Abstract: While decisions frequently have uncertain consequences, optimal decision models often replace these uncertainties with averages or best estimates. Limited computational capability may have motivated this practive in the past. Recent computational advances have, however, greatly expanded the range of stochastic programs, optimal decision models with explicit consideration of uncertainties. This paper describes basic methodology in stochastic programming, recent developments in computation, and some practical application examples.
Det. Equiv. PCx fo1aug
Problem Opt. Obj. Value Obj. value time obj. time
-----------------------------------------------------------------
PLTEXP
pltexpA2.6 -9.479 -9.4793536 2.82 -9.4793536 1.14
pltexpA2.16 -9.663 -9.6633082 47.81 -9.663308245 3.19
pltexpA3.6 -13.969 -13.9693692 76.70 -13.96936919 18.98
pltexpA3.16 -14.267 (36 it 3dgts) 40min no space
pltexpA4.6 -19.599 -19.599411 1113.77 -19.5994114 137.30
pltexpA4.16 -18.849
pltexpA5.6 -23.214
pltexpA6.6
pltexpB3.6 -13.6432 -13.6432265 20.52 -13.643226 8.91
pltexpB4.6 -17.9282 -17.928192 156.02 -17.92819208 16.33
pltexpB5.6 -23.870 -23.8433844 632.58 -23.8433844 54.41
-----------------------------------------------------------------
SCFXM
fxm2.6 18416.686 1.8 e+04 4.92 18417.06557 7.88
fxm2.16 18416.655 1.84e+04 22.95 18416.75902 24.83
fxm3.6 18615.932 1.86e+04 24.03 18616.0420 37.75
fxm3.16 18438.891 error error
fxm4.6 18616.224 bad solution 90.59 error
fxm4.16 18438.891
-----------------------------------------------------------------
STORM
storm2.8 15535231.897 15535236.6 136.32 15535236.6301 55.19
storm2.27 15508982.306 (33 it 0dgts) 40min 15508983.2 175.47
storm2.125 15512090.180
storm2.1000 15802589.698
-----------------------------------------------------------------
SGPF
sgpf3y3 -2967.91
sgpf3y4 -3994.18
sgpf3y5 -5172.07
sgpf3y6 -6463.24
sgpf5y3 -3027.706 -3027.62259 0.88
sgpf5y4 -4031.391 -4031.30455 6.35
sgpf5y5 -5201.282 -5201.19902 60.28
Machine Memory Root Cycles Run Tme Opt Value ------- ------ ----------- -------- --------- RS/6000-590 256MB 2 116.5sec -6479.034 4-node SP2 256MB/node 2 84sec -6480.081
Readin Solution Output Opt Root
Problem Rep. Obj Time Time Time EVPI(%) Cuts Cuts
-------------------------------------------------------------------------
SGPF3y3 -2967.91 0.14 0.27 0.38 4.4 30 2
SGPF3y5 -7172.07 1.65 46.46 35.29 4.3 3
SGPF3y6 -6463.22 8.98 1051.7 294.93 6 5264 4
SGPF5y3 -3027.6 0.2 0.47 0.62 11.1 30 2
SGPF5y4 -4031.3 0.52 2.92 5.04 10.9 155 2
SGPF5y5 -5201.2 2.13 46.85 43.34 10.8 780 2
SGPF5y6 -6484.47 11.08 891.09 305.4 12.3 3905 2
A large portion of the simplex iterations are so called `simple' iterations,
i.e. those that do not require a basis change. They occur whenever a non-
basic variable moves between its bounds without entering the basis.
In all the tests the feasibility and optimality tolerances in the subproblems
and cut tolerance in the master were equal to 1.0e-8.
Problem | Scen.|Master| Simplex iterations | Total
| num.|iter | total | simple | time
--------|-------|------|-----------|-----------|--------
fxm2 | 6 | 10 | 814 | 332 | 7.6
| 16 | 11 | 1,462 | 776 | 14.1
pltexpA2| 6 | 7 | 941 | 472 | 5.3
| 16 | 7 | 2,490 | 1,270 | 7.1
ssn | 10 | 21 | 9,789 | 6,889 | 19.1
| 50 | 41 | 118,546 | 88,612 | 216.3
| 100 | 34 | 234,637 | 171,019 | 427.4
| 500 | 95 | 2,344,477 | 1,990,404 | 3837.0
| 1000 |110 | 5,388,854 | 4,633,726 | 8575.3
storm | 10 | 18 | 4,212 | 1,735 | 30.8
| 50 | 33 | 24,389 | 13,196 | 171.2
| 100 | 33 | 47,427 | 27,234 | 326.2
| 500 | 42 | 250,992 | 163,615 | 1851.7
| 1000 | 43 | 506,109 | 329,234 | 3834.9
stormG2 | 8 | 21 | 3,850 | 1,576 | 26.4
| 27 | 25 | 12,724 | 5,430 | 83.2
| 125 | 36 | 61,955 | 32,775 | 443.4
| 1000 | 37 | 489,147 | 317,413 | 3389.2