Portfolios with Trading Constraints and Payout Restrictions

John R. Birge Northwestern University

(joint work with Chris Donohue, Xiaodong Xu, and Gongyun Zhao)

1

Outline

- Basic formulation
- General infinite horizon solution method
- Simplified problem and continuous time solution

3

- Results for restricted-trading portfolio
- Future issues

Existing Research

- Dybvig '95*
 - Continuous-time approach
 - Solution Analysis
 - Consumption rate remains constant until wealth reaches a new maximum
 - The risky asset allocation α is proportional to w-c/r_f, which is the excess of wealth over the perpetuity value of current consumption
 - α decreases as wealth decreases, approaching 0 as wealth approaches c/r_f (which is in absence of risky investment sufficient to maintain consumption indefinitely).
- Dybvig '01
 - Considered similar problem in which consumption rate can decrease but is penalized (soft constrained problem)

* "Duesenberry's Ratcheting of Consumption: Optimal Dynamic Consumption and Investment Given Intolerance for any Decline in Standard of Living" *Review of Economic Studies* 62, 1995, 287-313. ¹³

14

