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General Problem

• (Very) long-term investor (example: university 
endowment)

• Payout from portfolio over time (want to keep 
payout from declining) 

• Invest in various asset categories
• Decisions:

• How much to payout (consume)?
• How to invest in asset categories?

• Complication: restrictions on asset trades
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Outline

• Basic formulation
• General infinite horizon solution method
• Simplified problem and continuous time 

solution
• Results for restricted-trading portfolio
• Future issues
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Problem Formulation
• Notation:

x – current state (x ∈ X)
u (or ux) – current action given x (u (or ux) ∈ U(x))
δ – single period discount factor
Px,u – probability measure on next period state y 

depending on x and u
c(x,u) – objective value for current period given x and u
V(x) – value function of optimal expected future rewards 

given current state x
• Problem: Find V such that 

V(x) = maxu∈ U(x){c(x,u) + δ EPx,u[V(y)] }
for all x ∈ X.
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Approach

• Define an upper bound on the value function
V0(x) ≥ V(x) ∀ x ∈ X

• Iteration k: upper bound Vk

Solve for some xk

TVk(xk) = maxu c(xk,u) + δ EPxk,u[Vk(y)]

Update to a better upper bound Vk+1

• Update uses an outer linear approximation on Uk
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Successive Outer Approximation
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Properties of Approximation

• V*· TVk · Vk+1· Vk

• Contraction
|| TVk – V* ||∞ · δ ||Vk – V*||∞

• Unique Fixed Point
TV*=V*

⇒ if TVk ≥ Vk, then Vk=V*.
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Convergence
• Value Iteration

Tk V0 → V*
• Distributed Value Iteration

If you choose every x∈ X infinitely often, 
then Vk → V*.
(Here, random choice of x, use concavity.)

• Deepest Cut 
Pick xk to maximize Vk(x)-TVk(x) 
DC problem to solve
Convergence again with continuity (caution on boundary 

of domain of V*)
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Details for Random Choice

• Consider any x
• Choose i and xi s.t. ||xi – x|| < εi

• Suppose || ∇ Vi ||  · K ∀ i
|| Vk(x) – V*(x)|| · ||Vk(x)-Vk(xk)+Vk(xk)-

V*(xk)+V*(xk)-V*(x)||
· 2 εk K + δ ||Vk-1(xk)-V*(xk)||
· 2∑i εi K + δk ||V0(x0) – V*(x0)||
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Cutting Plane Algorithm
Initialization: Construct V0(x)=maxu c0(x,u) + δEPx,u[V0(y)], where c0≥ c and 
c0 concave.

V0 is assumed piecewise linear and equivalent to 

V0(x)=max {θ |θ · E0 x + e0}. k=0.

Iteration: Sample xk∈ X (in any way such that the probability of xk∈ A is 
positive for any A⊂ X of positive measure) and solve

TVk(xk) = maxu c(xk,u) + δ EPxk,u[Vk(y)] where 

Vk(y) =max{θ | θ · El y + el,l=0,…,k.}

Find supporting hyperplanes defined by Ek+1 and ek+1such that Ek+1 x + ek+1 ≥
TVk (x). k← k+1. 

Repeat.
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Specifying Algorithm
Feasibility: 

Ax + Bu · b
Transition:

y=Fi u for some realization i with probability pi

Iteration k Problem:
TVk(xk) = maxu,θ c(xk,u) + δ ∑i pi θi
s.t.  A xk + B u · b,  - El(Fi u) - el + θi · 0, ∀ i,l.

From duality:
TVk(xk) = infµ,λl,i maxu,θ c(xk,u) -µ(Axk+Bu-b) 

+ δ ∑i (pi θi+∑l λi,l(El(Fi u) + el - θi))
· maxu,θ c(xk,u) -µk(Axk+Bu-b) + δ ∑i (pi θi+∑l λi,l,k(El(Fi u)

+el - θi)) for  optimal µk, λi,l,k for xk

· c(xk,uk) + ∇ c(xk,uk)T (x-xk,-uk) -µk Ax +µk b +∑i ( ∑l λi,l,kel)
Cuts:

Ek+1= ∇x c(xk,uk)T -µk A  
ek+1 equal to the constant terms.
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Investment Problem
• Determine asset allocation and consumption 

policy to maximize the expected discounted utility 
of spending
• State and Action 

x=(cons, risky, wealth) u=(cons_new,risky_new)
• Two asset classes 

• Risky asset, with lognormal return distribution
• Riskfree asset, with given return rf

• Power utility function

• Consumption rate constrained to be non-decreasing
cons_new ≥ cons
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Existing Research
• Dybvig ’95*

• Continuous-time approach
• Solution Analysis

• Consumption rate remains constant until wealth reaches a new 
maximum

• The risky asset allocation α is proportional to w-c/rf, which is 
the excess of wealth over the perpetuity value of current 
consumption

• α decreases as wealth decreases, approaching 0 as wealth 
approaches c/rf (which is in absence of risky investment 
sufficient to maintain consumption indefinitely). 

• Dybvig ’01
• Considered similar problem in which consumption rate 

can decrease but is penalized (soft constrained problem)
* “Duesenberry's Ratcheting of Consumption: Optimal Dynamic Consumption and Investment Given 
Intolerance for any Decline in Standard of Living” Review of Economic Studies 62, 1995, 287-313.
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Objectives

• Replicate Dybvig continuous time results 
using discrete time approach

• Evaluate the effect of trading restrictions for 
certain asset classes (e.g., private equity)

• Consider additional problem features
• Transaction Costs
• Multiple risky assets
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Results – Non-decreasing Consumption
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As number of time periods per year increases, 
solution converges to continuous time solution
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Results – Non-Decreasing Consumption 
with Transaction Costs
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Observations

• Effect of Trading Restrictions
• Continuously traded risky asset: 70% of 

portfolio for 4.2% payout rate
• Quarterly traded risky asset: 32% of portfolio 

for same payout rate
• Transaction Cost Effect

• Small differences in overall portfolio 
allocations

• Optimal mix depends on initial conditions
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Extensions

• Soft constraint on decreasing consumption
• Allow some decreases with some penalty

• Lag on sales
• Waiting period on sale of risky assets (e.g., 60-

day period)
• Multiple assets

• Allocation bounds
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Conclusions

• Can formulate infinite-horizon investment 
problem in stochastic programming 
framework

• Solution with cutting plane method
• Convergence with some conditions
• Results for trade-restricted assets 

significantly different from market assets 
with same risk characteristics
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Approach

• Application of typical stochastic 
programming approach complicated by 
infinite horizon

• Initialization.
• Define a valid constraint on Q(x)
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Approach (cont.)
• Iteration k
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