K1(¸y1 + (1¡ ¸)y2) + ±pk+1K2(¸(C ¡ y1) + (1 ¡ ¸)(C ¡ y2))

+ ±(1 ¡ pk+1)V (¸(C ¡ y1) + (1 ¡ ¸)(C ¡ y2); k + 1)

¸ ¸(K1(y1) + ±pk+1K2(C ¡ y1) + ±(1¡ pk+1)V (C ¡ y1))

+ (1 ¡ ¸)(K1(y2) + ±pk+1K2(C ¡ y2) + ±(1 ¡ pk+1)V (C ¡ y2))

= ¸W (C;k; y1) + (1 ¡ ¸)W (C;k; y2);
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where the inequality follows from the fact that K1(y) and K2(y) are concave in y by assumption and

V (C;k) is a concave funtion by induction hypothesis. Therefore, W (C;k; y) is concave in y. This

implies that either y = 0 or y = C minimizes V (C;k). Therefore, V (C;k) = minf±pk+1K2(C) +

±(1¡ pk+1)V (C;k+1);K1(C)+±(1¡ pk+1)V (0; k+1)g. By the induction hypothesis, V (0; k+1) = 0.

This implies that

V (C; k) = minf±pk+1K2(C) + ±(1 ¡ pk+1)V (C;k + 1);K1(C)g: (2.2)

Using the fact that a summation of concave functions is a concave function and a minimum of 2

concave funtions is again a concave function, V (C;k) is, therefore, concave in C. Additionally, since

K1(0) = K2(0) = V (0; k + 1) = 0, it implies that V (0; k) = 0. This completes the proof .

We have therefore shown that the result that one would not mix recon ḡurable and dedicated

capacity extends to fairly general assumptions. If we further assume linear costs, i.e., K1(y) = K1y

and K2(y) = K2y, then Eqn. 2.2 can be rewritten as follows:

V (C;k) = minf±pk+1K2C + ±(1 ¡ pk+1)V (C;k + 1);K1Cg (2.3)

for k = 0; 1; : : : ;N . We can then determine a critical threshold that provides a result similar to that

in Theorem 1. We r̄st need the following

Lemma 1 Let f(±; p) = ±p
1¡ ±(1¡ p). Then f(±; p) · ± for 0 · p · 1; 0 · ± < 1.

Proof: Notice that f(±; 0) = 0 · ±. For p > 0; f(±; p) = ±
³

(1¡ ±)
p + ±

¡́ 1
which is increasing in

p for a x̄ed ± between 0 and 1. Therefore, the upperbound of f(±; p) is f(±; 1) = ± for a x̄ed ±.

Therefore, f(±; p) · ± for all p and any ±.

Theorem 3 1. Under linear capacity costs K1 and K2, if K1
K2

¸ ±pk+1
1¡ ±(1¡ pk+1)

, then an optimal

policy is to keep all capacity in state (C; l) for all C and l = 0; 1; : : : ; k.

2. Under linear capacity costs K1 and K2, if K1
K2

< ±pk+1
1¡ ±(1¡ pk+1)

, then an optimal policy is to replace

all capacity in state (C; l) for all C and l = k; k + 1; : : : ;N .

Proof: (1) From the hypothesis and the fact that ±pk
1¡ ±(1¡ pk) is increasing in k, these imply that for

l = 0; 1; : : : ; k,

±pl+1K2C + ±(1 ¡ pl+1)K1C · K1C:

From Eqn. 2.3, V (C; l + 1) = minf±pl+2K2C + ±(1 ¡ pl+2)V (C; l + 2);K1Cg · K1C. This implies

that

V (C; l) · ±pl+1K2C + ±(1¡ pl+1)V (C; l + 1)
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· ±pl+1K2C + ±(1¡ pl+1)K1C

· K1C:

This implies that V (C; l) = ±pl+1K2C + ±(1 ¡ pl+1)V (C; l + 1) and the optimal policy in state

(C; l) is to keep all capacity.

(2) From the hypothesis and the fact that ±pk
1¡ ±(1¡ pk) is increasing in k, these imply that for

l = k; k + 1; : : : ;N ,

±pl+1K2C + ±(1 ¡ pl+1)K1C > K1C:

From Lemma 1 and the hypothesis, it follows that K1 < ±K2: This implies that V (C;N) =

minfK1C; ±K2Cg = K1C. At l = N ¡ 1,

±pNK2C + ±(1 ¡ pN )V (C;N) = ±pNK2C + ±(1 ¡ pN )K1C

> K1C

by hypothesis. Therefore, V (C;N ¡ 1) = K1C.

Assume it is also true that V (C;m + 1) = K1C. By the same argument as above, it is easy to

show that V (C;m) = K1C. Therefore, it is true that V (C; l) = K1C for all l = k; k + 1; : : : ;N , i.e.,

it is optimal to replace all capacity in period l = k; k + 1; : : : ;N:

3 T aking M achine Failur es into Account

The basic model in the previous section makes machine purchasing decisions only based on the

probability that the next generation product will arrive in a future period. However, a major factor

that also drives machine replacement decisions is the age and deterioriation level of the present

machine. Therefore, in this section, we extend the model in the previous section to take the age

of the machine into account as well. In particular, we assume that both dedicated (DMS) and

recon ḡurable (RMS) machines have a n̄ite lifetime, which we denote by AD and AR, respectively.

The machines are subject to catastrophic failures in any given period, and the probability that a

dedicated (recon ḡurable) machine of age a fails (given it has survived a ¡ 1 periods) is given by

qa (ra). We assume that qa and ra is increasing in a, i.e., the lifetime distributions of dedicated

and recon ḡurable machines satisfy the discrete version of the IFR requirement. We again initially

assume that the probability that the next generation product will arrive in any given period is

geometric with probability p. (We will then consider more general distributions).

In this section, we focus on the decision of keeping or replacing a single machining system (this

could represent a whole dedicated or recon ḡurable line). We assume that the capital cost of pur-
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chasing a new DMS and RMS to fully satisfy all the demand, if the purchase is planned ahead, is

given respectively by KD and KR. However, if an emergency purchasing decision is made once a

machine has failed or the new product has to be produced, as in the previous section, we assume

that additional costs (on top of the capital cost of equipment) are incurred due to lost sales during

the time that the new machine arrives, the additional emergency cost, etc. We denote this cost by

KE. We further assume that KD · KR since the RMS has more functionality than DMS. Finally,

we let mD(a) and mR(a) denote the annual maintenace cost of DMS and RMS of age a, respectively.

We assume that mD(a) and mR(a) are increasing in a and that these costs are incurred at the end of

period. The state variables in this model are the type of current machining system and its age. Using

the discount factor of ± per unit time, we can then formulate the dynamic program for computing

the optimal decision as follows:

VD(a) = min

8
>>><
>>>:

±fp[KR + KE + V N
R (0)] + (1 ¡ p)[(1 ¡ qa+1)VD(a + 1) + qa+1VD(AD)] + mD(a)g

KR + V C
R (0)

KD + VD(0);

V C
R (a) = min

8
>>>>>><
>>>>>>:

±fra+1(p[KR + KE + V N
R (0)] + (1 ¡ p)minfKR + KE + V C

R (0); KD + KE + VD(0)g)
+ (1 ¡ ra+1)(pV N

R (a + 1) + (1 ¡ p)V C
R (a + 1)) + mR(a)g

KD + VD(0)

KR + V C
R (0)

V N
R (a) = min

8
<
:

±fra+1(KR + KE + V N
R (0)) + (1 ¡ ra+1)V N

R (a + 1) + mR(a)g
KR + V N

R (0):
(3.4)

with boundary conditions, VD(AD) = minfKD + KE + VD(0); KR + KE + V C
R (0)g, V C

R (AR) =

minfKR+KE+V C
R (0); KD+KE+VD(0)g, and V N

R (AR) = KR+KE+V N
R (0) where VD(a); V C

R (a); V N
R (a)

represent, respectively, the minimum expected discounted cost of operation a DMS, RMS to produce

current product generation, and RMS to produce next product generation of age a, respectively. Let

KDE = KD + KE and KRE = KR + KE . We can then reduce the above DP formulation to

VD(a) = min

8
>>><
>>>:

±fmD(a) + p[KRE + VR(0)] + (1 ¡ p)[(1 ¡ qa+1)VD(a + 1) + qa+1VD(AD)]g
KR + VR(0)

KD + VD(0);

VR(a) = min

8
<
:

±fmR(a) + ra+1(KRE + VR(0)) + (1 ¡ ra+1)VR(a + 1)g
KR + VR(0):

(3.5)

with boundary conditions, VD(AD) = minfKDE +VD(0);KRE +VR(0)g and VR(AR) = KRE +VR(0);
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(i.e., machines have to be replaced at the end of their lifetimes) where VD(a) (VR(a)) represents the

minimum expected discounted cost of operating a DMS (RMS) of age a.

Note that the reduction to the simpler DP follows because under our formulation, it would never

be optimal to buy a DMS once an RMS has been bought. Therefore, under our formulation, when the

equipment on hand is dedicated, the choice is between buying a new dedicated, new recon ḡurable

machine or keeping the existing machine one more period. If we keep the existing machine one more

period, then the machine might fail next period or the new generation product might be required,

in which case, a new machine would be needed on an emergency basis.

We next derive two lemmas which will be useful in proving that the optimal replacement policy

is a threshold policy that is a function of the age of the machine.

Lemma 2 VR(a) is increasing in a.

Proof: We prove by induction on a. At a = AR; VRE = KRE +VR(0). It follows that VR(AR ¡ 1) =

minf±mR(AR ¡ 1) + ±[rARVRE + (1 ¡ rAR)VR(AR)];KR + VR(0)g.

Since KR · KRE , it implies that VR(AR ¡ 1) · VR(AR): Now, we assume the result is also true for

a = AR ¡ 2;AR ¡ 3;¢¢¢; k + 1. We want to show that VR(k) · VR(k + 1):

If VR(k + 1) = KR + VR(0), then VR(k) · VR(k + 1) since VR(k) = minf±[mR(k) + rk+1VRE + (1 ¡
rk+1)VR(k + 1)]; KR + VR(0)g.
Otherwise, if VR(k + 1) = ±[mR(k + 1) + rk+2VRE + (1 ¡ rk+2)VR(k + 2)], then

VR(k) · ±[mR(k) + rk+1VRE + (1 ¡ rk+1)VR(k + 1)]

· ±[mR(k) + rk+1VRE + (1 ¡ rk+1)VR(k + 2)]

· ±[mR(k + 1) + rk+2VRE + (1 ¡ rk+2)VR(k + 2)]

= VR(k + 1):

The second inequality follows from the induction hypothesis. The third inequality follows from the

increasing breakdown rate and increasing maintenance cost assumption. Therefore, the result holds

for all a = 0;¢¢¢;AR ¡ 1.

Lemma 3 VD(a) is increasing in a.

Proof: We prove by induction on a. Let VDE = VD(AD) = minfKRE + VR(0);KDE + VD(0)g:
Let M = minfKR + VR(0);KD + VD(0)g · VD(AD). Then VD(AD ¡ 1) = minf±(mD(AD ¡ 1) +
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p(KRE + VR(0)) + (1 ¡ p)[(1 ¡ qAD)VD(AD) + qADVDE ]);Mg. Since M · VD(AD), it implies that

VD(AD ¡ 1) · M · VD(AD):

Assume the result is also true for n = AD ¡ 2; AD ¡ 1; : : : ; k + 1. We want to show that

VD(k) · VD(k + 1).

If VD(k + 1) = M , then VD(k) · VD(k + 1) since VD(k) = minf±mD(k) + ±[p(KRE + VR(0)) + (1 ¡
p)[(1 ¡ qk+1)VD(k + 1) + qk+1VDE ]];Mg.
Otherwise, if VD(k +1) = ±fmD(k +1)+p(KRE +VR(0))+(1¡ p)[(1¡ qk+2)VD(k +2)+qk+2VDE ]g;
then

VD(k) · ±fmD(k) + p(KRE + VR(0)) + (1 ¡ p)[(1 ¡ qk+1)VD(k + 1) + qk+1VDE ]g

· ±fmD(k) + p(KRE + VR(0)) + (1 ¡ p)[(1 ¡ qk+1)VD(k + 2) + qk+1VDE ]g

· ±fmD(k + 1) + p(KRE + VR(0)) + (1 ¡ p)[(1¡ qk+2)VD(k + 2) + qk+2VDE ]g

= VD(k + 1):

The second inequality follows from the induction hypothesis. The last inequality follows from

the assumption that qk and mD(k) are increasing in k. Therefore, the result holds for all a =

0; 1; : : : ; AD ¡ 1.

From the above lemmas, we can claim that a threshold policy is an optimal policy. This result is

stated in the following

Theorem 4 If a recon ḡurable system is currently used, there exists a threshold TR such that if

a < TR, an optimal policy is to keep, and if a ¸ TR, the optimal policy is to replace the current RMS

with a new RMS. If the current system is dedicated, there exists a threshold TD such that if a < TD,

an optimal policy is to keep, and if a ¸ TD, the optimal policy is to replace with a new system (which

might be recon ḡurable or dedicated).

Proof: We prove the existence of TR only since the proof of the existence of TD is virtually the same.

Lemma 2 proves that VR(a) is increasing in a which is su±cient to show that ±fmR(a)+ra+1(KRE +

VR(0)) + (1 ¡ ra+1)VR(a + 1)g is increasing in a. On the other hand, KR + VR(0) is constant in a.

The result follows.

We note that, whereas Theorem 4 indicates that once a recon ḡurable machine reaches age TR+1,

it is replaced by another recon ḡurable machine, in the case of dedicated machines, when one reaches

age TD +1, it could be replaced by a recon ḡurable or dedicated machine. Similarly, Theorem 4 does

not specify whether, when a dedicated machine fails, it should be replaced by another dedicated or
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recon ḡurable machine. As an example, with KD = 1; KR = 5; KE = 3; ± = 0:8;AD = AR = 20

years, (with both DMS and RMS having discrete uniform lifetime distributions), mD(a) = mR(a) = 0

for all a, we obtain TR = 19. If p = 0:3, TD = 17 years and if one has a 17 yr. old DMS, it is optimal

to replace it with a new DMS. On the other hand, if p = 0:6, we will replace the current DMS with

a new RMS, regardless of its age.

We can extend the DP formulation 3.5 by allowing a more general distribution for the time

of arrival of the next generation product. Speci c̄ally, as in the previous section, let pn be the

probability that the next generation product will arrive in period n given that it has not arrived in

periods 1; : : : ; n¡ 1 where pn satis ēs the discrete version of the IFR requirement. As in the previous

section, we further assume that pn has n̄ite support such that pn = 0 for n > N . The state variables

in this model are similar to those in the formulation 3.5 with a time variable n. We de n̄e VD(a; n)

as the minimum expected discounted cost of operating a DMS of age a at time n. The dynamic

program for this extended model is

VD(a; n) = min

8
>>><
>>>:

±fmD(a) + pn+1VRE + p0n+1[qa+1VD(AD; n + 1) + q0a+1VD(a + 1; n + 1)]g
KR + VR(0)

KD + VD(0; n);

VR(a) = min

8
<
:

±[mR(a) + ra+1VR(AR) + r0a+1VR(n + 1)]

KR + VR(0);
(3.6)

with boundary conditions VD(a;N) = KRE+VR(0) for all a; VD(AD; n) = minfKDE+VD(0; n);KRE+

VR(0)g for all n < N; VR(AR) = KRE + VR(0); where p0k = 1 ¡ pk; q0k = 1 ¡ qk; r0k = 1 ¡ rk; VRE =

KRE + VR(0).

As in the previous case, when the current machine is dedicated, there are three choices. We can

replace it with a recon ḡurable machine, or a new dedicated machine, or we can use it for one more

period. If we replace it with a recon ḡurable machine, then the arrival of a new product will not a®ect

anything; however, if we replace it with a dedicated machine, the new product might still arrive in the

future necessitating another equipment change. Notice that when we own recon ḡurable equipment,

we only keep track of equipment age, as the failure of the equipment is the only factor that will cause

a costly shutdown. However, with dedicated equipment, we also keep track of actual \calendar time"

as this will also a®ect whether the new product arrives. Therefore, in the above formulation, if we

buy a new recon ḡurable machine, the discounted cost-to-go from that point onwards is given by

VR(0), whereas if we buy a new dedicated machine at time n, the discounted cost to go is given by

VD(0; n). Finally, if we keep our current dedicated equipment for one more period, with probability

pn+1, the new product will arrive in period n+1, and even if it doesn't arrive, with probability qa+1,

13



the dedicated equipment will fail. If these events do not happen, then we will have an a +1 year old

dedicated machine at time n + 1.

Finally, we note that in our formulation, we assume that when a new equipment is ordered, it

arrives in the same period. We can easily extend our formulations in this section to the case where

equipment arrives one period later and all the results we present would remain the same.

Since (i)0 · ± < 1; (ii) all costs are uniformly bounded, and (iii) the problem has n̄ite state

space and action space, Eqn. 3.6 can be solved by the value iteration algorithm and the algorithm

will provide an optimal policy with any initial value of VD(a; n) for all a and n. (For more details, see

Chapter 6 of Puterman(1994).) In fact, note that the values of VR(a) can be computed separately

(by for example using a value iteration algorithm for VR(a)). Consider a value iteration algorithm to

solve Eqn. 3.6 to obtain the VD(a; n) values once the VR(a) values have been computed and de n̄e

V k+1
D (a; n) as the k ¡ th iteration value of the cost to go of owning a dedicated machine of age a at

time n:

V k+1
D (a; n) = min

n
W k+1

K (a; n); W k+1
R (a; n);W k+1

D (a; n)
o

;

where

W k+1
K (a; n) = ±fmD(a) + pn+1VRE + p0n+1[qa+1V k

D(AD; n + 1) + q0a+1V
k
D(a + 1; n + 1)]g;

W k+1
R (a; n) = KR + VR(0);

W k+1
D (a; n) = KD + V k

D(0; n);

with the boundary conditions: V k+1
D (a;N) = VRE for all a, V k+1

D (AD; n) = minfKDE+V k
D(0; n);KRE+

VR(0)g for all n < N . Finally de n̄e V 0
D(a; n) = 0 for all a and n. Also, observe that V k

D(a; n) · VRE

for all k; a and n.

By Theorem 6.2.5 of Putterman (1994) VD(a; n) = limk!1 V k
D(a; n) for all a and n. Furthermore,

any properties that the recursive value functions V k
D(a; n) possess will also be carry over to VD(a; n).

We use these properties in the proofs of the following two lemmas.

Lemma 4 VD(a; n) · VD(a + 1; n) for all a and n.

Proof: We use induction to show that V k
D(a; n) · V k

D(a+1; n) for all a and n, and the result follows

from the convergence of the V k
D functions to VD. Clearly, V 0

D(a; n) · V 0
D(a + 1; n) for all a and n,

since 0 · 0. Assume the the result is also true for k = j. At k = j + 1,

V j+1
D (a; n) = minfW j+1

K (a; n); W j+1
R (a; n);W j+1

D (a; n)g;

and

V j+1
D (a + 1; n) = minfW j+1

K (a + 1; n); W j+1
R (a + 1; n);W j+1

D (a + 1; n)g:
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To prove that V j+1
D (a; n) · V j+1

D (a + 1; n), it is su±cient to show that W j+1
K (a; n) · W j+1

K (a + 1; n)

since W j+1
R (a; n) = W j+1

R (a + 1; n) and W j+1
D (a; n) = W j+1

D (a + 1; n).

W j+1
K (a + 1; n) = ±fmD(a + 1) + pn+1VRE + p0n+1[qa+2V

j
D(AD; n + 1) + q0a+2V

j
D(a + 2; n + 1)]g

¸ ±fmD(a + 1) + pn+1VRE + p0n+1[qa+2V j
D(AD; n + 1) + q0a+2V

j
D(a + 1; n + 1)]g

¸ ±fmD(a) + pn+1VRE + p0n+1[qa+1V
j
D(AD; n + 1) + q0a+1V

j
D(a + 1; n + 1)]g

= W j+1
K (a; n):

The r̄st inequality follows by the induction hypothesis and the second inequality follows since qa

and mD(a) are increasing in a and V j
D(AD; n + 1) ¸ V j

D(a + 2; n + 1) by induction hypothesis. The

result is then true at k = j + 1. Therefore, for every k, V k
D(a; n) · V k

D(a + 1; n) for all a and n. This

completes the proof.

The following corollary is a consequence of the proof of Lemma 4.

Corollary 1 W k
K(a; n) is increasing in a for all k and n.

Lemma 5 VD(a; n) · VD(a; n + 1) for all a and n.

Proof: Once again, it is su±cient to prove that V k
D(a; n) · V k

D(a; n + 1) for all a and n, and all k.

We prove this result by induction on k. This holds trivially at k = 0. Assume that the result is also

true for k = j. At k = j + 1,

V j+1
D (a; n) = minfW j+1

K (a; n); W j+1
R (a; n);W j+1

D (a; n)g;

and

V j+1
D (a; n + 1) = minfW j+1

K (a; n); W j+1
R (a; n);W j+1

D (a; n)g:

We want to show that (i)W j+1
K (a; n) · W j+1

K (a; n + 1); (ii)W j+1
R (a; n) · W j+1

R (a; n + 1); and

(iii)W j+1
D (a; n) · W j+1

D (a; n+1): However, W j+1
R (a; n) = KR +VR(0) = W j+1

R (a; n+ 1). Therefore,

we only need to show that (i) and (iii) are true.

W j+1
K (a; n + 1) = ±fmD(a) + pn+2VRE + p0n+2[qa+1V

j
D(AD; n + 2) + q0a+1V

j
D(a + 1; n + 2)]g

¸ ±fmD(a) + pn+2VRE + p0n+2[qa+1V
j
D(AD; n + 1) + q0a+1V

j
D(a + 1; n + 1)]g

¸ ±fmD(a) + pn+1VRE + p0n+1[qa+1V
j
D(AD; n + 1) + q0a+1V

j
D(a + 1; n + 1)]g

= W j+1
K (a; n):

The r̄st inequality follows by the induction hypothesis. The second inequality follows since pn is

increasing in n by assumption and the fact that V j
D(a; n) · VRE for all a and n.
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Similarly,

W j+1
D (a; n + 1) = KD + V j

D(0; n + 2)

¸ KD + V j
D(0; n + 1)

= W j+1
D (a; n):

The inequality follows by the induction hypothesis. The result is then true for k = j +1. Therefore,

for every k, V k
D(a; n) · V k

D(a; n + 1) for all a and n.

The following corollary is a consequence of the proof of Lemma 5.

Corollary 2 1. W k
K(a; n) is increasing in n for all a.

2. W k
D(a; n) is increasing in n for any given a and is constant in a for any given n.

Using the above lemmas and corollaries, we can derive the following result which partially character-

izes the structure of the optimal policy, when we have a DMS to begin with. The decision to replace

or keep an RMS is exactly the same as in Theorem 4.

Theorem 5 There exists a switching function g(a) such that for n ¸ g(a), purchasing a RMS is

preferable to keeping an existing DMS for one more period, and for n < g(a), the reverse holds.

Furthermore, g(a) is decreasing in a. There exists a simple threshold nR such that for n ¸ nR,

buying a RMS is preferable to buying a DMS, and for n < nR, the reverse holds. Finally, there exists

a switching function f(n) such that for a ¸ f(n), buying a new DMS is preferable to keeping an old

DMS for one more period, and the reverse holds true for a < f(n).

Proof: The existence and monotonicity of g(a) follows from the fact that W k
K(a; n) is increasing in

a and n for any k (Corollary 1 and Corollary 2 part 1) whereas W k
R(a; n) is a constant for all a; n and

any k. Similary, the existence of the threshold nR follows from the fact that W k
D(a; n) is increasing

in n but constant in a for any k (Corollary 2 part 2) while W k
R(a; n) is a constant in a; n for any k.

Finally, the existence of f(n) from Corollary 1 and Corollary 2 part 2. .

Figure 1 shows a typical optimal policy for Eqn. 3.6 when the r̄m currently has a DMS. In this

example, KD = 1; KR = 5; KE = 3; ± = 0:8;AD = AR = 20 years, N = 9 years, mD(a) = mR(a) = 0

for all a. Additionally, we assume that the arrival time of next generation product and lifetime of

each machine are distributed according to a discrete uniform distribution. As seen in Figure 1, in

the early periods, the optimal decision when the current DMS is new is to keep operating the current

DMS for one more period. The optimal decision, however, changes to buying a new DMS when the
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Figure 1: Optimal decision regions when KD = 1; KR = 5; KE = 3; ± = 0:8.

age of current DMS is close to AD. On the other hand, the optimal decision is to replace the current

DMS with a new RMS in later periods. Notice that the threshold between keeping the current DMS

for one more period and buying a new RMS is monotonic as stated in the above theorem. The

threshold between buying a new DMS and buying a new RMS is constant as stated in the above

theorem. In this example, the threshold between between keeping the current DMS and buying new

DMS is also monotonic but this is not always the case.

Figure 2 provides an example with a nonmonotonic threshold between keeping the current

DMS and buying a new RMS. The example includes KD = 1; KR = 3:47007;KE = 6:557; ± =

0:81742;AD = AR = 20 periods, (with the distributions discrete uniform again),N = 9 periods, and

pi = 0; i = 0; : : : ; 6; p7 = p8 = 0:7; p9 = 1. As can be seen in Figure re±g:COUNTERX, the threshold

between keeping the current DMS and buying a new DMS is no longer monotonic.

4 N umer ical Results and Sensitivity Analysis

In this section we will provide some numerical examples to demonstrate how our decision regions are

a®ected by problem parameters. We r̄st provide numerical examples for the case with a geometric

probability for new product introduction formulated in Eqn 3.5. Initially, consider the base case with

parameters KD = 1;KE = 3; ± = 0:8, and AD = AR = 20 years. In all our examples maintenance

costs for recon ḡurable and dedicated equipment were zero. The breakdown time of each system is

discrete uniformly distributed over its physical lifetime. We are interested in how optimal decisions

change as a function of changes in KR, the cost of new recon ḡurable capacity, and p, the probability
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Figure 2: Counterexample to monotonicity of threshold between Keep DMS and Buy DMS.

a new product will be introduced in the next period. We remind the reader that when owning a

DMS, there exists a threshold such that if the DMS is older than the threshold age, it is optimal

to replace it with either a new DMS or a RMS. In Figure 3, we have plotted how optimal decisions

change as a function of changes in KR for the case with p = 0:3. For example, when KR = 1 (i.e., the

cost of a new RMS is the same as a new DMS), it is in fact optimal to buy a new RMS immediately

regardless of the age of the current DMS. When KR = 3, it is optimal to replace the existing DMS,

with a RMS only if the existing DMS is 11 years old or older. Finally, if KR = 5, it is in fact optimal

to keep the existing DMS until it is 17 years old (assuming the new product has not been introduced

by then) and then to replace it with a new DMS.

In the example above, when p is increased (next generation product arrives sooner on expecta-

tion), we intuitively expect that we are more likely to switch from the current DMS to a new RMS.

Figure 4 con r̄ms this intuition. This ḡure plots the optimal decisions as a function of KR when as

p = 0:6. It is clear that the region where it is optimal to buy a new RMS has greatly increased. In

fact, unless KR ¸ 8, we never replace an existing DMS with a new DMS. Furthermore, as long as

KR · 5, we replace an existing DMS with a RMS regardless of the age of the DMS.

We now consider examples with more complicated distributions for the arrival time of the next

generation product. Consider the base case with the parameters given above, and KR = 5. Also,

assume that the arrival time of the next generation product is uniformly distributed over 1; : : : ;N = 9

years. Figure 1 plots the optimal decisions as a function of the age of the existing DMS and time.

When the existing dedicated machine is still new and time is close to 0 (i.e., the arrival of the next

generation product is still far into the future), it is optimal to keep operating the current dedicated
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Figure 3: Optimal decision regions with di®erent value of KR when p = 0:3.

Figure 4: Optimal decision regions with di®erent value of KR when p = 0:6.
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Figure 5: Optimal decision regions when KD = 1;KR = 10;KE = 3, and ± = 0:8.

machine for one more period. However, if time is close to N (e.g., 7 years after the start of the

problem), the optimal decision is to buy a new recon ḡurable machine as the likelihood that the

next generation product will arrive soon is very high.) Similarly, when the age of current dedicated

machine is close to its physical lifetime, it is optimal to replace it by a dedicated machine in the

initial periods (i.e., time close to 0,) and by a new recon ḡurable machine in later periods (time close

to N).

We are r̄st interested in seeing the e®ect of a more expensive RMS on the optimal decisions.

Figure 5 shows the optimal decisions when KR increases from 5 to 10. As we would expect, we are

more willing to continue operating the current DMS in this case since a new RMS has become very

expensive and KE is relatively small when compared with KR. In contrast, if KR is decreased from

5 to 3, we are more willing to replace the current DMS with a new machine sooner as we show in

the largely expanded region for buying a new RMS in Figure 6.

Now, once again consider the base case with KR = 5 and assume that the next generation product

will arrive at either time 7; 8; or 9 with probability 1/3 for each period. The optimal decision regions

is shown in Figure 7. What is interesting in this example compared to the base case (shown in Figure

1) where a discrete uniform distribution between 1 and 9 was used for the arrival time of the next

generation product is that the optimal policy regions have hardly changed. Whereas in the base case

the probability that the next generation product arrives in period k is 1=(10¡ k), it is 0 in this case

for k = 1; : : : ; 6. However, the pk values are the same for the two cases for k = 7; 8; 9. This example

demonstrates that the model is not overly sensitive to small changes in p, a desirable characteristic

since p is typically the hardest parameter to estimate in practice. The optimal policy structure in
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Figure 6: Optimal decsion regions when KD = 1;KR = 3;KE = 3, and ± = 0:8.

this case is very similar to the case shown in Figure 1.

We n̄ally consider the e®ects of changing machine reliability. Consider the same example as in

Figure 7 but further assume that the lifetime of DMS is discrete uniform between 10 and 20 (i.e., in

this case we have made the machine more reliable than before as we assume that it can not fail in

the r̄st 9 periods, and the probability that it will fail in any period after 9 given it has not failed

until then is the same as in the previous example shown in Figure 7. Figure 8 shows the optimal

policy structure for this case. Comparing the two ḡures, we note that we tend to keep an existing

DMS for a shorter time for the case with improved reliability!! Notice that though this might seem

unintuitive at r̄st, it can be explained by the fact that, when we replace, for example, a 12 yr. old

DMS in Figure 8 , we are getting a new DMS that is trouble free for at least 9 years. However, in

the example in Figure 7, even a new DMS has a fair likelihood of failing and therefore there is not as

much point in replacing it. This example shows that changes in parameters might change decision

regions in what might at r̄st sight appear to be unintuitive ways.

5 Conclusions and Fur ther Resear ch

In this paper, we considered the question of when it is economically advantageous for a r̄m to invest

in recon ḡurable rather than dedicated capacity. In°uenced by our work with auto manufacturers,

and machine tool builders, we considered models where at most one recon ḡuration is required

over the lifetime of the equipment. Our models considered both the stochastic nature of the time

when the next recon ḡuration will arise as well as uncertainty in machine reliability. Our models have
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Figure 7: Optimal decision regions when KD = 1, KR = 5, KE = 3, ± = 0:8, and arrival of next

generation product discrete uniform between 7 and 9.

Figure 8: Optimal decision regions for same parameters as in Figure 6 except for improved reliability

for DMS
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resulted in a spreadsheet model tested thoroughly by our industry partners in their own organizations

for decisions involving recon ḡurable machine purchasing decisions. (Interested readers can obtain a

copy of the spreadsheet by contacting the authors.) We believe that our models provide an important

analytical tool in decisions that auto companies and machine tool makers make in purchasing or

building recon ḡurable equipment.

We have also been able to characterize the structure of the optimal policy analytically and shown

the e®ect of changes in problem parameters through numerical examples. For our most complicated

model allowing general distributions for machine failures as well as time of next product arrival, the

optimal policy (when current equipment is a DMS) is characterized by two switching curves (one of

them monotonic) and a threshold.

Our models indicate the key parameters that r̄ms need to take into account when deciding to

invest in recon ḡurable machinery. As discussed previously, investment in recon ḡurable machinery

can be viewed as a hedging strategy where the r̄m is hedging against the probability that the

r̄m will have to introduce a new model that can not be produced by the current machinery. Our

models explore when such hedging makes sense. As our discussion in Section 4 indicates, hedging by

investing in recon ḡurable machinery becomes more appealing as

1. the probability that a model change will occur increases

2. the cost of hedging (i.e., the cost of recon ḡurable equipment versus new dedicated equipment)

decreases

3. the cost of being caught without the capability to produce the new model increases

4. the age of the current dedicated equipment increases thus increasing the likelihood of a catas-

phoric failure as well as maintenance costs.

Although our models serve as a useful r̄st tool for understanding the basic tradeo®s between

purchasing a new DMS, RMS or keeping old equipment, (and have been useful in the automobile

industry), further research would extend their applicability to greater domains. For example, an

interesting extension would consider the possibility of several di®erent product introductions over

the planning horizon. Also, models that allow for equipment prices to change over time would also

be interesting. (We note that our model formulations can be easily changed to allow equipment

prices that are a function of time, however our structural results will not survive this change.) Also,

we assume in this paper, that the demand for the two generation products are the same. Models

that consider stochastic nonstationary demand would be of interest. This will lead to a much more

complicated formulation than the one we presented as the decision maker now has to decide on a

whole portfolio of machines.
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