
A Stochastic Programming Approach to the Airline Crew

Scheduling Problem

Joyce W.Yen
Industrial Engineering
University of Washington
Seattle, Washington, USA
joyceyen@u.washington.edu

John R. Birge
Industrial Engineering and Management Sciences

Northwestern University
Evanston, Illinois, USA
jrbirge@northwestern.edu

1



A Stochastic Programming Approach to the Airline Crew

Scheduling Problem

Abstract

Traditional methods model the billion-dollar airline crew scheduling problem as deterministic and

do not explicitly include information on potential disruptions. Instead of modelling the crew scheduling

problem as deterministic, we consider a stochastic crew scheduling model and devise a solution method-

ology for integrating disruptions in the evaluation of crew schedules. The goal is to use that information

to find robust solutions that better withstand disruptions. Such an approach is important because we

can proactively consider the effects of certain scheduling decisions. By identifying more robust schedules,

cascading delay effects will be minimized. In this paper we describe our stochastic integer programming

model for the airline crew scheduling problem and develop a branching algorithm to identify expensive

flight connections and find alternative solutions. The branching algorithm uses the structure of the prob-

lem to branch simultaneously on multiple variables without invalidating the optimality of the algorithm.

We present computational results demonstrating the effectiveness of our branching algorithm.

1 Introduction

To increase profits, airlines continually look for ways to better use their resources and to improve schedul-

ing decisions. Billion dollar crew costs are second only to fuel costs among all airline costs, thus airlines

seek to efficiently use their crew resources (Graves et al. 1993), (Anbil et al. 1992). Disruptions can lead to

increased crew costs and additional scheduling inefficiencies.

In day-to-day operations there are two components to the airline crew scheduling problem: short-range

planning and long-range planning. This process has traditionally been seen as two separate problems.

Short-range planning involves making crew assignments under short-term time constraints. This planning

is generally done at the operational level. (See Teodorivić and Stojković 1995 for a description.) Long-range

planning, on the other hand, represents the traditional process where crew schedulers receive flight schedules

several months in advance and select a set of optimal crew itineraries to be later assigned to specific crews.

2



(See Arabeyre et al. 1969, Etschmaier and Mathaisel 1985, and Gershkoff 1989 for general overviews.)

This paper presents a more realistic crew scheduling model that results in a departure from traditional

methods. Long-range planning decisions inevitably are altered by short-range decisions responding to sched-

ule disruptions and changes . We integrate the two by introducing randomness in the form of a short-range

variable in the long-range problem. We call this problem the stochastic crew scheduling problem.

By considering a stochastic model of the crew scheduling problem, we demonstrate significant savings

in the expected cost of a solution without compromising solution quality. Furthermore we show that these

improved solutions can be obtained in just a few iterations of our algorithm. The solutions to our model are

more robust because we reduce the perpetuation of delays via scheduling decisions. These results suggest

important savings can be obtained by considering a stochastic model for crew scheduling.

We first present some background on the deterministic crew scheduling problem in Section 2. In Section

3 we present our stochastic formulation. Section 4 outlines our branching algorithm. Our computational

results appear in Section 5. Finally we make concluding remarks in Section 6.

2 Background

The general long-range crew scheduling problem (CSP) is modelled as a deterministic integer program

whose objective is to find a minimum cost assignment of flights to itineraries. An itinerary is a round-trip

sequence of flights. A cockpit and cabin crew will later be assigned to each itinerary. Typically the problem

is modelled as a set partitioning or set covering problem (Nemhauser and Wolsey 1999).

Let a pairing be defined as a round trip itinerary that a crew member might fly. Let a flight segment

be defined as a single flight from origin to destination. The deterministic crew scheduling problem can be

formulated as follows: Suppose we have n feasible pairings and m different flight segments to cover. We have

the following set partitioning problem:

minimize
N∑

n=1

cnxn (1)

3



subject to
N∑

n=1

ainxn = 1, ∀i = 1, . . . ,m;

xn ∈ {0, 1}, ∀n = 1, . . . , N ;
(2)

where

xn = 1 if pairing n is selected in the solution, 0 otherwise,

ain = 1 if flight segment i is covered by pairing n, and 0 otherwise,

cn = cost of pairing j.

Rubin (1973) proposed the general technique of solving this massive set partitioning problem by decom-

posing the problem into more manageable subproblems. Much of the literature on crew scheduling takes this

approach with most efforts focused on refining a particular subproblem solution methodology, generating

better crew schedule candidates, or attempting to take advantage of problem structure. (See Anbil et al.

1992, Andersson et al. 1998, Barnhart et al. 1998, Chan and Yano 1992, Chu et al. 1997, Desrosiers et al.

1991, Gershkoff 1989, Graves et al. 1993, Hoffman and Padberg 1993, Klabjan et al. 2001, Marsten et al.

1979, Ryan and Foster 1981, Wark et al. 1997, and Wedelin 1995 for examples of such research.)

These long-range deterministic models have made progress in finding better crew schedules; however,

none of the efforts has attempted to also address short-range problems by incorporating uncertainty into the

problem formulation and solution methodology. Instead disruptions are considered in a separate problem of

crew recovery.

This crew recovery planning process is activated either (1) immediately after the disruption has occurred

or (2) in response to the prediction that a disruption is imminent. Contrary to a proactive approach, such

short term planning is essentially a reaction to a given event geared to recovering the system on an immediate

basis. This short-range problem has been addressed in Argüello et al. 1998, Cao and Kanafani 1997a, Cao

and Kanafani 1997b, Jarrah et al. 1993, Lettovsky et al. 2000, Mathaisel 1996, Rakshit et al. 1996, Stojković

et al. 1998 Teodorivić 1985, Teodorivić and Guberinic 1984, Wei et al. 1997, and Yan and Lin 1997.

While successful at a quick recovery, none of these published methods attempts to anticipate changes

4



and disruptions to the schedule. This reactive strategy is reflected not only in published research but also at

airline companies where companies spend millions of dollars in recovery costs and on computer systems to

help them better react to disruptions (McDowell 1997). Disruptions are expensive and lead to loss of time,

money, and customer goodwill.

To prevent some of these expenses, crew schedulers must be more aware of and responsive to potential

changes in the schedule. More recently, Schaefer et al. (2000) proposed a stochastic extension to the

deterministic CSP; however, their methodology does not capture interaction effects of planes, crews, and

schedule recovery. They modify the objective function’s coefficient vector to reflect the expected cost of

each decision variable. This expected cost is calculated using a Monte Carlo simulation called SimAir. This

simulation evaluates a crew schedule under actual operations. They then solve the standard crew scheduling

problem (given by (1 and (2))with this revised cost coefficient vector.

Our model focuses on disruption interactions between potential crew schedules, that is, those disruptions

that are perpetuated to other planes and other crews due to crew scheduling decisions. We propose a

stochastic programming model for this problem. Our model focuses on identifying disruptions perpetuated

by assignment decisions and incorporates the cost of such disruptions. Our disruption costs are a lower bound

for the true cost because we allow flights to accrue delay but operate at planned. In reality, schedules may

have to be altered to adhere to labor regulations. While our original pairings do adhere to labor regulations,

our model does not include those labor constraints during the operational phase. While we do not have a

sophisticated simulation like the one in Schaefer et al. (2000), our results are still useful in that they provide

some basic intuition regarding disruptions effects and offer motivation for stochastic crew scheduling models.

We model this problem as a two-stage stochastic integer program with recourse where our proposed

recourse model reflects the interaction between long-range planning decisions and short-range operational

results. This model includes interaction across flights, crew resources, and plane resources. By capturing

such interactions, the model is able to identify more robust solutions which can better withstand schedule

disruptions.

Because crew scheduling requires assigning integers to the variables under consideration, we use stochastic

5



integer programming (SIP). (Background information on stochastic integer programming can be found in

Birge and Louveaux 1997, Klein Haneveld and van der Vlerk 1999, Schultz et al. 1996, and Stougie and

van der Vlerk 1997) Most SIP methodologies manipulate non-integer stochastic programming techniques,

such as the L-shaped methods and other cutting plane methods, in such a way as to satisfy the integer

constraints. Current SIP methodologies are not suitable for handling the nonlinear relationship we propose

between first stage second stage variables; thus, we develop a new algorithm for handling our problem.

3 Problem Formulation

Since plane usage and crew assignment turn-around times are often short, long delays can have a cascading

effect on future plane and crew assignments. As a result crew schedules which are cost effective in the

deterministic case may no longer be so when random disruptions are considered. For example, in 1997

almost 55% of the delays on Air New Zealand’s domestic flights, totaling over 90,000 minutes of delay, were

directly attributed to a flight crew delay or an upstream delay (a delay occurring earlier in the day) affecting

downstream flights (flights occurring later in the day). Since the deterministic crew scheduling model fails

to address this problem, we turn to stochastic models.

3.1 Stochastic Programming Formulation

Our method adjusts assignment decisions during the planning phase so as to continue to minimize crew

costs while creating more robust solutions through identifying pairings that are less sensitive to schedule

disturbances. We add the expected delay costs to the deterministic objective function and observe which

flight pairs contribute to the delay.

We suppose that we will observe the disruptions and obtain a recovery cost. We model the disruption as

increases in flight operation times, such as ground holds and actual flight times. These times form a random

vector, ξ(ω), where ω is a random element in some space Ω. We let each ω represent a disruption scenario.

For each disruption scenario ω, we have a different recourse. For our purposes here, we assume Ω has finite

6



cardinality and each ω occurs with probability pω.

Therefore, we reformulate the problem as:

minimize cT x+Q(x) (3)

subject to Ax = b,

x ∈ {0, 1}.

In this formulation the vector c represents the expected cost of flying a given pairing independent of all

other pairings, that is, the cost of the pairing without considering delays due to crews switching planes. This

vector may be the smae cost vector given in (1). The constraints Ax = b consist of the coverage equation

(2) and other crew constraints and Q(x) = ∫
ω
Q(x, ω)P (dω) is the expected value of future actions due to

disruptions in the original schedule. This formulation is a standard two-stage stochastic (integer) program

with recourse (Birge and Louveaux 1997).

3.2 A Nonlinear Recourse Model for Q(x, ω)

The key contribution of our formulation is our inclusion of the relationship between pairings. We propose

that crew schedules (pairings) should not be considered in isolation. Effects to one pairing can impact

other crews and planes because these resources are connected through scheduling decisions. For example, a

crew which is scheduled to switch planes and arrives late may transfer this delay to their new flight, thus

impacting a new plane. We propose there is a cost associated with these interactions between crews, planes,

and pairings. Furthermore, it is impossible to determine the effects of these connected relationships without

considering the crew schedule as a whole. Hence, we propose evaluating an entire schedule assignment so as

to capture the interconnected resources effects. This evaluation will be done in the recourse model of our

stochastic program.

We use a nonlinear recourse program to find Q(x, ω) and compute the cost of the delay. The first stage

variables were the pairing decision variables. Once these have been determined, we can evaluate the entire

7



schedule through our recourse program. Our second stage decision variables, namely actual arrival and

departure times for each flight, will depend on the first stage decisions. The recourse formulation (NLR)

with a disruption scenario ω is

NLR: Q(x, ω) = min da,ra

∑
j

ρj(∆jω −∆′
jω) (4a)

subject to

rajω − da
jω ≥ tjω, ∀j; (4b)

rajω −∆jω ≤ rsj , ∀j; (4c)

da
jω −∆jω ≥ ds

j , ∀j; (4d)

da
jω − rapp

j ω ≥ gp
jω, ∀j; (4e)

∆′
jω ≥ da

jω − (rapp
j ω + g

p
jω), ∀j; (4f)

∆jω ≥ 0, ∀j; (4g)

∆′
jω ≥ 0, ∀j; (4h)

da
jω − [rapc

jnω + g
c
jn]xn ≥ 0, ∀j ∈ pairing n, n = 1, ..., N ; (4i)

where j refers to flight segments, tjω is flight j’s flight time under scenario ω, da
jω (r

a
jω) is actual departure

(arrival) time for flight j under scenario ω, ds
j (r

s
j ) is scheduled departure (arrival) time, pp

j is plane predecessor

flight for flight j, pc
jn is crew predecessor flight of flight j under pairing n, g

p
jω (g

c
jn) is plane ground time

for flight j under scenario ω (crew ground time under pairing n), and ρj is the penalty cost for delaying

flight j. ∆jω is the total arrival delay to flight j including plane-induced delays and crew-induced delays,

while ∆′
jω is the non crew-induced arrival delay. Therefore, ∆jω −∆′

jω is the arrival delay to flight j due to

crews switching planes. Note that pc
jn and p

p
j are just flight indices. Also, da and ra are vectors of actual

departure and arrival times, respectively.

The objective (equation 4a) represents the cost of delays due to crews switching planes. The first

three inequalities, equations (4b) - (4d), represent consistency constraints for flight arrival and departure

8



times. Inequality (4e) represents plane precedence constraints and inequality (4i) represents crew precedence

constraints. Inequality (4f) ensures that the non-crew induced delay is at least as much as the delay due to

late aircraft equipment. Finally equations (4g) and (4h) indicate nonnegative delay times.

The random vector is ξ(ω) = (tjω, j = 1, ..., ; gp
jω, j = 1, ...). Our decision variables for the recourse

problem NLR are da
jω and rajω. Note, the decision variables for the the full stochastic program (3) are

da
jω, r

a
jω, and xn.

Equation (4i) allows us to evaluate the schedule as a whole by considering effects of crews changing

planes. To measure these effects, we must introduce a nonlinear relationship between actual flight arrival

and departure times and crew scheduling decisions. Note, if xn is given, this formulation reduces to a linear

program because we can determine the crew predecessor flight for each of the flights. The general formulation

of the recourse problem becomes

Q(x, ω) = minimize qT y (RP )

subject to (W +GxT)y = h(ω),

y ≥ 0.
Note this formulation is a two-stage simple recourse stochastic program. Thus, our second stage variables

(y) measure how infeasible our first stage decisions are under uncertainty.

We next describe our Delay Branching Algorithm for solving this stochastic integer programming

problem.

4 Delay Branching Algorithm

This model provides a lower bound on the cost of implementing crew scheduling decisions under schedule

disruptions. We do not monitor crew labor restrictions or flight cancellations. For this problem, we consider

the case where crew scheduling decisions introduce delays only when crews are assigned to switch planes.

Thus, crews scheduled to follow plane assignments do not introduce new delay to the system. We wish to

9



identify solutions minimizing crew plane changes. We capture this concept through a specific type of delay,

switch delay.

These switch delays are the focus of the delay branching algorithm. Delays contributing to the recourse

problem objective are precisely switch delays. Hence we will use switch delays as our branching order

criterion. We seek to eliminate those switch delays causing the costliest disruptions to the schedule.

4.1 Defining Switch Delay

A switch delay is a delay due to a plane change. Suppose a crew is assigned to service two flights, flight

i followed by flight j, and flight i experiences a delay. If the plane assigned to flight i next flies flight k, and

flight i is delayed, then flight k may be delayed as well. Thus if j 	= k, then a delay of flight i may delay

both flights j and k. We call such delays to flight j switch delay. It is a delay due to a crew scheduling

decision. Call the set of pairings which induce a switch delay for flights i and j the set Sij .

Definition 1 For flight pair (i, j) the expected switch delay due to crew connection in pairing n over all

scenarios ω ∈ Ω can be written as:

switch delay(xn, i, j) =
∑
ω∈Ω

pω[(∆jω − (rapp
j ω + gnd time− ds

j))δijn],

where

δijn =



1 if n ∈ Sij

0 otherwise.

10



and Sij is the set of all pairings n satisfying the following inequalities:



∆jω > 0,

xn = 1,

ain = 1,

ajn = 1,

∆iω > 0,

pc
jn = i,

plane(j) 	= plane(i),

ds
j < raiω,




In the above definition, δijn is an indicator variable denoting which pairings allw flight i to introduce a

delay to flight j due to crews changing planes. Also, gnd time is the required time on ground (equal to

the maximum of the crew ground time constraint and the plane ground time constraint). For this work, we

will presume gnd time is independent of the flights and is constant. This assumption can be removed later.

Finally, ajn is the value in the the jth row and nth column of constraint matrix A, given by (2).

4.2 Algorithm Description

First we describe the algorithm in words and then follow with a formal description of the algorithm. A

summary of the algorithm notation can be found in Table 1.

Our algorithm essentially augments existing crew scheduling methods with the evaluation of a recourse

problem. We either allow or disallow key flight pairs where crews switch planes. After solving the set par-

titioning problem using state-of-the-art deterministic crew scheduling knowledge, we evaluate the expected

cost of disruptions via the recourse problem. The recourse problem evaluation determines upon which flight

pair to branch. We devise a hierarchy for the flight pairs based on the delay costs (specifically, switch delay

costs), placing those pairs with larger delays higher in the hierarchy.

The branching methodology employed uses a variation of constraint branching (Ryan and Foster 1981).

This method allows us to constrain a collection of variables, hence evaluating a number of pairings at the

11



same time. Along one branch, we allow the identified flight pair to appear in a pairing selected in the optimal

solution at that node. The other branch forcibly excludes said flight pair from any pairing selected in the

solution for that node. We eliminate subsets of pairings containing the expensive pair.

In binary integer programming branch and bound, branching occurs on the value of a single variable.

In this problem, the number of decision variables (possible pairings) is at most 2N , where N is the total

number of pairings; therefore, the number of nodes in the tree is O(22
N

). If F is the number of flights in the

schedule, then the maximum number of flight pairs is FC2. Therefore the maximum number of nodes in our

tree is O(2F 2
). This number is actually an upperbound on the number of flight pairs since not all flights can

be coupled with all other flights. In fact, in this paper, we only overtly consider flights pairs as opposed to

a number of flights connected in series. In practice m << N , where m is the true number of feasible flight

pairs and N is the true number of feasible pairings. Thus our branching method produces a much smaller

tree than that given by single variable branch and bound. (An example is given in Section 5.2.)

With the exception of solving the set partitioning problem (SPP) given in (2), all other steps in the

algorithm are relatively easy to evaluate. Using the SPP solution, the recourse problem becomes a simple,

albeit large, linear program. We can solve such linear programs efficiently. Identifying costly flight pairs is

also simple. Evaluating each flight’s switch delay value is a simple addition/subtraction operation.

At any point, upper and lower bounds can be used to select the next node from which to branch until

the algorithm terminates. The user may choose, however, to prematurely terminate the algorithm if the

current solution’s disruption cost is satisfactorily limited. Furthermore, at any iteration of the algorithm we

have a feasible solution which is more robust than the initial solution because the total expected cost of the

solution is less.

Table 1: Notation used in Delay Branching Algorithm

Symbol Definition

C set of nodes which are available for branching/evaluation

continued on next page

12



continued from previous page

Symbol Definition

c node index

Dl set of flight pairs (i, j) with a positive switch delay at current node l

Eij binary vector indicating which pairings includes both flights i and j

EK matrix whose rows are vectors Eij , where i and j are determined in subproblem

K

i,j flight indices

(i, j) flight pair with flight i followed by flight j

(il, jl) flight pair which accrues the maximum switch delay at node l

K subproblem index, also indexes the number of nodes already evaluated

l current node

l′ node index

L set of all nodes in the tree

n pairing index

N total number of pairings

N l Dl
⋂ P̄ l

⋂ R̄l

P l set of excluded flight pairs at node l

Rl set of explicitly included flight pairs at node l

(xl)∗ optimal pairing vector at node l

(xl)∗n nth element (pairing) of the vector (xl)∗

UB upper bound value

(wl)∗ optimal deterministic objective value at node l

zl overall stochastic program objective value at node l

Now we are ready to give the formal description of the Delay Branching Algorithm.

13



Step 0: Initialize C = {∅}, UB =∞, K = 0, l = 0, P0 = {∅}, R0 = {∅}. Solve

(w0)∗ = minimize cT x (5)

subject to Ax = b;

0 ≤ x ≤ 1,x integer;

to obtain (x0)∗.

Step 1: for node l :

Set C = C ∪ {l}. Let

zl = (wl)∗ +Q((xl)∗).

Note zl is a function of xl, zl = z(xl) = cT (xl)∗ +Q((xl)∗). Set upperbound

UB = min{UB, zl}.

Identify flight pairs (i, j) and pairing(s) n such that switch delay((xl)∗n, i, j) > 0 and set Dl =

{(i, j)|switch delay((xl)∗n, i, j) > 0}. If Dl 	= {∅}, go to Step 3. Otherwise, let C = C \ {l} and

go to Step 2.

Step 2: If C = ∅, terminate with optimal solution vector x∗ such that z(x∗) = UB. Otherwise, find a node

l′ ∈ argminc∈C{(wc)∗}. Set l = l′ and go to Step 1.

Step 3: Find (il, jl) ∈ argmax(i,j)∈N l

∑N
n=1 switch delay((x

l)∗n, i, j).

Branch from node l. Let

Eiljl
(n) =



1 if ailn = 1 and ajln = 1, for n = 1, . . . , N,

0 otherwise

14



Step 4: Branch such that pair (il, jl) is excluded from all solutions along that branch. That is, add the

constraint

(EK+1)T x = Eiljl
T x = 0.

Label this node K+1. Set PK+1 = P l ∪ {(il, jl)}. Set RK+1 = Rl. Set C = C ∪ {K + 1}.

Find an optimal solution to

(wK+1)∗ = minimize cT x

subject to subproblem (K+1)

Ax = b;

ET
ijx = 0, ∀(i, j) ∈ PK+1;

ET
ijx ≥ 1, ∀(i, j) ∈ RK+1;

x ∈ {0, 1};

with optimal value (wK+1)∗, and solution vector (xK+1)∗.

Step 5: Branch such that pair (il, jl) is included in all solutions along that branch by adding the constraint,

(EK+2)T x = Eiljl
T x ≥ 1,

to the subproblem for wl. Label this node K+2. Set RK+2 = Rl ∪ {(il, jl)}. Set PK+2 = P l. Set

C = C ∪ {K + 2}.

Find the optimal solution to

(wK+2)∗ = minimize cT x

subject to subproblem (K+2)

Ax = b;

ET
ijx = 0, ∀(i, j) ∈ PK+2;

ET
ijx ≥ 1, ∀(i, j) ∈ RK+2;

x ∈ {0, 1};

with value (wK+2)∗ and solution vector (xK+2)∗. Note (wK+2)∗ = (wl)∗.

15



Step 6: If (wK+1)∗ > UB, fathom node K+1, and set C = C \ {K + 1}.

Let K = K + 2 and find a node l′ such that

wl′ = minc∈C{(wc)∗}.

Set l = l′ and go to Step 1.

4.3 Proof of Convergence to Optimality

We show this algorithm terminates in a finite number of iterations having found all optimal solutions.

Lemma 1 shows the termination with no more branches to explore. Theorem 2 demonstrates termination

with all optimal solutions being found.

Lemma 1 The Delay Branching Algorithm terminates in a finite number of iterations and upon termination,

there are no more branches to explore.

Proof:

Since we have a finite number of flights, we have a finite number of flight pairs and, consequently, a finite

number of branches. When branching from a node we either have no more flight pairs to constrain or else

we exclude a new flight pair. If a flight pair is identified, we branch and add constraint

Eij
T x = 0,

or

Eij
T x ≥ 1.

Given the inequalities when excluding a flight pair, we find a new solution along the branch where the

flight pair is excluded and, thus, we cannot repeat a solution. Since there is only a finite number of branches,

the algorithm must terminate in a finite number of iterations.

Next, suppose the algorithm has terminated, then C = {∅}, implying no more nodes to explore in the

algorithm.

16



Consider some nodeK. EitherK has a pair (iK , jK) ∈ NK such that
∑N

n=1 switch delay((x
K)∗n, i, j) > 0

or else no such pair exists at nodeK. If no such pair exists, we are done. Otherwise there are two possibilities:

(a) (wK)∗ > UB or (b)(wK)∗ ≤ UB. Under case (a), we fathom node K leaving no more branches to explore

from node K; otherwise, under case (b), we identify at node K a branching pairing (̂i, ĵ) which satisfies the

conditions of Steps 3-5 and set C = C ∪ {K + 1,K + 2}. This is a contradiction to the termination of the

algorithm.

It must be either there does not exists a pair (iK , jK) such that
∑N

n=1 switch delay((x
K)∗n, i, j) > 0 or

(wK)∗ > UB for all nodes K in the tree. Hence when the algorithm terminates, there are no more branches

to be explored. �

Theorem 2 The Delay Branching Algorithm terminates with an optimal solution.

Proof:

Suppose the algorithm terminates without finding all optimal solutions. Consider an optimal solution

x̂ which has a lower objective function value than the solution found by the algorithm and which was not

found by the algorithm. We will show this leads to a contradiction to x̂’s optimality.

Let I∗ = {(i∗1, j∗1 ), . . . , (i∗n, j∗n)} be the set of flight segments with plane changes in solution x̂. Begin at

the root of the tree and trace through the tree so as not to violate any of the pairs in I∗. We will eventually

arrive at an end node M such that

∣∣RM ∩ I∗∣∣+ ∣∣PM ∩ I∗∣∣ = 0

Note x̂ is feasible for the subproblem at node M and cT (xM )∗ ≤ cT x̂.

We stop branching at node M if either (a) DM = {∅} or (b) (wM )∗ > UB.

17



Case a: DM = {∅}. Therefore,

cT (xM )∗ +Q(xM )∗ = cT (xM )∗

≤ cT x̂

< cT x̂+Q(x̂),

a contradiction of x̂ being optimal. So it must be that case (b) has occurred.

Case b: (wM )∗ > UB. Note, x̂ is not the optimal solution at node M since the algorithm did not find x̂ at

node M . Hence cT x̂ > (wM )∗. Since
∑N

n=1 switch delay((x
M )∗n, i, j) > 0, cT x̂+Q(x̂) > cT x̂. Thus

cT x̂+Q(x̂) > UB.

But since the solution vector which provides the value of UB is a feasible solution, we contradict the

optimality of x̂.

Hence the algorithm must terminate with all optimal solutions identified. �

We now have the following corollary:

Corollary 1 The Delay Branching Algorithm terminates in a finite number of iterations with an optimal

solution to the stochastic crew scheduling problem given by Problem 3 and recourse problem NLR.

Proof: The corollary follows directly from Lemma 1 and Theorem 2. �

5 Computational Results

Next we report on implementation results for three test problems based on Air New Zealand’s 1997

domestic operations.

5.1 Assumptions and Data Preprocessing

We make the following simplifying assumptions when implementing the algorithm:

18



• Access to a state-of-the-art set partitioning solver that effectively and efficiently solves the deterministic

problem. We use the solver described in Johnson et al. 1999.

• All crews fly their schedules as planned regardless of the delay circumstances. Legality considerations

and other constraints make this assumption unrealistic in practice; however, the solution obtained

is a lower bound for the actual expected cost of delays since adhering to legality constraints would

introduce additional costs.

• We are solving a static daily problem, that is the same schedule is flown every day. We presume plane

assignments are fixed and the same flights are assigned to the same planes every day.

• All planes have the same ground time requirements.

• All crew have the same ground time requirements.

• Maximum delay times are bounded.

Based on these assumptions, we enumerate our set of possible crew pairings and generate the random

disruption scenarios ω. For each test problem we sample 100 scenarios using a truncated gamma or lognormal

distribution for the length of delays. A truncated distribution is used because the data indicate delay times are

bounded above. Presumably flights experiencing extraordinary delay times may be cancelled and, therefore,

do not appear in our delay data. We assume that each disruption scenario is equally likely.

5.2 Test Problem Results

The three test problems represent a simplification of the Air New Zealand domestic schedule: 9 planes

covering 61 daily flights, 10 planes covering 66 flights, and 11 planes covering 79 flights. Each of these

three problems represents a possible domestic schedule for Air New Zealand’s 737 fleet, serving seven cities

(Auckland, Christchurch, Dunedin, Hamilton, Rotorua, Queenstown, andWellington) with the same schedule

being flown each day of the week.

19



Using the set partitioning solver described in Johnson et al. 1999, we enumerate 1911 feasible pairings

for the 9-plane problem, 2737 pairings for the 10-plane problem, and 3296 for the 11-plane problem. We

implement the algorithm using AMPL (1993) to formulate the model and CPLEX (1998) to solve the resulting

linear program. A master C program, which uses a general purpose priority queue (described in Kelly 2000)

to maintain the branching decisions, is used to manage the branching process.

The branching tree becomes very large and, due to computational limitations, we do not explore the

entire tree. Nevertheless, our results indicate that we quickly find good solutions and that subsequent

improvements may be quite minimal.

Although our tree is large, it is naturally much smaller than a tree branching one variable at a time.

Consider, for example, the 9-plane problem with 1911 feasible pairings. In this problem there are 20 flights

departing or arriving at Auckland, 18 at Christchurch, 3 and Dunedin, and 20 at Wellington. Due to

location restrictions, the maximum number of flight pairs is 20C2 +18 C2 +3 C2 +20 C2 = 536. This value is

an upperbound for the number of flight pairs because time limitations would actually preclude some flights

from being paired together and because some flight pairs follow plane assignment and, therefore, are not

considered for branching. Consequently, our branching tree produces at most 2537 − 1 nodes, while single-

variable branch and bound produces 21912 − 1 nodes. Note both numbers are ridiculously large but the

observation is that generally our process quickly identifies good candidate solutions.

In order to calculate the objective function value, we must determine the value for the penalty parameter.

The cost of a delay depends on a number of issues that are difficult to measure. For example, the cost of losing

a passenger can vary. Perhaps the passenger is lost for a single flight. In this case, the cost is relatively low;

however, a passenger may choose never to fly that airline again. This passenger loss is quite costly because

there is repeated lost revenue. Since, in practice, we are not sure how to measure the cost of delays, we want

to examine a set of possible delay values.

We test four variations of each test problem examining how different penalty parameter values affect the

solution. We show we obtain large savings in the recourse objective without significant sacrifice in the cost

of the first stage objective. We also calculate the value of the stochastic solution (VSS). Calculating the

20



VSS further demonstrates the merits of considering the stochastic model since VSS is the possible gain from

solving the stochastic model.

In order to describe how to calculate VSS, we must first describe two problem formulations. First, we

have the value of the optimal solution to the recourse problem, given by (3) and NLR, z(x∗). Second,

although departure and arrival times are random, we presume that the scheduled departure and arrive times

represent the expected departure and arrival times. Therefore, we can consider the solution to (5), x0, the

solution to the expected value problem. We evaluated the expected results of using x0 and compare the two

results. This difference is precisely the VSS, V SS = z(x0)− z(x∗).

5.2.1 Comparing Deterministic Solutions and Stochastic Solutions

From the penalty parameter analysis (discussed in more detail Section 5.2.2), we believe it is useful to

examine several different versions of a test problem, where each version has a different penalty parameter

value. We create four variations per test problem, setting the penalty parameter at 1, 10, 100, and 1000.

See Table 2 for the results. The first column identifies the test problem. The second column lists the

penalty parameter value. Columns 3 and 4 list the initial solution’s value for the first and second stage,

respectively. Note this initial solution, x0, is the solution to the deterministic problem from equations (1)

and (2). Columns 5 and 6 show our best solution’s first stage and second stage values, respectively. The

seventh column gives the value of the stochastic solution, while the eighth column gives the best solution’s

objective value, cT x∗+Q(x∗), relative to the initial solution’s objective, cT x0+Q(x0). For example, row 2

shows the best solution costs for the 9-plane problem with a penalty parameter of ten is 82.5218 units less

than the initial solution and is approximately 98.619% of the initial solution.

While we do not explore the entire branching tree, we do explore enough of the tree such that we believe

our solutions are near optimal or optimal since the curve of new optimal solution values flattens. (See Figures

1 and 2); however, we do not have proof of optimality for these results. Table 3 gives a summary of the

number of iterations executed until finding the best solutions listed in Table 2, as compared to the total

number of iterations calculated for each problem.

21



Test Problem Penalty cTx0 Q(x0) cTx∗ Q(x∗) VSS z(x∗)
z(x0)

9-plane

problem

1 3889 208.803 3889 208.803 0 1.00

10 3889 2088.035 3937 1957.513 82.5218 .98619

100 3889 20880.35 4297 18139.53 2332.81 .90582

1000 3889 208803.5 4819 179628 28245.5 .8672

10-plane

problem

1 4219 247.5961 4220 234.1843 12.4118 .99722

10 4219 2475.96 4392 2136.543 166.418 .97514

100 4219 24759.61 5498 19664.14 3816.47 .8683

1000 4219 247596.1 5498 196641.4 49675.7 .8027

11-plane

problem

1 5058 175.87 5059 174.55 .322 .99994

10 5058 1758.76 5175 1627.15 14.62 .99079

100 5058 17587.62 5408 15563.02 1674.59 .9260

1000 5058 175876.2 5408 155630.2 19895.9 .8900

Table 2: Test Problem Results

Even though we may execute many iterations before finding the best solution, we are very close to the

best solution after just a few iterations. For example, consider the 10-plane problem with penalty of 100.

We are within five percent of the best solution after only five iterations, within two percent after thirteen

iterations, and within one percent after 55 iterations. We get quick savings early in the implementation

of the algorithm (see Figures 1 and 2). In this case, we see small changes to cTx while simultaneously

seeing relatively large changes to the overall objective and the recourse objective. Similar results hold for

the 9-plane and 11-plane problems.

5.2.2 Penalty Parameter Analysis

An important part of the modelling process is determining the value of the penalty parameter. When

the penalty parameter equals one, the recourse cost is exactly the sum of the delay minutes over all flights

22



Number of Iterations

9 Planes 10 Planes 11 Planes

Penalty opt total opt total opt total

1 1 1287 289 468 2 998

10 7 1127 10 162 13 197

100 25 995 107 184 76 580

1000 140 386 107 256 76 173

Table 3: Number of Iterations Before Finding Current x∗

averaged over 100 scenarios. For these problems, the first stage objective is order 103 while the recourse

objective is order 102. These orders of magnitude are consistent with the 1997 data. The simulated total

delay time minutes are the same order of magnitude as the average number of delay times from the 1997

data. In 1997 the total delay minutes per day averages 392.65 minutes.

We examine the effects of different penalty parameter values. The penalty parameter is a reflection of

how much disruptions are worth, representing a trade-off between disruption costs and crew costs. As we

increase the penalty parameter, we can track this trade-off. Quantifying this trade-off is useful, for example,

to conduct a cost analysis comparing schedules with different levels of slack time.

As the penalty parameter increase, we reduce our disruption costs in the final solution but pay more

crew costs. By implementing the algorithm using several different values for the penalty parameter, we can

generate a trade-off curve. (See Table 4 and Figure 3. Table 4 demonstrates the percentage of change

between the initial solution’s value and the final solution’s value. A negative value indicates a decrease in

value from the initial solution. For example, in the 9-plane, penalty = 10 problem z(x∗) is 1.38% smaller

than z(x0).)

From these results we conclude there exists some threshold for the penalty parameter after which no

additional information or savings will result from a higher penalty. For example, in the 10-plane and 11-

plane results we find the same solution is returned for a penalty value of 100 and 1000. This results would

23



10 Planes with Penalty = 100

24500

25000

25500

26000

26500

27000

27500

28000

28500

29000

29500

0 50 100 150 200 250

Nodes Created

z 
= 

o
p

ti
m

al
 c

o
st

Figure 1: 10-Plane, Penalty = 100, Optimal Solution Cost

seem to support this threshold idea. It also seems to suggest there exists a point at which delays can no

longer be eliminated, regardless of the penalty value. One additional conclusion is there exists a region where

the rate of decreasing disruption costs is faster than rate of increasing crew costs. It is useful to include

information about disruption costs when evaluating crew schedules.

Furthermore, we are concerned with the final solution’s sensitivity to the penalty parameter value. As

previously stated, it is difficult to determine the exact value for the penalty parameter. Therefore, it

is important that small changes in the parameter value do not lead to widely varying solutions. In our

experiments we vary the penalty parameter by ±20%. For example, we tested the 10-plane problem with

penalty values of 80, 90, 100, 110, 120. In these experiments, our algorithm returns the same solution vector.

Moreover, the algorithm generally finds the same sequence of solution vectors regardless of the penalty value.

However, higher penalty values lead to more vectors in the sequence of improving solutions. We conclude

the algorithm is robust in that similar penalty parameter values yield the same or similar solution vectors.

The penalty parameter value should be determined by the users as it is a measure of how much disruptions

24



10 Plane, Penalty = 100, Optimal results

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250

Number of Nodes Created

C
o

st

z* cTx* E[Q(x*,w)]

Figure 2: 10-Plane Problem with Penalty = 100: z, cT x and Q(x)

costs are valued with respect to crew costs. Some possible ways to determine the penalty value include:

• penalty parameter = number of passengers per flight;
• penalty parameter = number of crew members per flight;
• penalty parameter = number of passengers / number of crew;
• penalty parameter = price per minute of delay (dollar value);
• penalty parameter relative to arrival airport size.

Varying the penalty produces a range of solutions, as evidenced by the examples described above. The

penalty choice may depend on other factors that a scheduler may consider. Having flexibility with the

penalty parameter, and consequently the objective function, allows schedulers to evaluate different scenarios

and find alternative solutions. The penalty parameter allows schedulers to include overall corporate goals

regarding passenger disruptions into crew schedule.

25



Percent Change in Value from Initial Solution

9 Planes 10 Planes 11 Planes

Penalty z∗ cTx∗ Q(x∗) z∗ cTx∗ Q((x∗) z∗ cTx∗ Q(x∗)

1 0 0 0 -.28 .023 -5.42 -.006 .02 -.75

10 -1.38 1.23 -6.25 -2.49 4.10 -13.71 -.21 2.31 -7.5

100 -9.42 10.49 -13.13 -13.17 30.32 -20.58 -7.40 6.92 -11.51

1000 -13.28 23.91 -13.97 -19.73 30.32 -20.58 -10.99 6.92 -11.51

Table 4: Effects of the Penalty Parameter

5.3 Computational Results Conclusions

In general as the algorithm finds better solutions, these solutions contain pairings with fewer plane

changes and some reduction in the number of plane changes. There result warrant further investigation.

(See Table 5 for sample numerical results.) The algorithm adds buffer time in the solution and it become

less sensitive to disruptions. Our results indicate reducing the number of plane changes and increasing the

connection times when crews change planes will lead to less costly schedule disruptions.

6 Conclusion

We demonstrate the value of considering a stochastic formulation of the crew scheduling problem. Signif-

icant savings can be gained if delay effects on crew schedules, and consequently effects on the entire system,

are considered during the planning phase.

Our Delay Branching Algorithm has promising results. It takes advantage of other developments in

crew scheduling, such as improved pairing generation or more effective set partitioning and/or set covering

algorithms, while also considering uncertainty. At any iteration of the algorithm we have already found a

feasible solution which is more robust than the initial solution. Moreover, the algorithm is flexible and allows

users to customize it to their needs and preferences and results in significant savings in the expected cost of

26



ith soln. avg. cnx. time plane changes

1 41.17 18

2 41.86 18

3 42.06 17

4 43.63 18

5 47.84 17

6 47.94 12

7 49.41 19

8 49.30 11

9 49.30 10

10 50.50 9

11 54.18 9

12 55.82 13

13 57.20 13

14 60.32 11

15 58.72 12

16 63.65 12

17 61.25 7

18 74.67 15

19 86.82 17

Table 5: Average Connection Time and Number of Plane Changes for 10-plane Problem, Penalty = 100

27



-16.00%

-14.00%

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

% change in cTx*

%
 c

h
an

g
e 

in
 E

[Q
(x

*,
w

)]

Penalty = 1

Penalty = 10

Penalty = 100

Penalty = 1000

Figure 3: 9-Plane Problem Penalty Effects on Changes to cT x and Q(x)

a crew schedule when disruptions are considered.

7 Acknowledgements

This work was supported in part by the National Science Foundation under Grant DMI-9523275. The

authors would like to thank Stephen Miller and Air New Zealand for their generosity in providing delay

data. Additional thanks to Tina Shaw and Ellis Johnson for allowing us to use their pairing generator and

set partitioning solver.

References

Anbil, R., R. Tanga, and E. Johnson 1992. A Global Approach to Crew-pairing Optimization. IBM

Systems Journal 31 , 71–78.

28



Andersson, E., E. Housos, N. Kohl, and D. Wedelin 1998. Crew Pairing Optimization. In G. Yu

(Ed.), Operations Research in the Airline Industry. Kluwer Academic Publishers.

Arabeyre, J., J. Fearnley, F. C. Steiger, and W. Teather 1969. The Airline Crew Scheduling

Problem: A Survey. Transportation Science 3 , 140–163.

Argüello, M. F., J. F. Bard, and G. Yu 1998. Models and Methods for Managing Airline Irregular

Operations. In G. Yu (Ed.), Operations Research in the Airline Industry. Kluwer Academic Publishers.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance 1998.

Branch-and-Price: Column Generation for Solving Huge Integer Programs. Operations Research 46 ,

316–329.

Birge, J. and F. Louveaux 1997. Introduction to Stochastic Programming. Springer.

Cao, J.-M. and A. Kanafani 1997a. Real-Time Decision Support for Integration of Airline Flight Can-

cellations and Delays Part I: Mathematical Formulation. Transportation Planning and Technology 20,

183–199.

Cao, J.-M. and A. Kanafani 1997b. Real-Time Decision Support for Integration of Airline Flight

Cancellations and Delays Part II: Algorithm and Computational Experiments. Transportation Planning

and Technology 20, 201–217.

Chan, T. J. and C. A. Yano 1992. A Multiplier Adjustment Approach for the Set Partitioning Problem.

Operations Research 40 , S40–S47.

Chu, H. D., E. Gelman, and E. L. Johnson 1997. Solving Large Scale Crew Scheduling Problems.

European Journal of Operational Research 97, 260–268.

Desrosiers, J., Y. Dumas, M. Desrochers, F. Soumis, B. Sanso, and P. Trudeau 1991. A

Breakthrough in Airline Crew Scheduling. Technical Report G-91-11, Cahiers du GERAD.

Etschmaier, M. M. and D. F. X. Mathaisel 1985. Airline Scheduling: An Overview. Transportation

Science 19 , 127–138.

29



Fourer, R., D. M. Gay, and B. W. Kernighan 1993. AMPL: A Modeling Language for Mathematical

Programming. The Scientific Press.

Gershkoff, I. 1989. Optimizing Flight Crew Schedules. Interfaces 19 , 29–43.

Graves, G. W., R. D. McBride, I. Gershkoff, D. Anderson, and D. Mahidhara 1993. Flight

Crew Scheduling. Management Science 39 , 736–745.

Hoffman, K. L. and M. Padberg 1993. Solving Airline Crew Scheduling Problems by Branch-and-Cut.

Management Science 39 , 657–682.

ILOG, Inc. 1998. CPLEX (version 6.0 ed.). Incline Village, NV: ILOG, Inc.

Jarrah, A. Z., G. Yu, N. Krishnamurthy, and A. Rakshit 1993. A Decision Support Framework

for Airline Flight Cancellations and Delays. Transportation Science 27 , 266–280.

Johnson, E., T. Shaw, and R. Ho 1999. Modeling Tools for Airline Crew-Scheduling and Fleet-

Assignment Problems. In T. A. Ciriani (Ed.), Operational Research in Industry, pp. 1–24. MacMillan

Press.

Kelly, T. P. 18 February 2000. Heap-based Priority Queue Implementation in ANSI C. URL:

http://www-personal.engin.umich.edu/ tpkelly/heap/heap.tar.gz. Description: A simple and thor-

oughly tested general-purpose priority queue implemented with a binary heap in ANSI C.

Klabjan, D., E. L. Johnson, and G. L. Nemhauser 2001. Solving Large Airline Crew Schedul-

ing Problems: Random Pairing Generation and Strong Branching. Computational Optimization and

Applications 20 , 73 – 91.

Klein Haneveld, W. K. and M. H. van der Vlerk 1999. Stochastic Integer Programming: General

Models and Algorithms. Annals of Operations Research 85, 39–57.

Lettovsky, L., E. L. Johnson, and G. L. Nemhauser 2000. Airline Crew Recovery. Transportation

Science 34 , 337 – 348.

Marsten, R. E., M. R. Muller, and C. L. Killion 1979. Crew Planning at Flying Tiger: A Successful

30



Application of Integer Programming. Management Science 25 , 1175–1183.

Mathaisel, D. F. X. 1996. Decision Support for Airline System Operations Control and Irregular Op-

erations. Computers and Operations Research 23 , 1083–1098.

McDowell, E. 1997. When Weather is the Enemy. The New York Times, D1, D20.

Nemhauser, G. L. and L. A. Wolsey 1999. Integer and Combinatorial Optimziation. John Wiley &

Sons, Inc.

Rakshit, A., N. Krishnamurthy, and G. Yu 1996. System Operations Advisor: A Real Time Decision

Support System for Managing Airline Operations at United Airlines. Interfaces 26 , 50–58.

Rubin, J. 1973. A Technique for the Solution of Massive Set Covering Problems, with Applications to

Airline Crew Scheduling. Transportation Science 7 , 34–48.

Ryan, D. and B. Foster 1981. An Integer Programming Approach to Scheduling. In A. Wren (Ed.),

Computer Scheduling of Public Transport, pp. 269–280. North-Holland Publishing Company.

Schaefer, A., E. Johnson, A. Kleywegt, and G. Nemhauser 2000. Robust Airline Crew Schedul-

ing. Institute for Operations Research and Management Science Conference.

Schultz, R., L. Stougie, and M. H. van der Vlerk 1996. Two-Stage Stochastic Integer Program-

ming: a Survey. Statistica Neorlandica 50 , 404–416.

Stojković, M., F. Soumis, and J. Desrosiers 1998. The Operational Airline Crew Scheduling Prob-

lem. Transportation Science 32 , 232–245.

Stougie, L. and M. H. van der Vlerk 1997. Stochastic Integer Programming. In F. M. M. Dell’Amico

and S. Martello (Eds.), Annotated Bibliographies in Combinatorial Optimization, pp. 127–141. Wiley.

Teodorivić, D. 1985. A Model for Designing the Meteorologically Most Reliable Schedule. European

Journal of Operational Research 21, 156–164.

Teodorivić, D. and S. Guberinic 1984. Optimal Dispatching Strategy on an Airline Network after a

Schedule Perturbation. European Journal of Operational Research 15, 178–182.

31


