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Abstract

Multiple Modular Design (MMD) is the method of designing a set of standard mod-

ules to meet demands for di�erent functions. This work aims to �nd an optimal set of

modules given the demands. In this paper, we start with Evans' nonlinear program-

ming model of MMD. By exploring the special structure of the formulation, we develop

several properties of optimal solutions. With these properties, we develop a heuristic

algorithm, called The Extended Simplex-like Method. In this algorithm, the objective

value monotonically decreases during each iteration until a KKT point of the problem

is found. Conceptually, a global optimal solution can be found by enumerating all KKT

points with a special property. The example and computational experience show that

the Extended Simplex-like Method can solve the problem to similar accuracy but with

much less computational e�ort than previous methods.

1. Introduction

Machine tool users have recently been demanding more customized machines to �t their

speci�c needs due to shorter life cycles and higher levels of customization of their products.

Competition in the machine tool industry results in highly price-sensitive customers request-

ing machines with multi-functionality. As a result of this market situation, two extreme

strategies have emerged. The �rst one is to exploit the market for standard machinery.

Japanese volume producers have used this strategy and achieved economies of scale. The
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other strategy is to concentrate on the market for high-priced and customized machine tools.

German and Swiss manufacturer respond mostly to this market.

Machine tool builders may, however, be able to satisfy customer demand with lower

cost through an intermediate strategy called modularization of machine tools. Building

standardized modules that can then be quickly combined into individually customized ma-

chines o�ers manufacturers the advantages of both lower cost due to economies of scale and

an enlarged customer base.

In general, a machine can be viewed as a combination of certain functions, including

identical functions. Modularization of machine tools is to select functions to be included

in di�erent modules and then assemble the modules to customer demand. We illustrate

modularization through the following simple example. In this example, there are three

types of customer demands in the market where each consists of three functions. Demand

type I requires 2 spindles, 2 motors and 2 tool supports; Demand type II consists of 2

spindles, 1 motor and 3 tool supports; Demand type III consists of 2 spindles, 2 motors and

1 tool support.

According to the �rst strategy, a machine tool (MT) company would have to design

and build a standard machine tool with 2 spindles, 2 motors and 3 tool supports for all

customers. While this strategy makes the design and production process simpler, the MT

company has to provide extra functions that some customers may not need. According

to the second strategy, a company designs and builds three individual types of machines

customized for each customer. While the MT company is able to provide the exact machine

to each customer, it incurs high design and production cost.

With the intermediate strategy of modularization, a company may design and build two

types of modules, one with 2 spindles and 2 motors and the other with 1 tool support. The

company then combines one type 1 module and two type 2 modules to meet demand type

I, one type 1 module and three type 2 modules for demand type II, and one type 1 module

and one type 2 module for demand type III. Since the MT company only needs to design

and build 2 modules, it may save the cost associated with the design and over-supply of

parts.

The research questions are how to design a set of modules that covers all desired functions
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and how to assemble the modules into machines that minimize over-supply. The problem to

design modules for meeting customer demands is called the multiple modular design problem

(MMD). A module (standard unit) is a group of functions; combinations of these modules

are used to meet a variety of customer demands. A properly designed set of modules not

only reduces the cost and time associated with the design and manufacturing of the �nal

products, but also reduces the variability of the production of the �nal products. Clearly,

if properly designed, the strategy brings bene�ts to both manufacturers and customers.

The mathematical framework of the MMD was �rst introduced by Evans [4] as an

extension of the single modular design (MD) problem, in which only one module is allowed

to meet the demands. Rutenberg and Shaftel [8] later developed an application framework

of MMD for designing modules to meet multiple customer demands. They developed a

heuristic procedure to search for optimal integer solutions; however, their heuristic search

method does not provide much insight into the structure of the optimal solutions. Silverman

[12] develops a decomposition approach for a general convex programming problem and

applies the procedure to the MMD; however, since the MMD is, in general, not a convex

programming problem, the decomposition procedure does not guarantee optimality for the

MMD.

Shaftel and Thompson [9] develop an eÆcient simplex-like algorithm to solve the MD

problem and extend the procedure to the MMD using a heuristic partition. The heuristic

partition is similar to an intelligent enumeration; however, the heuristic partition does not

even guarantee that solutions found satisfy the necessary conditions of optimality. There-

fore, it sometimes fails to �nd an optimal solution for even trivial cases, such as the one

shown in Thompson and Shaftel [10].

T�onsho�'s Ph.D dissertation [14] studies MMD problem from a bundling (combination

of modules) and pricing perspective. He creatively includes a new decision variable that is

the price charged by manufacturer for a machine tool. His objective function is to maximize

the pro�t given that customer has a reserved price for each possible bundle. He illustrates

his model by a numerical example in German's machine tool industry; however, he simpli�es

the assumption on function selection and module section. He assumes that �rst a speci�c

function appears at most once in a module and secondly a speci�c module appears at most
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once in a machine. Furthermore, he does not give any structure result on the optimal

solution.

In this paper, we study a generalized MMD problem. In this problem, we allow multiple

modules and identical functions in each module (e.g., more than one spindle can be included

in a module). Assuming �xed costs associated with the design and production of modules,

we seek a set of modules that minimizes the costs associated with production, design, and

over-supply while meeting customer demands. We �rst derive an upper bound on the total

number of modules. We then derive structural properties of the optimal solutions to the

MMD problem and develop an Extended Simplex-likeMethod (ESM) for �nding the optimal

solutions. We show that the value of the objective function monotonically decreases in each

iteration of ESM until a KKT point is found. A global optimal solution can be found by

searching among a �nite number of KKT points.

The algorithm reduces to the same simplex-like method proposed by Thompson and

Shaftel [9] when it is applied to the MD problem. Our method also easily solves the trivial

problem with which the heuristic partition method developed by Thompson and Shaftel

[10] has trouble. Numerical examples show that the extended simplex-like method is more

eÆcient than the methods proposed by both Silverman [12] and Thompson and Shaftel [10].

2. Problem Formulation

We consider a generalized MMD problem where considered costs include the cost for

producing each function and the �xed cost associated with the design of the modules.

The objective is to minimize the total cost including the production and the design of the

modules. Before we present the model, we �rst introduce the following notation.

m = the total number of functions

n = the total number of demand types;

p = the number of module types;

ai = the cost associated with function i (material, labor, etc.);

bj = the number of customers of the same demand type j;
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ck = �xed cost for designing the kth module;

rij = the number of functions i that demand type j requires;

R = frijgm�n;

xik = the number of functions i that goes into module k;

X = fxikgm�p;

ykj = the number of modules k used to meet customer demand of type j;

Y = fykjgp�n:

Note that ck is the �xed cost associated with designing the kth module regardless of

the functions in the modules. We make this assumption because in many instances, each

module may require a common base platform, which signi�cantly simpli�es the problem.

Of course, these costs are allowed to be identical. With the notation, we can present our

mathematical model as the following:

(P1) Minimizexij ;yjk;p

pX
k=1

mX
i=1

nX
j=1

aixikbjykj +
pX

k=1

ck

Subject to
pX

k=1

xikykj � rij ; i = 1; � � � ;m; j = 1; � � � ; n;

xik; ykj � 0; i = 1; � � � ;m; j = 1; � � � ; n; k = 1; � � � ; p;

p is integer.

Note that the decision variables are xik and ykj as well as p. Here, as in most standard

MMD models, we allow xik and ykj to be continuous variables. This assumption is valid for

large rij because we can then re-scale x so that x and y become integers. For example, let

R =

2
64 24 36

48 72

3
75, we have one solution x = [8=3; 16=3] and y = [9; 27=2]t. We can rescale x

and y to obtain an integer solution, x = [4; 8] and y = [6; 9]t.

One way to attack this problem is to solve a series of subproblems for p, p = 1; 2; � � �, and

�nd the solution that results in the lowest cost. As we �x p,
Pp

k=1 ck becomes a constant. We

then seek to solve xik and ykj; however, this approach has two obstacles. First, solving (P1)

for each given p is not trivial. We can show that the objective function is not quasiconcave

in X and Y and that the feasible region is not convex when p > 1. There is also no existing
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technique to solve these problems eÆciently and there exists a duality gap when p is less

than the rank of R as we will show later. Additionally, the optimal value as a function

of p is, in general, not convex in p. To see this, consider the following example. Let the

demand matrix be R =

2
66664
1 1 0

1 0 1

0 1 1

3
77775, ai = bj = 1 for all i and j, ck = 0:5 for all k. For

p = 1, one optimal solution is X =

2
66664
1

1

1

3
77775, Y =

�
1 1 1

�
with objective value of 9.5.

For p = 2, X =

2
66664
1 0

1 1

1 1

3
77775, Y =

2
64 1 1 0

0 0 1

3
75 is an optimal solution with objective value of

9. When p = 3, it is obvious that we should design three individual modules for all three

demand types and there will be no over-supply of functions. The resulting optimal value is,

therefore, 7.5. The non-convexity is due to the fact that from p = 1 to p = 2, the objective

value decreases by 0.5 which is less than the decrease of 1.5 from p = 2 to p = 3.

Fortunately, as we will show later, p can be bounded from above by the total number

of demand types n or the total number of functions m. If we can �nd eÆcient algorithms

to solve Problem (P1) for a given p, we can �nd the optimal solution by solving a �nite

number of subproblems; therefore, we will proceed to develop an algorithm to solve (P1)

for a �xed p.

Let x0ik = aixik; y
0
kj = bjykj; r

0
ij = aibjrij . The

Pp
k=1 ck term can be dropped from

the objective function because it is a constant for a �xed p. With this transformation, a

standard MMD problem formulation with a �xed number p of modules is obtained:

(TP) Minimizexij ;yjk

pX
k=1

mX
i=1

nX
j=1

xikykj (2.1)

subject to
pX

k=1

xikykj � rij ; i = 1; � � � ;m; j = 1; � � � ; n; (2.2)

xik; ykj � 0; i = 1; � � � ;m; j = 1; � � � ; n; k = 1; � � � ; p: (2.3)
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To see that there exits a duality gap, we examine the Lagrangian dual of Problem (TP):

L(R; xik; ykj; �ij) = max�ij

8<
:minxik;ykj

X
ijk

xikykj �
X
ij

�ij(
X
k

xikykj � rij)

9=
;

= max�ij

8<
:minxik;ykj

X
ij

(1� �ij)
X
k

xikykj +
X
ij

�ijrij

9=
;

= max�ij

8><
>:
�1; if any �ij > 1
P

ij rij; if all �ij � 1

=
X
ij

rij:

On the other hand, adding all the constraints associated with rij in Problem (TP) when

the rank of R > p, we have

X
ij

X
k

xikykj >
X
ij

rij:

As we will see from Theorem 2 in the next section, only when the rank of R � p, is the

optimal objective value of (TP) equal
P

ij rij.

3. Structural Analysis

We now focus on solving the standard MMD problem (TP). In this section, we derive

some structural results that will help us develop a procedure for solving Problem (TP).

Theorem 1 A minimum is attained in the multiple modular problem (TP).

Proof. Since X and Y are �nite dimensional, the result follows by sequential compactness

because the objective function is continuous, as long as we can show that there is always

an equal-objective-value solution in a closed and bounded region. To show this, suppose

we have a sequence of feasible solutions, (xl; yl), with decreasing objective values tending

to the in�mum of objective in (TP), but where the sequence has no limit points. We will

show that there is an equivalent (same objective value) sequence (x0l; y0l) which belongs to

B1(M;n +m), the unit in�nity norm ball of \radius" M in Rm+n, where M = z0 > 1,

the objective value of (x0; y0). We construct (x0l; y0l) from (xl; yl) at each step. Suppose

xli�mak
= maxk x

l
ik > M . Note this means that ylkj < M=xli�maxk

for all j since the overall
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objective must decrease. An equivalent solution is x0lik = xlik(M=xli�maxk
) < M for all i and

y0lkj = ylkj(x
l
i�maxk

=M) < 1 for all j and k. Let all others such that x0lik = xlik < M and

y0lkj = ylkj. Now, we have no x
0l
ik > M . If there still exists some y0lkj > M for some j and k,

then we can follow an equivalent procedure to update (x0l; y0l) such that each component

is nonnegative and �M . The result is an equivalent sequence in the bounded region; This

region is closed in �nite dimensions with our continuous objective, we must have limit points

that correspond to attained minima.

�

Theorem 2 For any given p, Problem (TP) is equivalent to the following problem (TPP);

i.e., the objective values of the two problems at the optimal solutions coincide.

(TPP) Minimize
X
ij

(Æij + rij) (3.1)

subject to rank(R+�) = p; (3.2)

� � 0; (3.3)

where � = (Æij)m�n.

Proof: By introducing slack variables Æij � 0, the problem TP is transformed to the following

equivalent problem (PP):

(PP) Minimize
pX

k=1

mX
i=1

nX
j=1

xikykj (3.4)

subject to
pX

k=1

xikykj � Æij = rij ; i = 1; � � � ;m; j = 1; � � � ; n; (3.5)

xik; ykj; rij � 0; i = 1; � � � ;m; j = 1; � � � ; n; k = 1; � � � ; p; (3.6)

Æij � 0; i = 1; � � � ;m; j = 1; � � � ; n: (3.7)

For any X� and Y � optimal to (TP), �� = X�Y � � R is a feasible solution to TPP. On

the other hand, for any solution �� optimal to TPP, there exists (X;Y ) � (0; 0) such that

XY = �� + R, rank(X) = rank(Y ) = p, and (X;Y ) is feasible to (TP) with objective

value
P

i;j;k xikykj =
P

ij(rij + Æ�ij).

�
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Since we can add any module to any given p modules to create a feasible design for Problem

(TP) with p+ 1 modules, the following is true.

Lemma 1 Given a demand matrix R, the optimal objective of (P1) net the �xed cost as-

sociated with the design,
Pp

k=1 ck, decreases as p increases.

Lemma 2 At an optimal solution, the number of modules, p, is bounded from above by the

rank of the demand matrix R.

proof: For any R � 0 with rank q, there exists X � 0 with rank q and Y � 0 with rank q

such that X � Y = R and
Pq

k=1

Pm
i=1

Pn
j=1 xikykj =

P
ij rij . Note that with this design,

no function is over-supplied and adding more modules only increases the �xed design costs.

Therefore, rank(R) is an upper bound of p at an optimal solution.

Theorem 3 For any given p, there are at least p tight constraints in (3.5), corresponding

to each row and column of R, at an optimal solution to Problem (TPP).

Proof: Without loss of generality, we consider the �rst row. Suppose that at an optimal

solution Æ�ij to (TPP), there exists l > n � p such that Æ�1j > 0 for all j � l. We now

examine the following problem that is equivalent to Problem (TPP) but with variables Æ1j

for j = 1; � � � ; n and Æij = Æ�ij for i � 2.

MinimizeÆ1j
X
j

Æ1j +
X
i�2;j

Æ�ij (3.8)

subject to
p+iX
j=i

((r1j) + (Æ1j))Ai;j = 0; i = 1; � � � n� p; (3.9)

Æ1j � 0; j = 1; � � � ; n; (3.10)

where Ai;j is the cofactor of the element r
�
1j of the determinant of Ai, a p+ 1 square sub-

matrix of R� = R+�� consisting of rows 1; � � � ; p+1 and columns i; � � � ; i+ p of R�. Since

Problem (3.8) - (3.10) is a linear program, there exists an optimal solution at an extreme

point Æ̂1j . Assume this extreme point solution has ^Æ1k 6= 0, for k 2 K = f1; � � � ; n� pg. For

all j =2 K; ^Æ1j = 0, i.e., at least p of the Æ̂1:'s are 0 and at most n � p of them are greater

than 0. Since Æ�1j is feasible to Problem (3.8)-(3.10), we have
P

k
^Æ1k �

P
j Æ

�
1j . Therefore,
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(Æ̂1j ; Æ
�
ij), i � 2, is at least as good a solution as Æ�ij . The same argument can be applied

to all other rows and columns. Since Problem (TPP) is equivalent to Problem (TP), the

theorem holds.

�

We now examine the KKT conditions for Problem (TP):

nX
j=1

ykj �
nX

j=1

�ijykj = 0; 8xik 6= 0; (3.11)

mX
i=1

xik �
mX
i=1

�ijxik = 0; 8ykj 6= 0; (3.12)

�ij � 0; 8(i; j); (3.13)

�ij(
X
k

xikykj � rij) = 0; 8(i; j): (3.14)

Lemma 3 The KKT equations for Problem (TP) are a necessary condition for optimality.

Proof: Without loss of generality, we assume that the demand matrix has no zero rows and

no zero columns. At any feasible solution �x and �y, there exists at least one (i; j) such that
P

k �xik�ykj � rij > 0 in each row and column. That is, for each i, at least one �xik > 0 and

for each j, at least one �ykj > 0.

We write the constraints of (TP) as ga(X;Y ) = R � XY � 0, gb(X;Y ) = �X � 0

and gc(X;Y ) = �Y � 0. Let IJ = fij : gaij(�x; �y) = rij �
P

k �xik�ykj = 0g, IK = fik :

gbik(�x; �y) = ��xik = 0g and KJ = fkj : gckj(�x; �y) = ��ykj = 0g. Let d = (dx; dy)t where

dxik and dykj are the directions of xik and ykj, respectively. Then we have

rgatij(�x; �y)d = �
P

k(dxik�ykj + dykj�xik);

rgbtik(�x; �y)d = �dxik;

rgctkj(�x; �y)d = �dykj:

It is straightforward to show that

Go = fd : rgatij(�x; �y)d < 0;rgbtik(�x; �y)d < 0;rgctkj(�x; �y)d < 0g

is not empty and that the closure of

Go = G0 = fd : rgatij(�x; �y)d � 0;rgbtik(�x; �y)d � 0;rgctkj(�x; �y)d � 0g:
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Therefore, the cone of tangents is equal to G0, which means that the Abadie constraint

quali�cation [1] and hence, Lemma 3 hold.

�

With Theorems 2 and 3, we can develop an algorithm to solve Problems (TP) and (TPP)

simultaneously as described in the next section. In the next section, we will always assume

that p in problem (TP) is less than the rank of R because when p is greater than or equal

to the rank of R, the solution is trivial by Lemma 2.

4. Algorithm

Before presenting our algorithm, we �rst de�ne a forest-basis (FB) and its properties.

These properties enable us to �nd a feasible solution easily and update our feasible solutions

by changing from one forest-basis to another forest-basis. The algorithm stops at a forest-

basis from which a KKT point can be easily found.

De�nition 1 A forest-basis (FB) for problem (TP) is de�ned as a minimum set of entries

with the property that a unique rank p matrix R0 is determined when the values of entries in

FB are given. A feasible forest-basis (FFB) is an FB such that given the values of entries

r0ij ; 8(i; j) 2 FB, a rank p matrix R0 � R exist.

Figure 1 is an example of FB of a matrix whose rank is greater than p.

Lemma 4 Given the values for the entries of an FFB to problem (TP), a unique matrix

R0 with rank p and R0 � R exists such that the sum of all entries' values in R0 is minimum

among all possible R0 � R.

Proof: We prove this result by constructing such a minimum sum matrix R0. Given the

value in an FFB, for each entry not in this FFB, there exists a sub-matrix with p+ 1 rows

and p+1 columns. The only entry with unknown value in that sub-matrix is the entry not

in the FFB. Since our target matrix R0 has rank p, the determinant of that sub-matrix of

R0 is 0 and the value of an unknown entry can be computed as follows.

11



r011 r012 � � � � � � r01;p+1

r012 r022 � � � � � � r02;p+1

� � �

r0p;1 r0p;2 � � � � � � r0p;p+1

r0p+1;2 r0p+1;3 � � � r0p+1;p+1 r0p+1;p+2

� � �

r02p;2 r02p;3 � � � r02p;p+1 r02p;p+2

r02p+1;3 � � � r02p+1;p+1 r02p+1;p+2 r02p+1;p+3

� � �
...
... � � �

� � �

Figure 1: The forest basis denoted for the p modular problem

� Case 1: If the p rows or columns in the FFB are independent, the unknown-value entry

takes the value uniquely determined by setting the determinant of the sub-matrix to

0.

� Case 2: If the p rows or columns in the FFB are dependent, then the unknown-value

entry takes its lowest feasible value corresponding to R.

Now, if the R0 constructed by this method does not have a minimum sum, there are

only two possible scenarios.

� Scenario 1: The value of the unknown entry in Case 1 is less than the value determined

by our method. If this is true, the rank of R0 > p.

� Scenario 2: The value of the unknown entry in Case 2 is less than the value determined

by our method. If so, we would have R0 6� R.

Thus, the lemma is proved by contradiction.

�

12



By Theorem 3, there are at least p binding constraints in each row and column of R at an

optimal solution. The binding constraints form a forest, F , of R. It is straightforward to

show that there exists a FFB that contains F , i.e., F 2 FFB because a FFB contains at

least p entries in each row and column.

De�nition 2 A forest-basis-restricted problem (FBP) for (TP) is the following problem

associated with a forest F of R and an FFB associated with an R0 such that F 2 FFB.

f = minimizex;y
X
k

X
i

X
j

xikykj (4.1)

subject to
X
k

xikykj = r0ij = rij; 8(i; j) 2 F; (4.2)

X
k

xikykj = r0ij � rij; 8(i; j) 2 FFB \ (i; j) =2 F; (4.3)

X
k

xikykj � rij; 8(i; j) =2 FFB; (4.4)

xik; ykj � 0; 8i; 8j and 8k: (4.5)

Lemma 5 The optimal objective value to problem (3.15) - (3.19) is the sum of all R0 entries

determined according to the method in Lemma 4 given the values of the entries in the FFB.

Proof: The lemma follows from Lemma 4 and Theorem 2.

�

By Lemma 5, any solution X and Y such that X �Y = R0 solves the FBP. In other words,

it is straightforward to �nd an optimal solution to the (FBP) problem, although our aim

is to �nd an optimal solution to (TP). The algorithm that we develop uses the solutions

that satisfy the KKT condition of the FFB problem at an optimal solution (X;Y ) to �nd

a descent direction; thus, we discuss the solution of the KKT system of (FFB). Let

hij(X;Y ) =
X
k

xikykj; 8(i; j) 2 FFB;

gij(X;Y ) =
X
k

xikykj; 8(i; j) =2 FFB;

w1ik(X;Y ) = xik; 8(i; k);

w2kj(X;Y ) = ykj; 8(k; j):
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Then the KKT system of FBP becomes

rf �
X

8ij2FFB

�ijrhij �
X

8kl=2FFB

�klrgkl � �1ikrw1ik � �2kjrw2kj = 0; (4.6)

�klgkl = 0 8(k; l) =2 FFB; (4.7)

�1ikw1ik = 0; (4.8)

�2kjw2kj = 0; (4.9)

�1ik � 0; �2kj � 0; �kl � 0: (4.10)

Lemma 6 The KKT system (4.6)-(4.10) at an optimal solution (X;Y ) to an FFB has a

non-zero solution of (�; �; �1; �2).

Proof: We prove the lemma by constructing such a solution. Let � = 0; �1 = 0; �2 = 0.

Then system (4.6) -(4.10) becomes

rf �
X
8ij

�ijrhij = 0: (4.11)

All we need to show is that there exists �, � 6= 0, that satis�es (4.11). If rf linearly

depends on rhij 's, then by rf 6= 0, Lemma 6 follows. Indeed, rf is linearly dependent on

rhij 's as shown in claims 1 and 2.

Claim 1 rhij's are linearly independent .

Proof: We prove Claim 1 by induction. First we claim that it is true for any p+1 by p+ 1

matrix R. By the de�nition of a forest base, only one entry of the p+ 1 by p+ 1 matrix R

is not in an FFB. Without loss of generality, let this entry be (k; l). We want to show that
P

ijjij 6=kl �ijrhij = 0 if and only if �ij = 0;8ij 6= kl. Since,

@h�l
@y�l

=

2
66664
x11 � � � xi1ji6=k � � � xp+1;1

� � � � � � � � � � � � � � �

x1p � � � xipji6=k � � � xp+1;p

3
77775 ;

@h�jjj 6=l

@y�l
= 0;

we have

X
ijjij 6=kl

�ijrhij = 0

14



and

X
iji6=k

xi��il = 0:

Note that X is a rank p matrix; its p rows are linearly independent and �il = 0; for all

i 6= k. We now consider the equality constraint in the ith row where i 6= k. Since

@hi�
@xi�

=

2
66664
y11 � � � y1l � � � y1;p+1

� � � � � � � � � � � � � � �

yp1 � � � ypl � � � yp;p+1

3
77775 ;

@hs�js6=i

@xi�
= 0;

we have
P

ijjij 6=kl �ijrhij = 0, and hence,
P

j y�j�ij = 0. Furthermore, the facts that �il = 0

and the solution Y is rank p ensure that
P

j 6=l y�j�ij = 0; �ij = 0; 8j. For i = k, since

@hk�
@xk�

=

2
66664
y11 � � � y1jjj 6=l � � � y1;p+1

� � � � � � � � � � � � � � �

yp1 � � � ypjjj 6=l � � � yp;p+1

3
77775 ;

@hs�js6=k

@xk�
= 0;

we have

X
ijjij 6=kl

�ijrhij = 0;

�kj = 0 8j 6= l:

because Y has rank p. Thus we proved that �ij = 0;8ij 6= kl.

Claim 1 holds for any p + 1 by p + 1 matrix R. Suppose that Claim 1 is true for any

m by n matrix R where m � p + 1 and n � p + 1. We next show that Claim 1 is true

for any m by n + 1 matrix and any m + 1 by n matrix. Without loss of generality, we

consider an m by n + 1 matrix. Let FFB0 be a forest basis of an m by n matrix and

FFB00 be a forest basis of an m by n + 1 matrix. By the property of a forest basis, p

of the entries in the n + 1st column are in FFB00. Without loss of generosity, let them

be in the set B(n + 1) = f(s; n + 1); � � � ; (s + p � 1; n + 1)g. For any FFB00, there exists

15



an FFB0 and B(n + 1) such that FFB00 = FFB0 [ B(n + 1). We need to show that
P

ijjij2FFB00 �ijrhij = 0 if and only if �ij = 0;8ij 2 FFB00.

For the constraints in the n+ 1st column, we have:

@hij2B(n+1)

@y�n+1
=

2
66664
xs1 � � � xi1 � � � xs+p�1;1

� � � � � � � � � � � � � � �

xsp � � � xip � � � xs+p�1;p

3
77775 ;

@hij 62B(n+1)

@y�n+1
= 0;

since
P

ij2FFB00 �ijrhij = 0,
P

ij2B(n+1) xi��i;n+1 = 0 and �i;n+1 = 08i = s; � � � ; s+ p� 1.

Therefore, �ij = 0; 8ij 2 B(n + 1) because the rank of X=p. Furthermore, since
P

ij2FFB00 �ijrhij =
P

ij2FFB0 �ijrhij+
P

ij2B(n+1) �ijrhij = 0, we have
P

ij2FFB0 �ijrhij =

0. Thus �ij = 0; 8ij 2 FFB0 by induction and Claim 1 is true for an m by n+ 1 matrix.

�

Claim 2 rgkl's, 8kl =2 FFB, are linearly dependent on rhij's.

Proof: Note that the value of every entry not in an FFB is determined by the values of the

entries in the FFB. The entries not in the FFB form two mutually exclusive and collectively

exhaustive classes. The �rst class includes all entries whose values are determined directly

by the values of entries in the FFB, i.e., there is a p+1 by p+1 square sub-matrix R00 where

a �rst class entry is the only entry not in the FFB. Without loss of generality, let the �rst

class entry be (p+1; p+1) in the p+1 by p+1 matrix R00 which corresponds to the function

g(p+1;p+1). The other entries in R
00 correspond to functions hij 's, where (i; j) 6= (p+1; p+1).

Let X 0; Y 0 be the sub-matrices of the solutionX;Y such that X 0�Y 0 = R00. Since X 0 is p+1

by p and rank p, its p+ 1st row linearly depends on the other p linearly independent rows.

Hence, there is a unique non-zero vector  = (1; � � � ; p)
t such that x0(p+1;�) =

Pp
i=1 ix

0
i�.

Similarly, there is a unique non-zero � such that y0(�;p+1) =
Pp

j=1 �jy
0
�j. With these, we shall

see that rg(p+1;p+1)�
Pp

i=1 irh(i;p+1)�
Pp

j=1 �jrh(p+1;j)+
Pp

i=1

Pp
j=1 i�jrhij = 0. That

is,

@g(p+1;p+1)

@x(p+1;�)
�

pX
i=1

i
@h(i;p+1)

@x(p+1;�)
�

pX
j=1

�j
@h(p+1;j)

@x(p+1;�)
+

pX
i=1

pX
j=1

i�j
@hij

@x(p+1;�)

16



=
@g(p+1;p+1)

@x(p+1;�)
�

pX
j=1

�j
@h(p+1;j)

@x(p+1;�)
= y0(�;p+1) �

pX
j=1

�jy
0
�j = 0:

Similarly,

@g(p+1;p+1)

@y(�;p+1)
�

pX
i=1

i
@h(i;p+1)

@y(�;p+1)
�

pX
j=1

�j
@h(p+1;j)

@y(�;p+1)
+

pX
i=1

pX
j=1

i�j
@hij

@y(�;p+1)

=
@g(p+1;p+1)

@y(�;p+1)
�

pX
i=1

i
@h(i;p+1)

@y(�;p+1)
= x0(p+1;�) �

pX
i=1

ix
0
i;� = 0;

8r 6= p+ 1;

@g(p+1;p+1)

@x(r;�)
�

pX
i=1

i
@h(i;p+1)

@x(r;�)
�

pX
j=1

�j
@h(p+1;j)

@x(r;�)
+

pX
i=1

pX
j=1

i�j
@hij
@x(r;�)

= �r
@h(r;p+1)

@x(r;�)
+ r

pX
j=1

�j
@h(r;j)
@x(r;�)

= �r(y
0
(�;p+1) �

pX
j=1

�jy
0
�j) = 0;

8s 6= p+ 1;

@g(p+1;p+1)

@y(�;s)
�

pX
i=1

i
@h(i;p+1)

@y(�;s)
�

pX
j=1

�j
@h(p+1;j)

@y(�;s)
+

pX
i=1

pX
j=1

i�j
@hij
@y(�;s)

= ��s
@h(p+1;s)

@y(�;s)
+ �s

pX
j=1

�j
@h(i;s)
@y(�;s)

= ��s(x
0
(p+1;�) �

pX
i=1

ix
0
i;�) = 0:

Therefore, rg(p+1;p+1) =
Pp

i=1 irh(i;p+1) +
Pp

j=1 �jrh(p+1;j) �
Pp

i=1

Pp
j=1 i�jrhij .

Next we consider the second class. The value of the �rst second-class entry (k; l) is

determined by a p+ 1 by p+ 1 matrix where that second class entry is the only unknown

entry. Using similar arguments, rgkl depends linearly on rhij 's and rgpq where (p; q)

belongs to the �rst-class entry. Hence, rgkl depends linearly on rhij's. The same argument

is true for all other second-class entries. Therefore, Claim 2 is true.

�

Since rf =
P

8ij2FFBrhij +
P

8kl=2FFBrgkl rf depends linearly on rhij by Claim 2.

Furthermore, rf 6= 0 because X;Y � 0 and X 6= 0; Y 6= 0 for all R 6= 0; Lemma 6 then

follows by Claim 1.

�

Next, we show that the solution of KKT system to an FFB gives a direction of changing

forest-basis. By updating the forest basis, we can �nd better feasible solutions until we �nd

a local optimum to Problem (TP).
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Theorem 4 Given an optimal solution, (X;Y ), to an FBP of R and R0 associated with

the FFB; let (X;Y; �ij); 8(i; j), solve the KKT equation of the FBP (4.12-4.15); If for an

entry (s; t) in this FFB, over a suÆciently small fbut positive? Prof. Birge, why we

need it is positive. It is negative when we reduce r0stg range of Æst change of r0st, the

FB is still feasible, then: (a) if �st < 0, increasing r0st decreases the objective value f ; (b) if

�st > 0, decreasing r0st decreases the objective value f .

Proof: Since there is a solution to the KKT system of any FBP, the feasible solution,

(X;Y; �ij); 8(i; j), satis�es the following system of equations.

nX
j=1

ykj �
nX

j=1

�ijykj � �ik = 0; 8(i; k); (4.12)

mX
i=1

xik �
mX
i=1

�ijxik � �kj = 0; 8(k; j); (4.13)

�ij � 0 and �ij(
X
k

xikykj � rij) = 0; 8(i; j) =2 FFB; (4.14)

�ik; �kj � 0 and �ikxik = 0; �kjykj = 0; 8(i; k); 8(k; j): (4.15)

If 9(s; t) 2 FFB satisfying the condition of the Theorem, with a small change of Æst for r
0
st

such that r00st = Æst + r0st, r
00
ij = r0ij for all ij 6= st and ij 2 FFB, there exists xik + �xik

and ykj + �ykj that are feasible with R00 replacing R0 and are optimal to R00 now by

Lemma 4. Since the objective function and all the constraint functions are continuous and

di�erentiable, the following can be obtained by Taylor's theorem.

f(X +�X;Y +�Y )

= f(X;Y ) +
X
ik

�xik
X
j

ykj +
X
kj

�ykj
X
i

xik +(�X;�Y ); (4.16)

r0st + Æst =
X
k

(xsk +�xsk)(ykt +�ykt); (4.17)

r0ij =
X
k

(xik +�xik)(ykj +�ykj); 8(i; j) 2 FFB; (4.18)

rij =
X
k

(xik +�xik)(ykj +�ykj); 8 binding(i; j) =2 FFB; (4.19)

�xik = 0; 8xik = 0; (4.20)

�ykj = 0; 8ykj = 0: (4.21)

The above Taylor expansion of the constraint functions are multiplied by their corresponding
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multipliers. They are then added to the Taylor expansion of the objective function to form:

�f = (4.22)

f(X +�X;Y +�Y )� f(X;Y )

=
X
ik

�xik
X
j

ykj +
X
kj

�ykj
X
i

xik +(�X;�Y )

+�stÆst � �st
X
k

�xskykt � �st
X
k

�yktxsk �(�xsk;�ykt)

�
X
ij 6=st

�ij
X
k

�xikykj �
X
ij 6=st

�ij
X
k

�ykjxik �(�xik;�ykj)

�
X

ik;8xik=0

�ik�xik �
X

kj;8ykj=0

�kj�ykj: (4.23)

Since the non-binding constraint multipliers are zero, we have:

�f =
X
8ik

�xik(
X
j

ykj �
X
j

�ijykj � �ik)

+
X
8kj

�ykj(
X
i

xik �
X
i

�ijxik � �kj) + �stÆst +(�X;�Y ) (4.24)

Note that (X;Y; �ij ; �ik; �kj) satis�es the KKT equations. Hence,

X
8ik

�xik(
X
j

ykj �
X
j

�ijykj � �ik) = 0;

X
8kj

�ykj(
X
i

xik �
X
i

�ijxik � �kj) = 0:

Since �xik = Æst(
dxik
dr0

st
) + O(Æ2st) and �ykj = Æst(

dykj
dr0

st
) + O(Æ2st), higher orders of �xik and

�ykj are also higher orders of Æst. Therefore, �f = �stÆst +O(Æst):

We will also see that the optimal objective value of an FBP as a function of Æst is

continuous and di�erentiable within its feasible region. Note that the value of each (k; l) 62

FFB is determined by setting the determinant of a p+1 by p+1 sub-matrix of R0 to be zero.

Therefore,  kl(Æst) , the value of entry (k; l) as a function of Æst, is a polynomial function

of Æst. Let ! = fÆstjÆst + r0st � rst;  kl(Æst) � rkl;8(k; l) 62 FFBg. Keeping FFB feasible

means Æst 2 !. Furthermore, f(Æst) =
P

ij2FFB r
0
ij +

P
8kl 62FFB  kl(Æst) + Æst;8Æst 2 !.

Therefore, f(Æst) is continuous and di�erentiable for Æst 2 !, and Theorem 4 holds. �

Theorem 5 If (X 0; Y 0; �ij) is a KKT point to the forest-base restricted problem of R0 with

basis FFB, it is also a KKT point to problem (TP) if and only if �ij � 0;8(i; j) 2 FFB.

19



Proof. Theorem 5 follows directly from the KKT equation system of (TP) and the KKT

equation system of an FBP. �

Lemma 7 For an optimal solution X 0; Y 0 to (TP) with at least p binding constraints in

each row and column of R, there exists a basis FFB of R0 = X 0Y 0 such that an optimal

solution to the FBP in De�nition 2 is identical to the optimal solution of (TP).

Proof: The lemma follows directly from De�nition 2 and Lemma 5.

�

Conceptually, there is a �nite number of forest-bases (FB) for a given matrix R; there-

fore, an optimal solution can be found by comparing the solutions of all feasible FB prob-

lems. Since the values of some entries in an FB can change, however, it is very diÆcult to

list all FB's.

The heuristic algorithm developed below can quickly lead to a KKT point to problem

(TP). The algorithm involves changes of forest bases. It is similar to the simplex method

and is an extension of the simplex-like method by Shaftel and Thompson [9]. We name the

algorithm, Extended Simplex-like Method.

The steps of the algorithm are described as follows:

(0) Initialization. Find a feasible forest basis T to R� � R.

(1) Solve (X, Y) for a forest-base T restricted feasible solution to R�.

(2) Solve the KKT equations to obtain �ij 's. Let (k; l) = argmaxij2Tfj�ijg.

(a) If �kl < 0, increase r�kl to the point where either (i) the objective value stops

decreasing or (ii) some cell not in T becomes infeasible. If (i) is true, go to (1);

otherwise, let the �rst infeasible cell substitute cell (k; l) in the forest-basis T and

then go to (1).

(b)If �kl > 0 and r�kl > rkl, reduce r
�
kl to decrease the objective value. While reducing

r�kl, (i) if rkj� = rkj then go to (1); (ii) if the objective value starts to increase, go to

(1); (iii) if some cells not in T become infeasible, substitute cell (k; l) in the T by the

�rst infeasible cell and then go to (1).
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(c) If all cells satisfy the local optimal condition, stop; compute the local optimum

X;Y .

5. Numerical Example

In this section, we demonstrate the algorithm by some numerical examples. We �rst

consider the example in Thompson and Shaftel [10], where their heuristic partition method

fails to �nd an optimal solution. The demand matrix in that example is given by R =2
66664
1 2 3

2 3 4

3 4 5

3
77775. Since the rank of R is 2, by Theorem 2, it is easy to show that the optimal

objective value for p = 2 is the sum of the values of all entries in R.

We now illustrate our algorithm using the example in Evans [3]. This example is also

used by Silverman [12] to illustrate his decomposition method. The demand matrix of the

example is given by R =

2
66666664

15 23 44

13 13 0

15 17 35

34 12 22

3
77777775
: Consider p = 2, the algorithm starts with a

feasible R�. Since the solution to p = 1 is a feasible solution to p = 2, we can start with the

solution to p = 1: X =

2
66666664

31:06 23

17:56 13

24:71 18:29

34 25:17

3
77777775
, Y =

2
64 1 0 0:9420

0 1:000 0:6410

3
75 Note that the above

solution is an optimal solution for p = 1 because the problem with p = 1 can be converted

to an equivalent convex problem.

Iteration 1: Step 1: Solve (X;Y ) for R� =

2
66666664

31:06 23 44

17:56 13 ^24:87

24:71 18:29 35

34 ^25:17 48:16

3
77777775
= XY . All entries

except the ones with a hat form an initial forest-basis.

Step 2: Given (X;Y ) we solve for KKT conditions for the Lagrange multipliers correspond-
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ing to each cell (i,j) and we obtain � =

2
66666664

1:3258 1:2217 0:6541

1:9420 1:6410 0:0000

1:9432 1:6418 �0:0013

�0:4696 0:0000 2:5602

3
77777775
:

Step 3: change the value of entries in the FFB. Note that some �ij > 0. We can reduce the

corresponding cell's value. We reduce r�43 �rst until cell (4,2) becomes infeasible.

Step 4: Update the FFB. The basis is updated by pivoting cell (4,2) into the basis and cell

(4,3) out of the basis.

Iteration 2: After the �rst iteration we have: R� =

2
66666664

31:06 23 44

17:56 13 ^24:8739

24:71 18:29 35

34 12 ^40:5606

3
77777775
, the cor-

respondingX =

2
66666664

31:06 23

17:56 13

24:71 18:29

34 12

3
77777775
, Y =

2
64 1 0 0:9893

0 1:000 0:5771

3
75 and � =

2
66666664

1327:4480 774:7613 �1339:

1:9893 1:5771 0:

�1668:3841 �972:8074 1668:

1:9893 1:5771 0:

Since �33 > 0, reducing r�33 will reduce objective value.

Iteration 3: After the second iteration, we have R� =

2
66666664

^31:3156 23 44

17:56 13 ^24:8772

24:71 18:29 35

34 12 22

3
77777775
, the

correspondingX =

2
66666664

31:3156 44

17:56 24:8772

24:71 35

34 22

3
77777775
, Y =

2
64 1 0:0273 0:000

0 0:5033 1

3
75 and � =

2
66666664

0:000 37:6844 �17:4

0:9458 2:9868 0:0

2:2871 �46:2159 24:7

1:0136 0:5007 1:2

Since �31 > 0 and r�31 > r31, we can reduce r�31.

Iteration 4: After the third iteration, we have: R� =

2
66666664

^19:1918 23 44

17:56 13 ^24:6019

15 18:29 35

34 12 22

3
77777775
, the
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correspondingX =

2
66666664

19:1918 44

17:56 24:6019

24:71 35

34 22

3
77777775
, Y =

2
64 1 0:0205 0:000

0 0:5138 1

3
75 and � =

2
66666664

0:000 49:8082 �24:0

0:9601 2:9463 0:0

2:2695 �60:9597 32:8

1:0250 �0:2206 1:6

Since �21 > 0 and r�21 > r31, we can reduce r�21.

Iteration 5: After the fourth iteration, we have: R� =

2
66666664

^19:1918 23 44

13 13 ^24:7837

15 18:29 35

34 12 22

3
77777775
, the

correspondingX =

2
66666664

19:1918 44

13 24:7837

15 35

34 22

3
77777775
, Y =

2
64 1 0:0205 0:000

0 0:5138 1

3
75, and � =

2
66666664

0:000 49:8082 �24:0

0:9601 2:9463 0:0

2:2744 �61:2007 32:9

1:0175 0:1468 1:4

Since �32 < 0 and r�21 > r31, we can increase r�21.

Iteration 6: After the �fth iteration, we have: R� =

2
66666664

15 23 44

13 13 ^24:7043

15 ^18:3533 35

34 12 22

3
77777775
, the cor-

respondingX =

2
66666664

15 44

13 24:7043

15 35

34 22

3
77777775
, Y =

2
64 1 0:0189 0:000

0 0:5163 1

3
75 and � =

2
66666664

1:0034 0:8174 1:0943

0:9635 2:9369 0:0000

1:0189 0:0000 1:5163

1:0041 0:7812 1:1130

3
77777775
.

After the sixth iteration, the above solution is a KKT point to the original problem. Fur-

thermore, we have veri�ed that the local optimality condition holds at this solution. The

objective value is 269.0577. This is the best solution found in Silverman's paper [12], how-

ever, it takes 56 iterations for their algorithm to arrive at this solution. This solution is

obtained in 6 iterations with ESM.

6. Conclusion

In this paper we consider a general Multiple Modular Design problem. We prove the
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existence of the optimal solution to MMD problem and develop an eÆcient algorithm using

the properties of the optimal solution. These properties enable us to easily solve some

MMD problems for which the other methods fail or have long solution times. Future

research directions are to �nd a good integer solution of MMD given a continuous solution,

to include random demand distribution, and to look at more complex modularization costs.
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7. Appendix 1, Disscussion of the degeneracy of the extended simplex-like method

A key requirement in Theorem 4 is a form of nondegeneracy for FFB solutions to

generate a decent directions to a local optimality. In general, it is diÆcult to show that

degeneracy cannot happen in ESM. In some special cases, we can show that there is no

degeneracy in the method.

Lemma 8 No degeneracy happens using the Extended Simplex-like Method to solve for an

optimal module given any 2 by 2 matrix with strictly positive entries .

Let R =

2
64 r11 r12

r21 r22

3
75 > 0. Without loss of generosity, we assume FFB1 = f(1; 1); (1; 2); (2; 1)g.

By the algorithm, we obtain a solution y1 = 1; y2 = r12=r11; x1 = r11; x2 = r21. We solve

the following K.K.T corresponding to FFB1 for �:

1 + r12=r11 � �11 � �12r12=r11 = 0;

1 + r12=r11 � �21 = 0;

r11 + r21 � �11r11 � �21r21 = 0;

r11 + r21 � �12r11 = 0:

We have �11 = 1 � r12r21=r
2
11; �12 = 1 + r21=r11; �21 = 1 + r12=r11. If �11 is greater than

0, we obtain a local optimum and there is nothing to prove. When �11 is less than 0,

i.e., r211 < r12r21, we show that either we can reduce the objective value with FFB1 by

increasing r11, or we change to another FFB2 and stop.

Case I: ! = fÆ11jÆ11+r11 > r11; r12�r21=(Æ11+r11) � r22g 6= �. In this case, by Theorem

4, we can reduce the objective value by increasing r11 by some Æ11 > 0.

Case II: ! = fÆ11jÆ11+r11 > r11; r12�r21=(Æ11+r11) � r22g = �; that is, r22 � r12r21=r11.

By the ESM, we move to FFB2 = f(1; 2); (2; 1); (2; 2)g. We obtain y1 = 1; x2 = r21; y2 =

r22=r21; x1 = r12r21=r22 and �12 = 1+ r21=r22; �21 = 1+ r12=r22; �22 = 1� r12r21=r
2
22. This

is actually an optimal solution to the problem because

�22 � 1� r12r21=(r12r21=r11)
2
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� 1� r211=(r12r21)

> 0:

�
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