Optimal Consumption – A Stochastic Programming Approach

John R. Birge Northwestern University Christopher Donohue Deutsche Bank

INFORMS San JoseNovember 2002

Problem Statement

- Determine asset allocation and consumption policy to maximize the expected discounted utility of spending
	- Two asset classes
		- Risky asset, with lognormal return distribution
		- Riskfree asset, with given return $r_{\!\scriptscriptstyle f}$
	- Infinite horizon
	- Power utility function

$$
u(c) = \frac{c^{1-\gamma}}{1-\gamma}
$$

–Consumption rate constrained to be non-decreasing

Existing Research

- • Dybvig '95*
	- Continuous-time approach
	- – Solution Analysis
		- Consumption rate remains constant until wealth reaches a new maximum
		- The risky asset allocation α is proportional to w-c/r_f, which is the excess of wealth over the perpetuity value of current consumption
		- α decreases as wealth decreases, approaching 0 as wealth approaches c/r_f (which is in absence of risky investment sufficient to maintain consumption indefinitely).
- • Dybvig '01
	- Considered similar problem in which consumption rate can decrease but is penalized (soft constrained problem)

* "Duesenberry's Ratcheting of Consumption: Optimal Dynamic Consumption and Investment Given Intolerance for any Decline in Standard of Living" Review of Economic Studies 62, 1995, 287-313.

Objectives

- Replicate Dybvig results using discrete time approach
	- – For both hard and soft consumption rate constraint cases
- Consider additional problem features
	- Transaction Costs
	- – Multiple risky assets
		- Allocation constraints

Approach

• Application of typical stochastic programming approach complicated by infinite horizon

$$
Q(\overline{x}) = \max \sum_{i} p_{\xi_i} \left(c_{\xi_i} x_{\xi_i} + e^{-\delta t} Q(x_{\xi_i}) \right)
$$

s.t. $Ax_{\xi_i} = b_{\xi_i} - T_{\xi_i} \overline{x}$

- Initialization.
	- –Define a valid constraint on $Q(x)$

$$
Q(\overline{x}) \le -E^0 x_{\xi_i} + e^0
$$

Requires problem knowledge. For optimal consumption problem, assume extremely high rate of consumption forever

Approach (cont.)

• Iteration k *Find* $\gamma^k = \min_x \left(U^k(x) - V^k(x) \right)$, where *x* $\gamma^{k} = \min_{x} (U^{k}(x) - V^{k}(x)),$ $V^k(x) = \min_{x \in \mathbb{R}^d} \left\{ -E^j x + e^j \right\}$, and *j k* $x^k(x) = \min_{0 \le i \le k} \left\{ -E^j x + e^j \right\},$ $=\min_{0\leq i\leq k}(-E^{j}x +$ $f(x) = \max \sum p_{\xi_i} \Big(c_{\xi_i} x_{\xi_i} + e^{-\delta t} \Theta \Big)$) $E^J x_{\varepsilon} + \Theta_{\varepsilon} \leq e^J, \quad j=0,\ldots, k-1$ $S.t.$ $Ax_{\varepsilon} = b_{\varepsilon} - T_{\varepsilon} \overline{x}$ $U^{\kappa}(x) = \max$ $\sum_{\ell} p_{\varepsilon} (c_{\varepsilon} x_{\varepsilon} + e^{-x})$ j_{∞} Ω \leq Ω^{j} *i* $k \left(\begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array} \right)$ ζ_i \cup ζ_i \supset \cup \cup \cup \cdots $\zeta_i - \zeta_i$ **f** ζ_i $\iint_i \left(\sum_{\xi_i} \mathcal{L}_{\xi_i} \right) \left(\sum_{\xi_i} \right)$ $\int_{\xi_i} \Bigl(c_{\xi_i} \, \chi_{\xi_i} + e^{-\delta t} \Bigr)$

Expensive search over x, possible for the optimal consumption problem because of small number of variables

> − *If* $\gamma^k > -\varepsilon$, terminate.

Else define a new cut ,

$$
E^k = \sum_i -p_{\xi_i} \mu_{\xi_i} T_{\xi_i}
$$

$$
e^k = \sum_i P_{\xi_i} \left(\mu_{\xi_i} b_{\xi_i} + \rho_{\xi_i} e \right)
$$

Results – Non-decreasing Consumption

Results – Non-Decreasing Consumption with Transaction Costs

To be continued …

- Soft constraint on decreasing consumption
- Multiple assets
	- Allocation bounds