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Programs

Abstract

Models for long-term planning often lead to infinite horizon stochastic pro-
grams that offer significant challenges for computation. Finite-horizon approxi-
mations are often used in these cases but they may also become computationally
difficult. In this paper, we directly solve for stationary solutions of infinite hori-
zon stochastic programs. We show that a successive linear approximation method
converges to an optimal stationary solution for the case with convex objective,
linear dynamics, and feasible continuation.

Keywords: stochastic programming, dynamic programming, infinite horizon, lin-
ear approximation, cutting planes
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1 Introduction

Many long-term planning problems can be expressed as infinite horizon stochastic
programs. The infinite horizon often arises because of uncertainty about any
specific endpoint (e.g., the lifetime of an individual or organization). Solving
such problems with multiple decision variables and random parameters presents
obvious computational difficulties. A common technique is to use a finite-horizon
approximation, but even these problems become quite difficult for practical size.

The approach in this paper is to assume stationary data and to solve for the
infinite horizon value function directly. A motivating example is an infinite hori-
zon portfolio problem, which involves decisions on amounts to invest in different
assets and amounts to consume over time. For simple cases, such as those in
Samuelson [13] for discrete-time and Merton [10] for continuous-time, optimality
conditions can be solved directly but general transaction costs and constraints
on consumption or investment require more complex versions of the form in the
infinite horizon problems considered here.

The problems considered here also relate to the dynamic programming liter-
ature (see, for example, Bertsekas [2]) and particularly to methods for solving
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partially observed Markov decision processes (see the survey in Lovejoy [8]). Our
method is most similar to the piecewise linear construction in Smallwood and
Sondik [14] for finite horizons and the bounding approximations used in Lovejoy
[9] for both finite and infinite horizons. The main differences in our model are
that we do not assume a finite action space and do not use finite horizon approx-
imations. Our method also does not explicitly find a policy or approximate the
state space with a discrete grid; instead, we use the convexity of the value function
and the contraction properties of the dynamic programming operator in a form of
approximate value iteration.

In the next section, we describe the general problem setting. Section 3 describes
the algorithm, while Section 4 describes the convergence properties. Section 5
discusses the construction of the value function domain as required for algorithm
convergence. Section 6 describes a portfolio example and implementation of the
algorithm. Section 7 concludes with a discussion of further issues.

2 Problem Setting

We seek to find the value function V ∗ of the infinite horizon problem

V ∗(x) = miny1,y2,... Eξ0,ξ1,...

∞∑

t=0

δtct(xt, yt) (2.1)

s.t. xt+1 = Atxt + Btyt + bt, for t = 0, 1, 2, . . . ,

x0 = x,

where ξt = (At, Bt, bt), t = 0, 1, 2, . . ., are random vectors and 0 < δ < 1 is a
discount factor. The above problem can be represented as

miny0 {c0(x0, y0) + δEξ0 min
y1
{c1(x1, y1) + δEξ1 min

y2
{c2(x2, y2) + . . .}}}

s.t. xt+1 = Atxt + Btyt + bt, for t = 0, 1, 2, . . . ,

x0 = x.

Here Eξt has the same meaning as Ext+1 .
In this paper we consider a simple version of (2.1), namely, ct = c and (At, Bt, bt) =

(A,B, b), for all t = 0, 1, 2, . . .. For the presentation below, we assume that
ξ = (A,B, b) is a discrete random vector with pi = Prob(ξ = (Ai, Bi, bi)),
i = 1, . . . , L. (The general algorithm does not require finite realizations but prac-
tical implementations make this assumption necessary.)

The value function V ∗ defined by (2.1) is a solution of V = M(V ), where the
map M (often called the dynamic programming operator) is defined by

M(V )(x) = min
y
{c(x, y) + δEξV (Ax + By + b)}
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= min
y
{c(x, y) + δ

L∑

i=1

piV (Aix + Biy + bi)}. (2.2)

Note: The problem of finding a solution of V = M(V ) and the infinite horizon
problem (2.1) are different. The value function V ∗ defined by the infinite horizon
problem is a solution to V = M(V ); however, the equation V = M(V ) may have
many solutions. We will discuss this later. For the time being, we only need to
know that a solution of V = M(V ) is equal to V ∗ if its effective domain coincides
with dom(V ∗).

More precisely, let D∗ = dom(V ∗) be compact and convex. Let B(D∗) be the
Banach space of all functions finite on D∗ and equipped with the norm ‖f‖D∗ =
supx∈D∗{|f(x)|}; then, the equation V = M(V ) has a unique solution on B(D∗),
which is V ∗.

We will propose a cutting plane method to construct a piecewise linear value
function V k which approximately solves the problem V = M(V ). The cutting
plane method can only be applied to convex problems; thus, we assume the cost
function c be convex throughout the paper.

For any functions f and g : Rn → R ∪ {+∞}, we say f ≥ g if f(z) ≥ g(z) for
all z ∈ Rn.

3 A cutting plane method

In this and the next sections we assume that the domain D∗ = dom(V ∗) is known
and is compact and convex. All functions are regarded as elements in B(D∗); thus,
we will only define values of functions on D∗.

Algorithm 1

1. Initialization: Find a piecewise linear convex function V 0 ∈ B(D∗) satisfying
V 0 ≤ V ∗. Set k ← 0.

2. If V k ≥ M(V k), stop, V k is the solution. Otherwise, find a point x̄ ∈ D∗

with V k(x̄) < M(V k)(x̄).

3. Find a supporting hyperplane of M(V k) at x̄, say t = Qk+1x + qk+1. Define
V k+1(x) = max{V k(x), Qk+1x + qk+1}.
k ← k + 1. Go to Step 2.

Details of the algorithm

Step 1: Usually, we can find V 0 easily. For instance, if c(x, y) ≥ c0 for all (x, y)
in its domain, then we can choose V 0(x) = c0/(1− δ), a constant function on D∗.
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It is clear that

V ∗(x) ≥
∞∑

i=0

δic0 = V 0(x), ∀x ∈ D∗.

Step 2 consists of two parts. Part 1 is the valuation of M(V k)(x) and Part 2
describes a method for finding a point x̄ ∈ Dk with V k(x̄) < M(V k)(x̄).

Part 1. Assume that V k is defined by k linear cuts, i.e., for any x ∈ D∗,

V k(x) = max{Qix + qi : i = 1, . . . , k}
= min{θ | θ ≥ Qix + qi, i = 1, . . . , k}.

Then

M(V k)(x) = min
y
{c(x, y) + δ

L∑

j=1

pjV
k(Ajx + Bjy + bj)}

= min
y,θ
{c(x, y) + δ

L∑

j=1

pjθ
i | θi ≥ Qizj + qi, zj = Ajx + Bjy + bj ∈ D∗,

i = 1, . . . , k; j = 1, . . . , L}. (3.1)

Part 2. We seek to find x̄ by approximately minimizing V k(x)−M(V k)(x) on
D∗. Notice that V k−M(V k) is a d.c. function (difference of two convex functions)
on D∗. There are rich results on solving d.c. programs, originated by Horst and
Tuy [5]. We will propose a method described in [4].

min
x∈D∗

V k(x)−M(V k)(x)

is equivalent to

min xn+1

x, xn+1 : V k(x)−M(V k)(x)− xn+1 ≤ 0,

x ∈ D∗,

which is equivalent to

min xn+1

x, xn+1, xn+2 : V k(x)− xn+1 − xn+2 ≤ 0,

M(V k)(x)− xn+2 ≥ 0

x ∈ D∗,
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which is equivalent to

min xn+1

x, xn+1, xn+2 : Qix + qi − xn+1 − xn+2 ≤ 0, i = 1, . . . , k,

x ∈ D∗,

M(V k)(x)− xn+2 ≥ 0.

The first k + 1 constraints define a polyhedral set, denoted by D. (In order to
use the algorithm described in [4], D should be bounded. This can be done by
adding appropriate lower and upper bounds on xn+1 and xn+2, without changing
the solution of the minimization problem.) The function in the k+2-nd constraint
is convex, denoted by g. Such a program can be solved by Algorithm 4.1 in [4].
Here we describe it briefly. The algorithm solves

min cT x (3.2)

s.t. x ∈ D, g(x) ≥ 0.

Initialization:
Solve min{cT x : x ∈ D} to obtain x0 ∈ D. Assume g(x0) < 0 (otherwise,

x0 is optimal solution to (3.2)). Construct a simple polytope S0, e.g., a simplex,
containing D, such that x0 is a vertex of S0; compute the vertex set V (S0) of S0.
k ← 0.
Iterations:

Choose z ∈ V (Sk) satisfying g(z) = max{g(x) : x ∈ V (Sk)}.
If g(z) = 0 and z ∈ D, then stop; z is an optimal solution.
Otherwise, apply the simplex algorithm with starting vertex z to solve min{cT x :

x ∈ Sk} until an edge [u, v] of Sk is found such that g(u) ≥ 0 and g(v) < 0 and
cT v < cT u; compute the intersection point s of [u, v] with {x : g(x) = 0}.

If s ∈ D then Sk+1 ← Sk ∩ {x : cT x ≤ xT s}.
If s 6∈ D then Sk+1 ← Sk ∩ {x : l(x) ≤ 0}, where l(x) ≤ 0 is one of the linear

constraints defining D satisfying l(s) > 0.
k ← k + 1, repeat.

Step 3: Let D∗ = {x | Fx ≤ f} and

V k(x) =

{
min{θ | Qx + q ≤ θe} if Fx ≤ f ,
+∞ otherwise,

where e = (1, . . . , 1)T .
Let (ȳ, θ̄) and {(λ̄j , µ̄j) : j = 1, . . . , L} be an optimal solution and optimal

multipliers of the problem:

min
y,θ
{c(x̄, y) + δ

L∑

j=1

pjθ
j | Qzj + q ≤ θje, Fzj ≤ f , zj = Aj x̄ + Bjy + bj , j = 1, . . . , L}.
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Then

ξ = ∇xc(x̄, ȳ) +
L∑

j=1

(λ̄T
j QAj + µ̄T

j FAj)

is a subgradient of M(V k) at x̄. (See Appendix for the proof.)
A supporting hyperplane of M(V k) at x̄ is

t = M(V k)(x̄) + ξ(x− x̄)

That is,

Qk+1 = ξ, qk+1 = M(V k)(x̄)− ξx̄.

4 Convergence

In this section we assume D∗ is a polytope.

Theorem 4.1 M is a contraction on B(D∗).

Proof. The proof can be found, e.g., in Theorem 3.8 of [7].
The unique solution of V = M(V ) on B(D∗) is V ∗. We also denote B = B(D∗).

Lemma 4.2 M(V ) is convex if V is convex.

Proof. (see Corollary 3.11 in [7].)
The following theorem is crucial for the convergence.

Theorem 4.3 Let V ∈ B. If M(V ) ≤ V ≤ V ∗, then V = V ∗.

Proof. It follows from M(V ) ≤ V that for all x ∈ D∗

M(M(V ))(x) = min
y
{c(x, y) + EM(V )(Ax + By + b)}

≤ min
y
{c(x, y) + EV (Ax + By + b)}

= M(V )(x).

This implies V ≥ M(V ) ≥ M2(V ) ≥ . . . ≥ Mk(V ) ≥ . . .. Since M is a contraction
on B by Theorem 4.1, Mk(V ) → V ∗. This shows that V ≥ V ∗. Now we have
V ∗ ≥ V ≥ V ∗ which implies V = V ∗.

If Algorithm 1 stops at an iteration with V K ≥ M(V K), then we have V K = V ∗

by the above theorem.
If the algorithm does not terminate in a finite number of iterations, then the

convergence of V k to V ∗ is not so obvious. We notice that each cut is related
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to a testing point x̄. Such a process can lead to pointwise convergence, but not
necessarily uniform convergence. A catch is that the limit of a pointwise convergent
sequence {V k} may not be V ∗, because V k may only be updated in some area of
the domain but not over the full domain. Our convergence analysis shall answer the
following two questions. Under what conditions can the sequence {V k} converge
uniformly? If {V k} converges uniformly, is the limit function equal to V ∗? Our
main condition for uniform convergence is that D∗ is a polytope. Indeed, if D∗ is an
arbitrary convex compact set, one can construct a monotone increasing sequence
of convex functions {V k} which converges pointwise but not uniformly. For the
second question, we will give a positive answer. The result is presented in Theorem
4.6.

Lemma 4.4 V k ≤ V k+1 ≤ V ∗.

Proof. From Step 2, it is obvious that V k ≤ V k+1.
The initial function V 0 ≤ V ∗. Suppose V k ≤ V ∗, then M(V k) ≤ M(V ∗) = V ∗,

thus for any x ∈ D∗

V k+1(x) ≤ max{V k(x), M(V k)(x)} ≤ V ∗(x).

Lemma 4.5 If fk ≤ fk+1, fk → f̄ pointwise on a compact set D ⊂ Rn, and fk

and f̄ are all continuous on D, then fk → f̄ uniformly on D.

Proof. If uniform convergence is not true, then there exists a constant ε0 > 0,
and, for each k, there exists xk ∈ D such that

f̄(xk)− fk(xk) ≥ ε0.

Let xk → x̄ ∈ D (otherwise, use a convergent subsequence). For any l and any
k > l,

f̄(xk)− f l(xk) ≥ f̄(xk)− fk(xk) ≥ ε0.

By continuity, f̄(x̄)− f l(x̄) ≥ ε0 > 0, which contradicts that f l(x̄) → f̄(x̄).

Theorem 4.6 Suppose that D∗ is a polytope and suppose that, at the k-th itera-
tion, a point xk ∈ D∗ is selected such that

M(V k)(xk)− V k(xk) ≥ α max{M(V k)(x)− V k(x) | x ∈ D∗}

for some constant α > 0. Then V k → V ∗ uniformly.
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Proof. First, suppose that Algorithm 1 stops at a finite iteration K with V K ≥
M(V K). By Lemma 4.4 V K ≤ V ∗. Thus by Theorem 4.3, V K = V ∗.

Now suppose Algorithm 1 generates a sequence {V k} which converges to Ṽ

pointwise.
Because V k ≤ V k+1 → Ṽ , epi(Ṽ ) = ∩kepi(V k), which is a closed set since

every V k is closed. Thus Ṽ is a closed convex function on D∗. By our assumption,
D∗ is a polytope; thus, by Theorem 10.2 in [11], Ṽ is continuous on D∗. By Lemma
4.5, V k → Ṽ uniformly on D∗.

Assume that there exists an x̂ ∈ D∗ such that

M(Ṽ )(x̂)− Ṽ (x̂) = 2σ > 0.

By Theorem 4.1, M(V k) → M(Ṽ ) uniformly on D∗ since V k → Ṽ uniformly.
Thus there exists a k̂ such that M(V k)(x̂) ≥ M(Ṽ )(x̂) − σ, for all k ≥ k̂. This
yields

M(V k)(x̂)− V k(x̂) ≥ M(Ṽ )(x̂)− σ − Ṽ (x̂) ≥ σ.

Since the supporting hyperplane at iteration k satisfies Qk+1xk+qk+1 = M(V k)(xk),
we have

V k+1(xk)− V k(xk) = M(V k)(xk)− V k(xk)

≥ α[M(V k)(x̂)− V k(x̂)]

≥ ασ.

Thus

Ṽ (xk)− V k(xk) ≥ ασ, ∀ k ≥ k̂.

The above contradicts the uniform convergence of V k → Ṽ on D∗.
The contradiction implies that

M(Ṽ )(x) ≤ Ṽ (x), ∀x ∈ D∗.

Then, by Theorem 4.3, Ṽ = V ∗. This means that V k converges to V ∗ uniformly
on D∗.

5 Construction of the domain D∗

This section discusses how to find D∗. We do not have a complete answer for this
problem; nevertheless, the method proposed can find D∗ in finite iterations for
many cases.
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Approximating D∗

Although the domain of a solution of V = M(V ) does not necessarily coincide with
D∗ = dom(V ∗) where V ∗ is the value function defined by (2.1), it does provide
useful information for finding D∗. We first represent the domain of M(V ).

From (2.2) one can see that x ∈ dom(M(V )) if and only if there exists a y such
that c(x, y) < +∞ and Aix + Biy + bi ∈ dom(V ) for all i = 1, . . . , L. Denote

Dc(x) = {y | c(x, y) < +∞}
G(x,D) = {y | Aix + Biy + bi ∈ D, ∀i = 1, . . . , L}

Then, x ∈ dom(M(V )) if and only if Dc(x) ∩G(x, dom(V )) 6= ∅.
Denote

Γ(D) = {x | Dc(x) ∩G(x,D) 6= ∅}.

Then

dom(M(V )) = Γ(dom(V )).

The following lemma shows that if dom(V ) ⊆ dom(M(V )) then dom(V ) ⊆
dom(V ∗).

Lemma 5.1 Suppose c is bounded on its domain. If D ⊆ Γ(D) then D ⊆ D∗.

Proof. For any xt ∈ D, we have xt ∈ Γ(D), thus

∃yt ∈ Dc(xt) : A(ωt)xt + B(ωt)yt + b(ωt) ∈ D, ∀ωt ∈ Ω. (5.1)

For any x̄ ∈ D, let x0 = x̄. There exists y0 satisfying (5.1). For each ω0 ∈ Ω,
let x1(ω0) = A(ω0)x0 + B(ω0)y0 + b(ω0). Since x1(ω0) ∈ D ⊆ Γ(D), there exists
y1(ω0) satisfying (5.1), and so on. So we obtain a sequence {(xt, yt) : t = 0, 1, . . .}
(here (xt, yt) are random vectors) satisfying (xt, yt) ∈ dom(c) because yt ∈ Dc(xt).
Since c is bounded on its domain, E

∑∞
t=0 δtc(xt, yt) < ∞, thus V ∗(x̄), defined by

(2.1), is finite, i.e., x̄ ∈ D∗. Therefore, D ⊆ D∗.
Suppose we use a cutting plane method to construct D∗ and start with a set

D ⊇ D∗. The above lemma suggests that one should cut off a portion of D if
D 6⊆ Γ(D).

Because

D∗ ⊆ Dcx := {x | Dc(x) 6= ∅} = {x | ∃y such that c(x, y) < +∞},

we start with Dcx to find D∗. A generic cutting plane method which constructs
D∗ with this idea is as follows:
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Algorithm 2
(0) Let D0 = Dcx. k = 0.
(1) If Dk ⊆ Γ(Dk), stop. Otherwise, find a cut F k+1x ≤ fk+1 which cuts off a

portion of Dk \D∗.
(2) Let Dk+1 = Dk ∩ {x | F k+1x ≤ fk+1}. k ← k + 1. Repeat.
The algorithm stops when a Dk with Dk ⊆ Γ(Dk) is found. Question: is

Dk = D∗?

Theorem 5.2 If the algorithm terminates at a finite iteration K, then DK = D∗.

Proof. The algorithm starts with Dcx which contains D∗. No cut cuts off any
point of D∗, thus DK ⊇ D∗. When the algorithm stops with DK ⊆ Γ(DK),
Lemma 5.1 yields DK ⊆ D∗. Thus, DK = D∗.

Generating cuts

Now we discuss Step (1) in detail.
Let dom(c) = {(x, y) : Tx + Wy ≤ r} and Dk = {x : F ix ≤ f i : i = 1, . . . , k}.
x̄ 6∈ Γ(Dk) if and only if

T x̄ + Wy ≤ , r

F i(Aj x̄ + Bjy + bj) ≤ f i, i = 1, . . . , k; j = 1, . . . , L.

has no feasible solution; then, by Farkas’ Theorem, if and only if

k∑

i=1

L∑

j=1

πijF
iBj + λT W = 0,

k∑

i=1

L∑

j=1

πij [F i(Aj x̄ + bj)− f i] + λT (T x̄− r) > 0, (5.2)

π ≥ 0, λ ≥ 0,

has a solution.
Thus, to find a point x̄ ∈ Dk such that x̄ 6∈ Γ(Dk) is equivalent to finding a

triple (x̄, λ, π) satisfying x̄ ∈ Dk and (5.2). (Note that finding a solution to (4.2)
is equivalent to determining the sign of the supremum of an indefinite quadratic
function subject to linear constraints, which would also require global optimization
methods as in Horst et al. [4].)

Once a solution (x̄, λ, π) is found, one can construct a feasibility cut:

k∑

i=1

L∑

j=1

πij [F i(Ajx + bj)− f i] + λT (Tx− r) ≤ 0,
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i.e.,

F k+1 =
k∑

i=1

L∑

j=1

πijF
iAj , fk+1 =

k∑

i=1

L∑

j=1

πij [f i − F ibj ] + λT r.

We can add an objective to find the “best” cut, e.g., in the sense that F k+1 is the
normal direction of a facet of D∗ (or, perhaps more realistically, a facet of Γ(Dk)).

The cut generated above cuts off a portion of Dk, but does not cut off any
point in Γ(Dk). A cutting plane method with such cuts may fail if Γk(Dcx) = D∗

does not occur in a finite number of steps.
Let us look at a simple example to see how Γk(Dcx) approximates D∗.

Example 1

Suppose

dom(c) = {(x, y) | x ∈ [−1, 1]2, y ∈ [−β, β]}
Ax + By + b = αx + e1y, (deterministic)

Here e1 = (1, 0)T . Then

Dc(x) =
{

[−β, β] if x ∈ [−1, 1]2,
∅ otherwise.

G(x,D) = {y | αx + e1y ∈ D}.

Thus,

Dc(x) ∩G(x,D) 6= ∅ ⇐⇒ x ∈ [−1, 1]2, [−β, β] ∩ {y | αx + e1y ∈ D} 6= ∅,
⇐⇒ x ∈ [−1, 1]2, (αx + e1[−β, β]) ∩D 6= ∅. (5.3)

For 0 < α ≤ 1,

Dcx = {x : Dc(x) 6= ∅} = [−1, 1]2,

Γ(Dcx) = {x ∈ [−1, 1]2 : (αx + e1[−β, β]) ∩ [−1, 1]2 6= ∅},
⊇ {x ∈ [−1, 1]2 : {αx} ∩ [−1, 1]2 6= ∅},
= [−1, 1]2 = Dcx,

thus, by Lemma 5.1, D∗ = [−1, 1]2 = Dcx.
Note: For the case α = 1, any subset D of [−1, 1]2 of the form {|x1| ≤ 1, |x2| ≤

t} for some t ≤ 1 satisfies D = Γ(D). Thus M is a contraction on the Banach
space B(D) and V = M(V ) has a solution (fixed point) VD in B(D). This shows
that the equation V = M(V ) may have many solutions.
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For 1 < α ≤ 1 + β,

Dcx = [−1, 1]2,

Γ(Dcx) = {|x1| ≤ 1, |x2| ≤ 1/α},
...

Γk(Dcx) = {|x1| ≤ 1, |x2| ≤ 1/αk},

thus D∗ = limk→∞ Γk(Dcx) = {|x1| ≤ 1, x2 = 0} 6= Dcx.
For α > 1 + β,

Dcx = [−1, 1]2

Γ(Dcx) = {|x1| ≤ 1 + β

α
, |x2| ≤ 1/α}

Γ2(Dcx) = {|x1| ≤ 1 + β + αβ

α2
, |x2| ≤ 1/α2}

...

Γk(Dcx) = {|x1| ≤ 1 + β + αβ + . . . + αk−1β

αk
, |x2| ≤ 1/αk}

thus D∗ = limk→∞ Γk(Dcx) = {|x1| ≤ β
α−1 , x2 = 0} 6= Dcx.

Remarks:
(i) In some case (α ≤ 1), D∗ = Dcx, which can be obtained directly.
(ii) In some case (α > 1), infinitely many iterations are required to reach D∗.
(iii) Suppose the cutting plane algorithm generates only one-side-cuts in the

case of α > 1, e.g., only the cuts x2 ≥ −1/αk. Then Dk 6→ D∗.
(iv) If we can directly generate the cut x2 ≥ 0 instead of infinitely many cuts

{x2 ≥ −1/αk : k = 1, 2, . . .}, then we can construct D∗ in 2 (4) iterations for the
problem with α ≤ (>)1 + β.

Generating the deepest cut

If a cut does not cut off any point in Γ(Dk), then, as shown in Example 1, the
cutting plane method may fail to approximate D∗ even with infinitely many iter-
ations. In order to fulfill the goal in Remark (iv), we must find a deeper cut (a
smaller fk+1), which cuts into Γ(Dk), hopefully, reaching the boundary of D∗.

Given a D, suppose that we have obtained a cut dT x ≤ t0 which cuts off a
portion of D \Γ(D) (but does not cut into Γ(D)). Denote Dt := D∩{dT x ≤ t}. If
the plane dT x = t0 has touched the boundary of Γ(D), then no point of Dt0 \Γ(D)
can be cut off by any cut of the form dT x ≤ t for arbitrary t. However, since
Γ(Dt0) is smaller than Γ(D), a portion of Dt0 \Γ(Dt0) may be cut off by some cut
dT x ≤ t. We wish to find t̄ < t0 such that no point of Dt̄ \ Γ(Dt̄) can be cut off
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by any cut of the form dT x ≤ t. In other words, the plane dT x = t̄ touches the
boundary of Γ(Dt̄) (a supporting plane of Γ(Dt̄)). Thus, for any t > t̄, the plane
dT x = t does not touch Γ(Dt), and for any t ≤ t̄, the half-space dT x ≤ t intersects
with Γ(Dt). The latter means that there exists x ∈ Γ(Dt) satisfying dT x ≥ t. The
latter interpretation suggests to determine t̄ by the following linear program:

t̄ = max {t | dT x ≥ t, x ∈ Γ(Dt)}. (5.4)

Because dT x ≤ t0 does not cut into Γ(D) (then does not cut into Γ(Dt)), there
exists no x satisfying dT x ≥ t and x ∈ Γ(Dt) if t > t0. This implies that t̄ ≤ t0.
Therefore, the cut dT x ≤ t̄ is deeper than the cut dT x ≤ t0.

On the other hand, the following lemma guarantees that the cut dT x ≤ t̄ will
not cut off any point in D∗.

Lemma 5.3 Suppose that D∗ ⊂ D. Let t̄ be the optimal objective value of problem
(5.4). Then dT x ≤ t̄ is satisfied by all x ∈ D∗.

Proof. Let

x∗ = argmax{dT x | x ∈ D∗}, t∗ = dT x∗.

Because x∗ ∈ D∗, there exist {(xt, yt) : t = 0, 1, 2, . . .} such that

V ∗(x∗) = E[
∞∑

t=0

δtc(xt, yt)] < ∞,

xt+1 = Axt + Byt + b, x0 = x∗.

For any integer K ≥ 0, let x̃l = xl+K and ỹl = yl+K . Because E[
∑∞

t=K δt−Kc(xt, yt)] <

∞, we have

V ∗(xK) ≤ E[
∞∑

l=0

δlc(x̃l, ỹl)] < ∞.

Therefore, xK ∈ D∗.
Now y0 ∈ Dc(x∗) follows from c(x∗, y0) < ∞ and y0 ∈ G(x∗, D∗) follows from

x1 = Aix
∗ + Biy0 + bi ∈ D∗ for every i = 1, . . . , L. Thus x∗ ∈ Γ(D∗). Because

D∗ ⊆ D and D∗ ⊆ {dT x ≤ t∗}, we have D∗ ⊆ Dt∗ . Therefore, x∗ ∈ Γ(Dt∗). This,
together with dT x∗ = t∗, shows that (x∗, t∗) is a feasible point of (5.4); thus t∗ ≤ t̄,
from which the claim of the lemma follows.

The following example shows the effect of the deepest cut.
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Example 1

(Continued)
Consider α > 1. Consider the cut of the form −x2 ≤ t for some t ∈ R to be

determined. So, d = (0,−1)T in (5.4). Start with D = Dcx = [−1, 1]2. Then

Dt = {x ∈ [−1, 1]2 : −x2 ≤ t}.

Linear program (5.4) is

t̄ = max t

s.t. −x2 ≥ t,

−1 ≤ αx1 + y ≤ 1,

−t ≤ αx2 ≤ 1,

−β ≤ y ≤ β.

A feasible solution must satisfy

−t/α ≤ x2 ≤ −t.

This can only be satisfied when t ≤ 0 since α > 1. Thus we have t̄ = 0. The cut
−x2 ≤ 0 reaches the bottom of D∗. With one more cut from above (d = (0, 1)T ),
D∗ will be completely determined for the case of 1 < α ≤ 1 + β.

For the case of α > 1 + β, suppose we have d = (1, 0)T . Then

Dt = {x ∈ [−1, 1]2 : x1 ≤ t}

Linear program (5.4) is

t̄ = max t,

s.t. x1 ≥ t,

−1 ≤ αx1 + y ≤ t,

−1 ≤ αx2 ≤ 1,

−β ≤ y ≤ β.

Feasible solutions must satisfy

t ≤ x1 ≤ t + β

α
.

This implies

t ≤ β

α− 1
.
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Thus t̄ = β
α−1 . So we obtain a cut x1 ≤ β

α−1 which cuts exactly to the boundary
of D∗ on the right. One more cut from the left (d = (−1, 0)T ) will completely
determine D∗. So, in total, we need only 4 cuts.

Under what conditions does D∗ = Dcx hold true?
The set Dcx is easy to determine. If Dcx = D∗, then Algorithm 2 is not needed.

For what (Ai, Bi, bi), i = 1, . . . , L, does D∗ = Dcx hold true?

Lemma 5.4 If Dcx ⊆ Γ(Dcx) then Dcx = D∗.

Proof. Dcx ⊆ Γ(Dcx) implies Dcx ⊆ D∗ by Lemma 5.1. On the other hand,
D∗ ⊆ Dcx always holds. Thus, Dcx = D∗.

The condition is spelled out as

∀x ∈ Dcx, ∃y ∈ Dc(x) such that Aix + Biy + bi ∈ Dcx, i = 1, . . . , L.

This condition is not easy to check in general. For the simple problem as
Example 1, we have a sufficient condition.

Corollary 5.5 Consider

M(V )(x) = min
y
{c(x, y) + δ

L∑

i=1

piV (αix + Biy + bi)}.

Assume that there exits an x̄ ∈ Dcx such that for any x ∈ Dcx there is a y ∈ Dc(x)
such that αix̄ + Biy + bi− x̄ = 0 for all i = 1, . . . , L. If αi ≤ 1 for all i = 1, . . . , L,
then D∗ = Dcx.

Proof. For any x ∈ Dcx we have y ∈ Dc(x) satisfying

αix + Biy + bi = αi(x− x̄) + x̄ ∈ Dcx.

Thus, x ∈ Γ(Dcx). This implies Dcx ⊆ Γ(Dcx). Thus, Dcx = D∗.
Example 1 satisfies the condition in the lemma, letting x̄ = 0 and y = 0 for all

x. Thus, for α ≤ 1 we have D∗ = Dcx = [−1, 1]2.

6 Infinite horizon portfolio example

As noted in the introduction, this work was motivated by solving infinite horizon
investment problems that face long-enduring institutions. We will demonstrate
how the algorithm performs on a small example where an infinite horizon optimum
can be found analytically (as done, for example, in [13] and [10]). The goal is to
maximize the discounted expected utility of consumption over an infinite horizon.
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The decisions in each period are how much to consume and how much to invest
in a risky asset (or in a variety of assets).

The state variable x in this case corresponds to wealth or the current market
value of all assets. The control variable y has two components, y1, which corre-
sponds to consumption, and y2, which corresponds to the amount invested in a
risky asset with random return ξ. The assumption in this model is that any re-
maining funds, after consuming y1 and investing y2 in the risky asset, are invested
in a riskfree asset (e.g., U.S. Treasury bills) with known rate of return r. For this
model, c(x, y) is either ∞ if x < 0 or −yγ

1/γ, for some non-zero parameter γ < 1,
giving (the negative of) the common utility function with constant relative risk
aversion (i.e., such that risk preferences do not depend on the level of wealth).

With these assumptions, M(V ) takes the following form (for x ≥ 0):

M(V )(x) = min
y
{−yγ

1/γ + δ
L∑

i=1

piV ((1 + r)x− (1 + r)y1 + (ξi − r)y2)}. (6.5)

where ξi is the ith realization of the random return with probability pi. The
solution V ∗ of M(V ) = V can be found analytically by observing that the optimal
value function is proportional to xγ (by, for example, considering the limiting case
of a finite horizon problem). We then have that

L∑

i=1

piV ((1 + r)x− (1 + r)y1 + (ξi − r)y2)

= −K
L∑

i=1

pi((1 + r)x− (1 + r)y1 + (ξi − r)y2)γ

= −K(x− y1)γ
L∑

i=1

pi((1 + r) + (ξi − r)[y2/(x− y1)])γ

= −K(x− y1)γ
L∑

i=1

pi((1 + r) + (ξi − r)z)γ ,

where z = y2

x−y1
is the fractional risky investment after consuming y1 and K is

some positive constant. The optimal z∗ then must solve

L∑

i=1

piγ(ξi − r)((1 + r) + (ξi − r)z)γ−1 = 0, (6.6)

which is independent of y1. With V̄ ∗ = −∑L
i=1 pi((1 + r) + (ξi − r)z∗)γ , optimal

y∗1 now must solve

−yγ−1
1 + δγKV̄ ∗(x− y1)γ−1 = 0 (6.7)
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or

y∗1 = x
(δγKV̄ ∗)1/(γ−1)

1 + (δγKV̄ ∗)1/(γ−1)
= xw∗, (6.8)

for an optimal consumption fraction w∗. The last step is to find K from M(V ) =
V , using

−xγ((w∗)γ/γ + δKV̄ ∗(1− w∗)γ) = M(V (x)) = V (x) = −Kxγ (6.9)

to obtain K = ((δV̄ ∗)1/(γ−1)−1)γ−1

δγV̄ ∗ .
While this function can be found explicitly, various other constraints on invest-

ment (such as transaction costs and limits on consumption changes from period to
period) make analytical solutions impossible. We use the analytical solution here
to observe Algorithm 1’s performance and convergence behavior. We also use the
analytical solution to derive initial upper bounding approximations. For our test,
we use the linear supports of V ∗ at x = 0.1 and x = 10 as initial cuts and restrict
our search in x to the interval [0.1, 10], although the feasible region is unbounded.

For our test, we used γ = 0.03, r = 0.05, and ξi chosen as a discrete approxima-
tion of the lognormal return distribution with mean return of 0.08 and standard
deviation of 0.4. Algorithm 1 was implemented in MATLAB using fmincon to
solve the optimization subproblems and a linesearch to find x̄ in Step 2. We tried
different values for the discount factor, δ. The results for δ = 1

1.25 appear in Figure
1, which includes V 0, V 5, V 10, V 20, V 50, V 100, and V ∗. In this case, after 100
iterations, the approximation almost perfectly matches the true infinite-horizon
value function.

With a larger δ, the value of K increases rapidly as (δV̄ ∗)1/(γ−1) approaches
one. For δ = 1

1.25 , K is 155.6, while, for δ = 1
1.07 , K is 466.3. The result is that

larger δ values (corresponding to lower discount rates) require additional iterations
of Algorithm 1 to approach V ∗. The results for the same data as in Figure 1 except
with δ = 1

1.07 appear in Figure 2. After 500 iterations, the approximating V 500

agrees relatively well with V ∗ as shown in the figure but has not converged to
nearly the same accuracy as the approximations (with fewer iterations) in Figure
1.

Understanding the numerical behavior of Algorithm 1 and finding mechanisms
to speed convergence should be topics for further investigation. Comparing V k to
V ∗ in the figures shows how the algorithm forces closer approach in some areas
of the curve over others. The behavior of the algorithm is generally to move
along the curve V k to create tighter cuts and then to repeat that process with
less improvement on a new sequence of iterations. These observations suggest
that procedures with multiple cut generation and tightening tolerances should be
considered for accelerating convergence.
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Figure 1: Value function approximations for portfolio example, δ = 1/1.25.
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Figure 2: Value function approximations for portfolio example, δ = 1/1.07.
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7 Observations and future issues

We have described an algorithm for solving a general class of discrete-time convex
infinite horizon optimization problems and demonstrated the method on a sim-
ple example. As the example demonstrates, many iterations may be required to
achieve accuracy for highly nonlinear value functions. Since each iteration involves
additional optimization steps, selection of x̄ (or potentially multiple points on each
iteration) has a critical effect on performance. We mentioned the d.c. methods
as one possibility for finding good points but other methods that require fewer
function evaluations may also be useful. These options require further study.

Our method also relies on identification of the feasible domain, D∗. In that
case, we are left with the following questions:

(i) Under what condition is D∗ a polytope?
(ii) Can Algorithm 2 terminate in a finite number of iterations if D∗ is a

polytope?
(iii) How can one modify the algorithm if D∗ is not a polytope?

These questions and further implementation issues are subjects for future research.

8 Appendix

In this appendix, we will show

ξ = ∇xc(x̄, ȳ) +
L∑

j=1

(λ̄T
j QAj + µ̄T

j FAj)

is a subgradient of M(V ) at x̄, where

V (x) =
{

min{θ | Qx + q ≤ θe} if Fx ≤ f ,
+∞ otherwise.

Denote ρ(x) = M(V )(x). Then

ρ(x) = min c(x, y) + δ
L∑

j=1

pjθ
j

y, θ : Q(Ajx + Bjy + bj) + q ≤ θje,

F(Ajx + Bjy + bj) ≤ f , j = 1, . . . , L,

= max h(λ, µ; x)

s.t. λT
j e = δpj , j = 1, . . . , L,

λ ≥ 0, µ ≥ 0,
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where λ = (λ1; . . . ; λL), µ = (µ1; . . . ;µL), and

h(λ, µ;x) = miny c(x, y) +
L∑

j=1

[λT
j (Q(Ajx + Bjy + bj) + q)

+µT
j (F(Ajx + Bjy + bj)− f)]. (8.1)

Let (λ̄, µ̄) be the optimal solution of the problem

max h(λ, µ; x̄)

s.t. λT
j e = δpj , j = 1, . . . , L,

λ ≥ 0, µ ≥ 0.

Then ρ(x̄) = h(λ̄, µ̄; x̄).
The necessary and sufficient conditions for the optimal solution ȳ of the prob-

lem (8.1) (given (λ̄, µ̄; x̄)) are

∇yc(x̄, ȳ) +
L∑

j=1

[λ̄T
j QBj + µ̄T

j FBj ] = 0. (8.2)

For fixed (λ, µ) = (λ̄, µ̄) and for any x, denote by yx the optimal solution of (8.1).
Then

ρ(x) = max
λ,µ

h(λ, µ;x),

≥ h(λ̄, µ̄; x),

= c(x, yx) +
L∑

j=1

[λ̄T
j (Q(Ajx + Bjyx + bj) + q) + µ̄T

j (F(Ajx + Bjyx + bj)− f)].

Because c is convex,

c(x, y) ≥ c(x̄, ȳ) +∇xc(x̄, ȳ)(x− x̄) +∇yc(x̄, ȳ)(y − ȳ).

Note that yx̄ = ȳ and

ρ(x̄) = h(λ̄, µ̄; x̄),

= c(x̄, ȳ) +
L∑

j=1

[λ̄T
j (Q(Aj x̄ + Bj ȳ + bj) + q) + µ̄T

j (F(Aj x̄ + Bj ȳ + bj)− f)].

Thus,

ρ(x) ≥ ρ(x̄) +∇xc(x̄, ȳ)(x− x̄) +∇yc(x̄, ȳ)(yx − ȳ),

+
L∑

j=1

[λ̄T
j (QAj(x− x̄) + QBj(yx − ȳ)) + µ̄T

j (FAj(x− x̄) + FBj(yx − ȳ))],

= ρ(x̄) + {∇xc(x̄, ȳ) +
L∑

j=1

(λ̄T
j QAj + µ̄T

j FAj)}(x− x̄).
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where the last equation uses (8.2). The above inequality shows that

ξ = ∇xc(x̄, ȳ) +
L∑

j=1

(λ̄T
j QAj + µ̄T

j FAj)

is a subgradient of M(V ) at x̄.
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