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Abstract: This paper considers network flow problems in which the link upper capacities are independently
distributed random variables. The optimal objective value is then a non-increasing, convex function
of these random capacities. This function is known as the network recourse function for two-stage
stochastic programs in which the second stage i1s a pure network flow problem. This paper exploits the
network structure to show that this function also has a property called convex marginal return functions
with respect to upper capacities of links with a common initial or terminal node. This results in the
ability to establish an upper bound on the expected value of the optimal objective value which only
considers high and low extreme values for upper capacities of links with common initial or terminal
nodes. This often significantly decreases the function evaluations needed, and still provides an effective
bound. Experimental results are given.
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1 Introduction

The classic two-stage stochastic program with recourse (see Dantzig [7], Walkup and Wets [15]) is the
problem of finding a first-stage decision which is heavily influenced by uncertainty in the second stage.
Second-stage decisions, or recourse actions, are taken after the uncertain second-stage problem parameters
are known with certainty. The goal is to choose a first stage decision which minimizes the cost incurred
in the first stage plus the expected costs incurred in the second period, given the first stage decision.
Solving for the expected costs in the second period, also known as the expected value of the recourse
function, can be difficult.

Decomposition methods are effective for stochastic programs since large stochastic programs can be
partitioned into much smaller individual scenarios or subproblems (see Van Slyke and Wets [14], Birge
[2]). Further, decomposition methods allow straightforward use of parallel computing which can yield
significant computational benefits (see Birge et. al [3]).

Exploiting specific structure of second-stage problems i1s another means for overcoming the difficulty
with finding the expected value of the recourse function. In stochastic programs in which the second stage
problem is a pure network flow problem, the second stage problem is called the network recourse function.
Wallace [16] considered such stochastic programs and developed computationally effective methods for
solving large numbers of networks which differ only by node supplies and demands.

The problem of solving for the expected value of the recourse function, however, becomes overwhelming
when the number of possible realizations of the random variables is large. For general stochastic programs,
effective approximation methods exist which allow further simplification (see Birge and Wets [5]). Further,
specific bounds for the network recourse function have been studied.

Wallace [17] developed an upper bound for the network recourse function which is found by solving
three separate minimum cost network flow problems,; regardless of the number of random elements.
Frantzeskakis and Powell [9] and Cheung and Powell [6] developed lower bounds for multistage stochastic
networks which are based upon linear approximations and convex approximations, respectively. Both
bounds use backward recursion and were successfully applied to dynamic vehicle allocation problems in
which some links have stochastic upper bounds.

In this paper, the network recourse function is considered for stochastic programs in which each of
the second stage problems is a pure minimum cost network flow problem differing only by the link upper
capacities. We consider second-stage problems in which the number of random elements is large and the
random elements are independent, in some cases giving a practically infinite number of scenarios. One
stage of the dynamic vehicle allocation problem in which a fleet carrier must route vehicles according to
the demands of many independent customers is an example of such a problem. This problem, as well as
approximation methods, are discussed extensively in [6] and [9].

In this paper, an new effective and efficient upper bound is developed for the expected value of the
network recourse function. Section 2 gives a mathematical formulation of a stochastic minimum cost
network flow problem. We then show that the network recourse function, when viewed as a function of
the random capacities, is a non-increasing convex function with a property called convex marginal return
functions with respect to upper capacities of links having either a common initial node or a common
terminal node. These properties are then used to find an effective upper bound on the expected value of
the network recourse function which does not require prohibitive amounts of computation. In the final
section, these bounds are applied to several network problems to demonstrate their effectiveness.



2 Formulation of a Stochastic Minimum Cost Network Flow
Problem

Consider a directed network G, consisting of a set of nodes N'=1,2,...,m and a set of directed links A
joining various pairs of nodes in A. For any link (i,j) € A, node 7 is the inétial node of (7,) and node
J is the terminal node of (i, j). The goal of the program is to route a given supply of a commodity from
specified sources, denoted S C N, to specified sinks, denoted T C N, at minimum cost. Each node i in
S has an amount b; > 0 of the commodity available at that source. Each node ¢ in T has an amount
b; < 0 of the commodity that must be routed to that sink ¢. The cost of routing each unit along link (¢, 5)
in A is ¢;;. Finally, each directed link (7, j) in .A has lower and upper capacity constraints, ;; and wu;;
respectively, on the amount of flow that can be sent along that link. Throughout this paper, the upper
capacities u;; are assumed to be stochastic, governed by the independent, non-negative, discrete random
variables ¢;;.

Let a;; denote the flow along link (¢,j). Then, the problem can be viewed as a function of the
stochastic upper capacities, ¢;;, as follows:

f(¢) = min Z(z’,j)eA Cijij y
b; ifze s
subject to: Z(i,j)eA Lij — Z(]’,i)eA rj; = 0 ift e ./}f\ (§ U T)
—b; ifeeT
T < wg = ¢y V(ij)eA
Tij > li]' Y (Z,j) eA

The problem can easily be transformed to a circulatory network flow problem by creating a super-
source node s, a super-sink node t, links (s,¢) for each ¢ € S with upper and lower capacity b;, links
(j,t) for each j € T with upper and lower capacity b;, and a link (t,s) with upper and lower capac-
ity D ic5bi = Z]ET bj. The cost per unit flow on all these links is zero. Let N* = N [J{s, t} and

A* = AUJ{(s,))Vi € S, (j,6)Vj € T, (t,s)}. Then the problem can be rewritten as follows:

f(¢) = Min. Z(i,j)eA Cijij
subject to: Z(i,j)eA* Tij — Z(j,i)EA* z;; = 0 Vie N* (1)
zij < u = ¢y
T > i

The applications of minimum cost flow problems are vast (see, e.g., Bazaara, Jarvis and Sherali [1],
Murty [12]). Any such problem which is governed by demand for commodity movement may be viewed
as a stochastic minimum cost network flow problem. For applications of this type of problem, see [13],

[16].



3 Properties of the Network Recourse Function

The function f(¢) has several properties which can be exploited to make approximations easier and more
effective. First, the problem is a stochastic linear program. Thus, f(¢) is a piecewise linear, convex
function in ¢ (see, e.g., Birge and Louveaux [4]). Further, since any routing which is possible for ¢! is
also possible for ¢? > ¢!, it is readily seen that f(¢) is a non-increasing function of ¢.

The next property to show needs to be defined first.

Definition: A function f(dy,...,dy) is said to have conver marginal return functions with respect to
di and d;, 1 <i<j<mn,if forall A >0,e>0,

Fdi, o oodi4 A di e, dn) = f(dy, o di e dy e, dy)
> F(dy, o di+ A dy s dn) — f(dy, o d o dy L dy).

The remainder of this section shows that f(¢) has convex marginal return functions with respect to
upper capacities of links having either commom initial nodes or common terminal nodes. Briefly, the
explanation for convex marginal return functions is as follows.

Consider a network flow problem in which Link 1 and Link 2 have the same initial node. Suppose that
the network flow problem is solved for particular values of ¢ and ¢, the upper capacities for Link 1 and
Link 2, respectively. Now increase the value of ¢; by one, while leaving all other capacities unchanged.
Suppose that the new problem is solved by a network algorithm such as the out-of-kilter method which
recursively deletes negative cost cycles, and the solution to the previous problem is used as the starting
solution. The only possible negative cost cycle would have to include an increase of flow on Link 1, since
the previous solution was optimal and the only changed aspect of the problem is the upper capacity
of Link 1. But that implies that the solution to the updated problem must either decrease or leave
unchanged the flow along Link 2. In either event, if ¢» is now increased by one, the effect of that increase
is going to be less than if ¢» had been increased before ¢;. A similar argument can be used if Link 1 and
Link 2 have the same terminal node.

Now in order to prove this property rigorously, the optimality conditions and the basic ideas behind
the Out-of-Kilter Algorithm need to be reviewed.

Let the dual variables from program (1) be defined as:

w; = dual variable corresponding to conservation of flow constraint (1) at node 4,7 € A™*,
Aij = dual variable corresponding to lower capacity constraint (3) on link (7, 7),Y(¢, j) € A*,
6;; = dual variable corresponding to upper capacity constraint (2) on link (¢, ), V(i j) € A*.

Then, examining the complimentary slackness conditions for this problem gives the following result for
all minimum cost network flow problems (see, e.g., Bazaara, Jarvis and Sherali [1]).

Theorem 3.1 Let x be any conserving flow, and let i be any integral vector. Then x and p are respec-
tively primal and dual optimal solutions to program (1) if and only if for all (i,7) in A*,

cij — i +p; >0 wmplies  xy; = Ui
cij = pi +py <O amplies  wij = wij
cij — i+ p; =0 amplies L < x5 < wyj.



Proof: See Fulkerson [10].

Fulkerson [10] used this theorem to develop the Out-of-Kilter Method for solving minimum cost net-
work flow problems. A link (4, j) which satisfies the conditions of Theorem 3.1 is said to be in-kilter,
while those which do not satisfy those conditions are out-of-kilter. Fach link is given a kilter number,
which corresponds to the minimal change of flow required to bring that link into kilter; clearly, in-kilter
links have a kilter number of zero.

The goal of the algorithm is to have the sum of all kilter numbers equal zero. The method accomplishes
this by successively canceling negative cost residual cycles. A link (7,7) is selected from among those
links which are currently out-of-kilter. If flow needs to be increased along (7, j), then node j is labeled.
If flow needs to be decreased, node 7 is labeled. The method then proceeds to look from labeled nodes
to see if flow along links to adjacent nodes can be increased or decreased, as appropriate. The labels
generally contain information about the direction of flow change through that node and the maximum
change possible through that node.

While all out-of-kilter links are allowed to have flow changes (which will bring them closer to being
in-kilter), only in-kilter links for which p; — p; — ¢;; = 0 are allowed to have flow change. The labeling
continues until either a circuit is found which includes link (7, j) or no more nodes can be labeled. In
the latter case, a dual variable change is made in which the dual variables, uy, for all labeled nodes are
increased by an equal amount. This step allows for more labeling to be done in the next labeling step, or
to determine that the problem is infeasible. In the former case, a flow change is made in which the flow
along (7, j) is changed. In either case, the kilter number of each link either remains the same or strictly
decreases. The kilter numbers never increase. In any labeling step, let A’ denote the set of labeled nodes,
and let X' denote the set of unlabeled nodes.

For a full description of the method, see Fulkerson [10], Bazaara, Jarvis & Sherali [1], or Murty [12].

One insightful point to make about network flows in general and, in particular, the Qui-of-Kilter
Algorithm, is the following restatement of the objective function, which will be used later. If the matrix
E is used to denote the node-arc incidence matrix, then any conserving flow satisfies Ex = 0, and so
pFEx = 0. This implies that for a conserving flow which satisfies the lower and upper capacity constraints,
the objective function can be written:

fle)y = > eju
(i j)EA”

= Z (cij — pi + 1) 2ij. (2)

(i.d)€A*

The (¢;; — pi + ptj) used in Equation (2) is exactly the equation used in Theorem 3.1 to determine if link
(4,7) is in-kilter or not.

Another point to note is the inability to increase flow along certain links during certain primal flow
changes. As mentioned, the OQut-of-Kilter Algorithm works by cancelling all negative cost residual cycles.
Suppose a particular network is solved, then some Link £ has its upper capacity increased by one. Since
the previous problem had been solved, all kilter numbers were zero exactly. Now the only possible nonzero
kilter number 1s that of Link k. Its only possible nonzero value is one. Since all primal flow changes
decrease the kilter number of at least one of the links involved in the cycle by one, the new network is



(113,¢13,613)

(123,¢23,Cz3)

Figure 1: Link 1 and Link 2 with a common terminal node.

at most one cycle change away from optimality. That cycle change (if necessary) must involve increasing
flow on Link & by one unit.

This result implies that a cycle cannot include increasing flow along any other link which has the
same terminal node as Link k. Otherwise, the result would not be a cycle. Similarly, the cycle cannot
include increasing flow along any link which has the same initial node as link k. These two observations
will be needed later in the proofs of convex marginal return functions for links having either a common
initial or terminal node.

To develop the idea of convex marginal return functions, consider a minimum cost network flow
problem in which Link 1 flows from Node 1 to Node 3 and Link 2 flows from Node 2 to Node 3. For
a particular realization of ¢, the upper capacity of Link 1 is uy3 = ¢13 and the upper capacity of Link
218 U3 = ¢a3. For simplification, assume that only these two links have stochastic capacities, so that
program (1) can be viewed as f(¢13, ¢23). Figure 1 gives a partial diagram of a possible network depiction
of this situation.

Claim 3.1 f(¢13+ 1, ¢23) — f(¢13, ¢23) < f(P13+ 1, das + 1) — f(13, 23+ 1).

Proof: Let the all components of the optimal solution to f(¢13, ¢23) have an accent bar (z), all com-
ponents of the optimal solution to f(¢13 + 1, ¢23) have an accent breve (¥), all components of the
optimal solution to f(¢13, #23+ 1) have an accent hat (&), and all components of the optimal solution to
J(¢13+ 1, ¢33+ 1) have an accent tilde (Z).

Suppose #1 < ¢13. This implies that f(¢13, ¢23) = f(¢13+1, ¢23). Then, when wuas is raised to ¢az+1
in f(é13 + 1, ¢as + 1), by the comments above, #; remains less than or equal to ¢13. This implies that
f(p13, 023+ 1) = f(¢13+ 1, ¢a3+1). This shows that the claim is valid when #; < ¢13 or #2 < ¢a3 (since



the same argument can be repeated).

Assume ¥ = ¢13+ 1 and &3 = ¢ag + 1. Suppose that &3 < ¢15. This implies that f(¢13, ¢z + 1) =
F($13+1, ¢as+1). Since f(¢) is a non-increasing function of ¢, we know that f(¢13+1, ¢as) < f(¢13, Pas).

Hence, the claim remains valid. Again, the same argument can be repeated for z,.

Finally, assume &; = ¢13+ 1, 2 = ¢a3+ 1, 1 = ¢13 + 1, and T2 = ¢23 + 1. Examine what happens
in each problem.

1. f(¢13, ¢23) = Optimal flow z has value f(¢13, ¢23).
Ty = @13, 1 — fi3 > c13, otherwise ¥1 < ¢13.
Ty = ¢ag, fin — i3 > Co3, otherwise T3 < ¢os.

2. f(¢13+ 1, ¢23) = Optimal flow & has value f(¢13 + 1, ¢a3).

Z1 = ¢13 + 1, by assumption.

fii — fiz = fiy — fiz > c13, (ji1 = ji since Node 1 € X in any dual variable change; otherwise
a circuit would have been found).

Ty = ¢)23 and /jz — /ig > ¢93. Otherwise 2o < ¢)23.

[is > s, since any dual variable change strictly increases p for all nodes in A, and Node 3 is
always in X' (since link 1 is the only out-of-kilter link).

Then by Equation (2), since the only difference between flow & and & is the circuit including
link 1 and the only possible links which could be included in that circuit other than Link 1
according to the Out-of-Kilter method are those links (k,!) for which p — p; — ey = 0, the
following is established:

f(d1s+ 1,¢23) = flo1s, Pa3) — (c13 — fir + fiz) P13 + (c13 — fir + fis)(d13 + 1)
= f(¢13,¢23) + (c13 — fi1 + fi3). (3)
Since the return to in-kilter was by circuit,
613—ﬂ1+ﬁ3<0.

3. f(é13, #23 + 1) = Optimal flow & has value f(¢13, g2z + 1).
21 = ¢13, and i1 — fis > c13. Otherwise 1 < ¢13.
Zy = ¢a3 + 1, by assumption.
flz — i3 = jlg — fi3 > c23 and fi3 > fis.
Again, by Equation (2),
f(p13, 023+ 1) =  f(1s, Pa3) — (caz — fiz + jiz)Pas + (ca3 — fiz + fi3)(Pas + 1)
= f(P13,¢23) + (ca3 — fiz + fi3). (4)

By assumption, the return to in-kilter status is by circuit. Hence,
ca3 — fto + fiz < 0.

4. f(¢13+ 1,623+ 1) (starting with feasible flow ¥) = Optimal flow & has value f(¢13 +
1a ¢23 + 1)




Ty = ¢13+ 1,22 = @23+ 1, by assumption.
flo — fiz = iz — Jiz > Ca3.

fi1 — iz > ci3 and fiz > fiz.

By Equation (2),

flos+1,023+1) = flo13+ 1, ¢as) — (cog — fia + fiz) oz + (ca3 — fio + fiz) (P23 + 1)
= f(¢13+1,023) + (co3 — fia + fi3). (5)

Similarly, starting with feasible flow &, Equation (2) gives:

1+ 1,23+ 1) = fld1s,Pas+ 1) — (c13 — o1 + fis)d13 — (13 — ji1 + fis) (P13 + 1)
= f($13, 623+ 1) + (c13 — jun + fiz). (6)

Now, from f(¢13, ¢23), consider the possibility of increasing both w;3 and usz by 1. Regardless
of which link is chosen first, Node 3 must be labeled (+e,1). Thus, if a circuit to either Node
1 or Node 2 is sought starting from labeled Node 3, one node must be reached before the
other, and, until one is reached, neither p; or ps is increased in any dual variable change.
Thus, either jio = 1o or i3 = fi1. Without loss of generality, assume i1 = j13. Then, using
equations (3) and (6),

f(#13 +1,623) — f(d13,¢23) — f(d13+ 1, ¢23+ 1) + f(d13, ¢23 + 1)
(c13— i1 + fiz) — (c13 — f11 + fi3)
= jiz—fi3
< 0

Thus, the claim is valid. O

Next, the same property will be shown for links having a common initial node. Here, consider a
network flow problem in which Link 1 flows from Node 1 to Node 3 and Link 2 flows from Node 1 to
Node 3. For a particular realization of ¢, the upper capacity of Link 1 is w12 = ¢12 and the upper capacity
of Link 2 is u13 = ¢13. For simplification, assume that only these two links have stochastic capacities,
so that program (1) can be viewed as f(¢13, ¢12). Figure 2 gives a partial diagram of a possible network
depiction of this situation.

Claim 3.2 f(¢12+1,613) — f(d12,013) < f(d12+ 1,613+ 1) — f(d12, 13+ 1).

Proof: This proof closely matches that of Claim 3.1. Let the all components of the optimal solution
to f(¢13, ¢12) have an accent bar (Z), all components of the optimal solution to f(¢13 + 1, ¢12) have an
accent breve (&), all components of the optimal solution to f(¢13, ¢12 + 1) have an accent hat (z), and
all components of the optimal solution to f(¢13+ 1, $12+ 1) have an accent tilde ().

Suppose #1 < ¢13. This implies that f(¢13, $12) = f(d13+ 1, ¢12). Then, when wuys is raised to ¢12+1
from f(¢13 4+ 1, ¢12 + 1), by the comments above, we know that &; remains less than or equal to ¢13.
This implies that f(¢13,¢12+1) = f(¢13+ 1, ¢12+ 1). This shows that the claim is valid when &; < @13



(112,¢12,612)

(113,¢13,613)

Figure 2: Link 1 and Link 2 with a common initial node.

or ¥ < ¢ (since the same argument can be repeated).

Assume ¥ = ¢13+ 1 and &3 = ¢12 + 1. Suppose that &3 < ¢15. This implies that f(¢13,¢12+ 1) =
f(¢13 + 1,612 + 1). But since f(¢) is a non-increasing function of ¢, we know that f(¢13 + 1,¢12) <
f(¢13, #12). Thus, the claim remains valid. The same argument can be repeated for 5.

Finally, assume &; = ¢13+ 1, 22 = ¢12+ 1, 21 = ¢13 + 1, and T3 = ¢12 + 1. Examine what happens
in each problem.

1. f(¢13, ¢12) = Optimal flow z has value f(¢13, ¢12).
T1 = @13, fi1 — iz > c13. Otherwise, &1 < ¢q3.
Ty = @19, fi1 — iz > c12. Otherwise, &y < ¢12.

2. f(¢13+1,¢12) = Optimal flow & has value f(¢13 + 1, ¢12).
Z1 = ¢13 + 1, by assumption.
fi1 — fis = fi1 — fiz > 13, (ji1 = [i1 since Node 1 € X in any dual variable change; otherwise
a circuit would have been found).
Ty = ¢)12 and ljl — /iz > C12. Otherwise, Ta < ¢)12.
[is > s, since any dual variable change strictly increases p for all nodes € X', and Node 3 is
always in X' (since Link 1 is the only out-of-kilter link).

Then by Equation (2), since the only difference between the flow # and # is the circuit
including Link 1 and the only possible links which could be included in that circuit other than
Link 1 according to the Out-of-Kilter method are those links (k,1) for which pp — gy — g = 0,



the following is established:

s+ 1,612) = flo1s, ¢12) — (c13 — fir + fiz) P13 + (c13 — fir + fis)(d13 + 1)
= f(¢13,¢12) + (c13 — ju + fi3). (7)

Since the return to in-kilter was by circuit,
c1s — i1 + fis < 0.

3. f(é13, #12 + 1) = Optimal flow & has value f(¢13, ¢12 + 1).
= ¢)13, and ﬂl — ﬂg > C13. Otherwise, i1 < ¢)13.
Zy = ¢12 + 1, by assumption.
fl1 — fla = [ty — ft2 > c12, and fi; > fi1.
Again, by Equation (2),
fp1s, 012+ 1) = fl1s, ¢12) — (c12 — fir + fi2)d12 + (c12 — fir + fi2)(P12 + 1)
[(613,612) + (c12 — 11 + p1a). (8)

Since, by assumption, the return to in-kilter status i1s by circuit,

ci1a — 1 + fia < 0.

4. f(¢13+ 1,612+ 1) (starting with feasible flow #) = Optimal flow & has value f(¢13 +
L,¢12+1).

T1 = ¢13+ 1,22 = ¢12 + 1, by assumption.

fi1 — fla = fin — Jiz > c12.

fi1 — iz > ci3 and fiz > fiz.

By Equation (2),

flos+1,¢012+1)

f(p1s+ 1, ¢12) — (e12 — i + fiz)d12 + (c12 — fi1 + fi2)(d12+ 1)

= f(o13+1,612) + (c12 — fi1 + fia). (9)
Similarly, starting with feasible flow &, Equation (2) gives:
s+ 1,012+ 1) = fld1s, 12+ 1) — (c13 — o1 + fis)d13 — (13 — ji1 + fis)(d13+ 1)
= f(¢13, 012+ 1)+ (c13 — 11 + fiz). (10)

Now, from f(¢13, ¢12), consider the possibility of increasing both w;3 and 42 by 1. Regardless
of which link is chosen, a cycle is not found resolving either out-of-kilter status until Node
1 becomes labeled. Thus, until Node 1 is reached, g7 is not increased in any dual variable
change. Thus, either fia = j12 or fiy = pt1. Without loss of generality, assume 11 = fi7. Hence,
using equations (7) and (10),

f(#13+1,612) — f(d13,012) = f(d13+ 1, ¢12+ 1) + f(d13, 912 + 1)
(c13— i1 + fiz) — (c13 — f11 + fi3)
= Jiz—fi3
< 0

Thus, the claim is valid. O



4 Upper Bound for a Non-increasing Convex Function with
Convex Marginal Return Functions

Let ® be an n-dimensional random vector, where each ®; is independently distributed with a bounded
support, finite mean and cumulative distribution function F;. Further, let ¢ ¢ be the realizations of

®; defined as:

¢f = sup{g;: Fi(¢:) <0}, (11)
¢f' = inf{¢;: Fi(¢i) < 1}, (12)
so that ¢F < ¢ff for all i. Let pf = prob{®; = ¢F'} and pf = prob{®; = ¢} for all i be such that
pior ool = Bl@), pf+pl =1, o >0

Let f(®) be a non-increasing convex function of ® with convex marginal return functions with respect
to any pair (®;,®;),i=1,...,n, j = 1...,n. Then the following proposition, proven in Donohue and
Birge [8], shows that an upper bound on E[f(®)] can be established with only 2 function evaluations.

Proposition 4.1 Let ® and f(®) be as defined above. Let p& = max{pl pL ... pL} and pf =1 —pt.
Then
Ef(@)] <p"f(o1, 0%, ... dn) + 07 f(o7, 08, 07)).

Having shown that the minimum cost network flow problem with stochastic upper link capacities 1s a
non-increasing convex function of the stochastic upper capacities, and that this function also has convex
marginal return functions with respect to capacities of links having either a common initial or common
terminal node, Proposition 1 can be applied to solve for an upper bound on the expected value of this
stochastic minimum cost network program which involves solving 2°1 or 2*2 realizations, where k; is the
number of nodes having outbound links with stochastic upper capacities and ks is the number of nodes
having inbound links with stochastic upper capacities. In many cases, this is a significant reduction to
the 2% realizations that are needed to be solved for the Edmundson-Madansky bound, where L is the
number of links having stochastic upper capacities.

Consider a network in which link ¢ has stochastic upper capacity ¢;, ¢ = 1,...,k. Then by the
Edmunson-Madansky [11] bound,

Eff@)] < > o S JIerer, ). (13)

ite{L,H}  i*e{L,H}j=!1

Let ny,...,ny be the set of terminal nodes of links 1,..., k. Let ¢; denote the terminal node of link i,
i=1,...,k, and let pﬁj = max{pl : t; = j},anj =1- pﬁj. Since f(®) is a non-increasing, convex
function with convex marginal return functions, Proposition 4.1 can be applied over each set of links with
a common terminal node. Hence,

@) < Y o Y TIeor@lt e, (14)

jte{L,H}  jre{L,H}I=1

10



Dist. Number,s | L; H; PI‘(XZ' = Lz) PI‘(XZ' =L;+ 1) PI‘(XZ' =L; + 2) PI‘(XZ' =L; + 3)
1 1 4 0.35 0.30 0.25 0.10
2 2 5 0.40 0.20 0.20 0.20
3 3 6 0.30 0.25 0.25 0.20
4 4 6 0.50 0.30 0.20 -
5 5 8 0.40 0.30 0.15 0.15
6 6 8 0.45 0.35 0.20 -
7 7 9 0.50 0.25 0.25 -
8 8§ 11 0.35 0.30 0.20 0.15
9 9 11 0.45 0.40 0.15 -
10 10 12 0.40 0.35 0.25 -

Table 1: Possible Distributions for Links with Stochastic Upper Capacity for Transportation Problem.

Similarly, by letting ¢; denote the initial node of link i, the same inequality results from applying Propo-
sition 4.1 over each set of links with a common initial node. Refinements of the bound in Proposition 4.1
are found in [8] which can be applied here to improve the effectiveness of this bound.

5 Experimental Result

To test the effectiveness of this upper bound, two test problems were created and solved. The first
problem is a transportation problem with 15 source nodes, 15 sink nodes and 105 links connecting the
sources and sinks. Three different versions of this problem were considered. The second problem is a
vehicle allocation problem with uncertain demands. This type of problem determines the expected value
of a specific initial vehicle distribution, given uncertainty about the demand for vehicle routings along
several or all links. This problem has 20 nodes and 92 links.

Three versions of the transportation problem were considered. First, all 105 links were assumed to
be stochastic, making finding an upper bound using Edmundson-Madansky computationally impossible.
Next, 30 of the links were randomly selected to have stochastic upper capacities, and each of the other
links were given capacity near the mean of its respective distribution. These 30 links had 9 common
terminal nodes, allowing an upper bound to be found with 2° = 512 function evaluations. Finally, all of
the links out of node 8 were considered stochastic, giving a total of 9 stochastic links. Here, an upper
bound is established with just two function evaluations. Further, a refinement of the upper bound by
partitioning was calculated for comparison. Table 2 lists the cost per unit flow between all sources and
sinks, where flow between the corresponding nodes is possible. Table 3 lists the supply and demand
requirements at each of the source and sink nodes. Each link has a lower capacity bound of zero. The
distribution of the random variable corresponding to the upper capacity of each link was one of ten
possibilities. Let X; denote the random variable with distribution ¢, and let L; (H;) denote the lowest
(highest) possible value of distribution é. The ten possible distributions are listed in Table 1. Table 4
gives the distribution that was assigned to each link.

The second problem is a vehicle allocation problem, one stage of a dynamic vehicle allocation problem
with uncertain demands (see [13]). Figure 5.1 depicts the network over which the fleet of vehicles must
be routed, given the initial distribution of vehicles at the source nodes 1 through 5. The problem only
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1 1> t3 ta ts ts t7 ts tg t10 {11 t12 t13 t14 t15
$1 109 323 - 96 107 230 380 - 254 352 - - - - 385
D) - 105 - 99 - 405 - - - - - - 428 249 158
S3 - - - 315 - - 217 66 - 139 73 157 - - -
Sa 202 - 175 277 - - 402 290 - - - 233 - - -
S5 - 123 - - - - - - 167 94 169 296 154 447 -
Se - - - 143 - - 216 382 - 112 229 149 - - -
87 291 - 127 - - - 279 - 226 436 - - - - -
S8 - - 383 137 280 239 - - - 81 318 201 245 - 97
S9 384 - - - - 334 339 - 137 317 - - - 65 -
$10 197 - - - - 357 - 415 362 272 246 223 - 393 -
811 - 442 - 257 242 307 420 - 119 - 384 - 149 - 209
S$12 172 - 136 - - 186 - 111 - 322 - 106 - - 312
$13 159 267 - - 67 76 - 362 427 401 - - 174 - -
S14 - - 244 - 110 291 - 211 - - 292 228 - 205 -
s15 | 352 - - - - - 426 350 - - - - 97 94 355

Table 2: Cost per unit flow from source s; to sink ¢; in Transportation Problem.

= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Si 55 46 35 26 44 38 24 58 38 44 32 46 50 34 30
t; 47 32 23 43 13 59 50 41 44 72 38 47 30 30 31

Table 3: Source and sink node supply and demand requirements in Transportation Problem.

t1 ta ta ta ts stz ts  to  tio t11 tiz tiz tia s
$1 8 5 - 9 1 9 5 - 9 10 - - - - 3
D) - 10 - 7 - 10 - - - - - 1 10 10
S3 - - - 2 - - 7 8 - 5 6 9 - - -
Sa 8 - 3 6 - - 3 8 - - - 1 - - -
S5 - 7 - - - - 7 6 9 7 8 2 -
Se - - - 9 - - 4 3 - 6 10 8 - - -
87 6 - 6 - - - 6 - 7 2 - - - -
S8 - - 7 6 2 8 - - - 10 7 10 - 3
S9 1 - - - - 4 8 7 10 - - 9 -
$10 10 - - - - 2 - 1 10 9 7 8 1 -
811 - 2 - 9 1 4 9 - 3 - 2 - 2 - 4
S$12 6 - 1 - - 9 - 7 - 8 - 7 - - 10
$13 10 9 - - 5 9 - 6 2 9 - - 3 - -
S14 - - 7 - 8 7 - 3 - - 2 2 8
$15 2 - - - - - 10 7 - - - - 8 6 3

Table 4: Distribution for upper capacity of link from source s; to sink ¢; in Transportation Problem.
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D; L; H; Pr(Xi = Li) Pr(Xi =1;+ 1) Pr(Xi =IL;+ 2) Pr(Xi =IL;+ 3) Pr(Xi =1;+ 4)
1 0 2 0.40 0.30 0.30 - -
2 0 3 0.40 0.25 0.20 0.15 -
3 0 3 0.35 0.25 0.20 0.20 -
4 0 4 0.30 0.25 0.20 0.15 0.10
5 0 4 0.35 0.20 0.15 0.15 0.15
6 1 3 0.45 0.35 0.20 - -
7 1 3 0.40 0.35 0.25 - -
8 1 4 0.45 0.20 0.20 0.15 -
9 1 4 0.40 0.25 0.20 0.15 -
10 2 4 0.40 0.30 0.30 - -

Table 5: Possible Distributions for Stochastic Links in Vehicle Allocation Problem.

requires that flow is conserved throughout the network, given the initial distribution of vehicles. Thus,
Node 20 is actually an artificial sink node and the links into Node 20 are artificial as well. These links
are uncapacitated and add no value to the problem. All other links shown in the diagram handle the flow
of loaded vehicles between the adjacent nodes.

Since the need to move loads i1s governed by demand, the upper capacities of these links are stochastic.
Flow along these links generate positive revenue. Running parallel to each of these links, but not in the
diagram, is another link which handles the flow of empty vehicles. These links are uncapacitated. Flow
along these links generate positive cost. The goal is to minimize negative profits (cost - revenue). The
given initial distribution of vehicles is (10,12,12,10,7). The links in this problem were numbered by
considering each node in numerical order (as seen in the diagram) and numbering consecutively from top
to bottom. Table 6 gives the cost per unit of loaded flow along each link (r;), the cost of per unit of
empty flow along each link (¢;), and the distribution given to the random variable corresponding to that
link’s upper capacity(D;). As before, the distributions were chosen from among 10 different possibilities,
which are shown in Table 5.

Again, three versions of this problem were considered. In the first version, all of the links handling the
flow of loaded vehicles were assumed to have stochastic upper capacities. In the second version, 15 links
were chosen at random to have stochastic capacities. These 15 links have 8 distinct initial nodes and 11
distinct terminal nodes, so that the upper bound from links with a common terminal node differs only
slightly from the Edmundson-Madansky bound, both in value and computation. The upper bound from
links with common initial nodes, though, is small enough that that probability space can be partitioned
and the initial upper bound can be refined. Finally, all links into and out of Node 8 are assumed to have
stochastic upper capacities. Thus, a total of eight links have stochastic capacities. Since the network is
acyclic, none of the links into Node 8 are affected when the bound for links with a common initial node
is used over the links out of Node 8. Hence, the bound for links with a common terminal node can be
used on all the links into Node 8. Thus, only four function evaluations are necessary.

A program was written in C which recursively updated the right-hand side of each network problem
as needed, then passed the new program to be solved by IBM’s Optimization Subroutine Library (OSL).
The program was run on an IBM RS\6000 workstation.

The results are shown in the table below. The table includes information about the number of stochas-
tic links in each version, and the number of distinct problems that had to be solved. If two values are

13



\ , 17 20

Figure 3: Vehilcle Allocation Problem with Uncertain Demands
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1 T C; Di 1 T C; Di 1 T C; Di 1 T C; Di
11327 81 4 13 | 2556 73 7 25 | 177 63 9 36 | 263 93 4
21211 67 10 || 14 | 265 76 3 26 | 348 91 10 || 37 | 285 98 7
31243 70 1 15 | 360 105 9 271148 51 10 || 38 | 281 99 7
41268 70 7 16 | 161 60 10 || 28 | 312 76 8 39 | 242 87 1
51301 75 10 || 17 | 264 78 8 29 1 332 83 9 || 40 | 301 108 6
61204 73 3 18 | 348 86 10 || 30 | 284 75 3 |41 | 277 93 4
71335 95 8 19 | 267 78 8 31| 317 76 6 || 42 | 168 77 5
81190 63 5 20 | 146 54 7 32 | 367 103 6 | 43 | 175 78 7
912256 69 1 21| 330 86 4 33 | 329 81 2 || 44| 273 94 8
10 | 198 66 1 22 1 352 93 2 34 | 214 65 9 || 45 | 262 87 3
11 | 343 8 2 23 | 188 61 6 35| 326 78 1 46 | 252 88 2
12 | 261 80 3 24 | 225 74 3

Table 6: Revenue for loaded flow, cost of empty flow, and distribution of capacity for links in Vehicle
Allocation Problem.

shown for the number of problems solved, the first is for the upper bound for links with a common
terminal node, the second for links with a common initial node. If only one value is shown, the values are
the same. Also shown is the optimal objective value when all stochastic components are at their lowest
value (Greatest Objective Value), and the optimal objective value when all stochastic components are at
their highest value (Least Objective Value). This was done to show the range of possible values. Finally,
the table shows the lower bound found using Jensen’s Inequality, the upper bound using links with a
common terminal node, and the upper bound using links with a common initial node. The problem
Trans.3.a shows the effect of the refining the bound in problem Trans.3. Problem Veh.Allo.3 shows the
bound obtained by clustering both the links into Node 8 and links out of Node 8.

Number of Number of  Greatest Least Lower Upper Upper
Problem Stochastic Problems Objective  Objective Bound Bound Bound
Links Solved Value Value (Jensen) (Terminal Node)  (Initial Node)
Trans.1. 105 2T 132,095 114,190  124,154.90 126,838.00 126,671.59
Trans.2. 30 2? 132,095 126,007 129,519.45 130,064.32 130,098.17
Trans.3. 9 2 130,303 127,165 128,766.40 - 129,126.25
Trans.3.a 9 3 130,303 127,165 128,766.40 - 129,054.28
Veh. Allo.1 46 2Tt 22058 33270 -17,835.50 16,082.53 14,831.20
Veh.Allo.2 15 Q11 98 -8038 -20,258  -13,179.10 -12,912.32 -12,558.45
Veh.Allo.3 8 4 6861 16952 -11086.65 -10787.42

The bounds for the Transportation problem are remarkably tight, as the upper bound is within 2%
of the lower bound in all cases, and as close as .224% in problem Trans.3.a. This would suggest that the
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function is almost linear in the stochastic capacities ¢, and that Jensen’s inequality is very close to the
actual expected value. It is reasonable to assume that more error exists from the upper bound here than
the lower bound, as is typically the case with convex function approximations. Note, however, that the
effectiveness of Jensen’s inequality in this problem would be more difficult to prove without an effective
upper bound. The best upper bounds for problems Veh.Allo.1, Veh.Allo.2, and Veh.Allo.3 are within
9.8%, 2.0%, and 2.7%, respectively, of the given lower bound.

6 Conclusion

As stochastic programming reaches new heights in the number of realizations of the second-stage problem
parameters being considered, new methods must be developed for approximating the expected value of
recourse functions of even more realizations. To know the value of any approximation method, tight
bounds, both upper and lower, must be available on the expected value of the recourse function. Finding
effective approximation methods for stochastic programs often requires that problem structures be ex-
ploited so as to maximize computational efficiency. In this paper, we exploited the structure of minimum
cost network flow problems in such a way as to allow an effective upper bound to be established with a
reduced number of function evaluations.

Further, the ideas of this paper may possibly be extended for special cases where the flow through
certain nodes can be shown to be independent of one another. Also, the results of this paper also
suggest 1deas for better partitioning methods used for refining lower bounds. Given the result about
convex marginal return functions, it seems likely that the best partitioning order is going to be one which
partitions on links having as few common initial and terminal nodes as possible.
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